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Dankwoord

Wanneer je de kaft van dit werk bekijkt staat mijn naam daar nogal eenzaam te

blinken onder die titel. Deze pagina’s bieden me gelukkig de gelegenheid om

één en ander recht te zetten. In tegenstelling tot wat je uit die visuele lapsus zou

kunnen concluderen heb ik me de afgelopen vier jaar niet als een kluizenaar

teruggetrokken, in de hoop door voldoende contemplatie, ergens vlak voor

mijn beurs op was, na de zoveelste meditatiesessie, uiteindelijk een ultieme

staat van verlichting te bereiken, om daarna snel-snel mijn geniale bevindingen

neer te pennen en alsnog enkele wetenschappelijk publicaties binnen te halen.

Integendeel, een doctoraat, of eerder een wetenschapper in het algemeen, mag

vandaag de dag wel degelijk interageren met zijn medemens, en laat duidelijk

zijn dat ik die mogelijkheid ten volle benut heb. Dit boekje is er niet alleen

dankzij mijn eigen bloed, zweet en tranen1. Ik heb zowaar hulp gekregen, véél

hulp en daarom dien ik - voor ik in het wetenschapsjargon duik - eerst een

aantal mensen te bedanken!

Wie op de kaft verder kijkt dan zijn of haar neus lang is, ziet al snel twee

andere namen opduiken: Peter Bienstman en Joni Dambre, mijn twee pro-

motoren2. Mijn beide pollekes mag ik kussen dat zij mij de afgelopen jaren

begeleid hebben. Ik kreeg veel vrijheid, af en toe een schouderklopje, en op de

juiste momenten werd ik er ook aan herinnerd dat ik al eens een artikel mocht

schrijven over wat ik aan het doen was. Zonder die artikels had ik dit boekje niet

mogen schrijven, dus die kleine duwtjes in de juiste richting waren zeker nuttig.

Twee namen die op de kaft ontbreken zijn echter Martin Fiers en Koen

Alexander, respectievelijk mijn voormalige thesisbegeleider en één van mijn

twee thesisstudenten (over de andere vertel ik straks nog even). Wie al eens

verder durft bladeren doorheen deze papierbundel zal al snel op werk stuiten

1Goed, goed, we overdrijven hier een beetje, er was gelukkig enkel sprake van een beetje zweet
doordat ik quasi elke dag de Plateau-berg moest opfietsen.

2Beiden prof. dr. ir., maar uit notationale eenvoud laat ik dit soort extra titels in de loop van dit
dankwoord even achterwege. Geïnteresseerde lezers kunnen de correcte aansprekingen gemakke-
lijk consulteren op de voorgaande pagina’s.
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dat enkel door een intense samenwerking met hen tot stand is kunnen komen.

Bedankt daarvoor!

Graag bedank ik ook de juryleden van mijn examencommissie, Michiel

Hermans, Peter, Joni, Guy Verschaffelt, Alejandro Giacomotti, Dirk Aeyels, Luc

Taerwe, zonder wie ik niet had mogen overgaan tot mijn publieke verdediging.

Jullie feedback was zeer welkom en ik hoop dat ik jullie opmerkingen intussen

goed heb verwerkt.

Mijn geldschieters, het FWO, dien ik zeker ook te vermelden want onderzoek

doen is tof, maar zonder jullie financiële bijdrage op het eind van de maand was

dat niet mogelijk geweest.

Als ik de vorige paragrafen herlees valt me op dat ik nog veel bedankings-

werk voor de boeg heb, maar laat ik eerst enkele jaren teruggaan in de tijd. Ik zat

toen in de derde bachelor en volgde het vak Fotonica, gegeven door Roel Baets,

stichtend lid van de onderzoeksgroep waar ik enkele jaren later in zou belan-

den. Een zeer enthousiasmerende lesgever was me dat, die me zin deed krijgen

in meer. De oplossing was snel gevonden, diezelfde zomer deed ik onder aus-

piciën van stagebegeleider Ronny Bockstaele een maand lang fotonica-gelieerd

werk in zijn spin-off. Toen wist ik het zeker, dit was iets voor mij! Daarna volg-

den nog een keuzevak Microfotonica, alwaar ik Martin leerde kennen als een

gemotiveerde practicum-assistent. Niet veel later volgden de thesisvoorstellen

voor het jaar daarop. Bleek dat Martin een thesis begeleidde die over neurale

netwerken (een onderwerp dat me door een stage bij Lunahra bvba ook nauw

aan het hart lag) èn fotonica ging. Hij verwees me door naar de promotor die

bij die thesis hoorde. Zo leerde ik Peter kennen, en iets later ook Joni. Thesissen

bood me voldoende uitdaging om te willen tekenen voor vier onderzoeksjaren

extra.

En zo begon die (toch voor mij) legendarische periode, ik belandde ergens

in september op mijn bureau, en beetje bij beetje leerde ik mijn bureaugenoten

kennen. Dat ging met vallen en opstaan, basketfanaat Diedrik miste al eens een

shot in onze mini-basketbalring of wou mijn reactievermogen testen tijdens

momenten van opperste concentratie, waardoor ik meermaals zo’n balletje in

mijn oog kreeg. Maar later bleek gelukkig dat daar geen verborgen agenda ach-

ter zat. Samen met Peter, mijn ’eiland’-genoot toonde hij me de weg naar de

meetkamer, een nieuwe wereld die voor het voormalige programmerend thesis-

studentje dat ik toen nog was openging. Toeval wou namelijk dat Peter voor zijn

doctoraat dezelfde component onderzocht als mij, de microring, maar dan voor

een totaal andere toepassing. Een nieuwe samenwerking was geboren, uren of

zelfs dagenlang hebben we over die ringen gediscussieerd. Peter overtuigde me

ook om voor mijn eerste niet-Europese conferentie te submitten, en hielp me

zelfs aan een slaapplaats tijdens mijn daar aan gekoppelde city-trip Hong Kong.

Dat zal nog lang in mijn hersenpan gegrift staan. Aan mijn andere kant zat Thijs,
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een zowaar sympathieke Hollander die ik stiekem altijd een beetje beschouwd

heb als de vaderfiguur van onze bureau. Blijkt nu recent dat hij zijn roeping

ook zelf heeft ingezien, wat een geluk moet zijn voor de toekomstige boreling.

Hij hielp me regelmatig ook al eens bij mijn experimenteel werk of als ik vragen

had over microdisk lasers (en daar had ik er veel van in de tijd dat ik Koen be-

geleidde). Had ik al gezegd dat mijn bureau groot is? En internationaal? Verder

bleken er nog Sukumar en Rajesh, twee jolige Indiërs die me introduceerden

in het Diwali festival (festival van het licht, een grootschalig Indisch festival dat

verklaart waarom er zoveel Indiërs in de fotonica komen werken in onze groep).

Ook China was vertegenwoordigd door Honghui, en - topologisch gezien het

verst van mijn bureaustoel - zat Eva, die met haar aanstekelijke vrolijkheid voor

de nodige motivatie zorgt/zorgde onder de bureaugenoten. Stond ook altijd

klaar voor advies als ik daar behoefte aan had.

Noot aan de lezer: intussen zijn er al wat individuën uit de originele bu-

reauschikking vervangen. We zijn tegenwoordig met negen, en daardoor had

ik ook het plezier om nieuwe beloftevolle PhD-studenten te leren kennen zoals

Raphaël, een wel-opgevoede Brasschatenaar3 die met twee woorden spreekt,

een passie voor wetenschap heeft en toch nog boeiende andere gesprekken kan

aanknopen. Er was ook een passage van Martijn in onze bureau, de voorma-

lige beschermheilige van de clean room. There is as well Amin, proving that

Perzians are really nice people with their heart on the right spot. Pijush also

entered the office, and the newest newbies are Andreas and Haolan. Thanks all

for being there, and giving me an ’almost at home’-feeling in my office.

Men zou bijna denken dat onze groep slechts één bureau telt, niets is min-

der waar. Eva kan de bureau aan de overkant van de gang zien en keek lang

uit op pokerface-Karel, eilandgenoot van Martin - jawel, diezelfde van daarnet.

Vermits Martin in het begin van mijn doctoraat de nobele taak had aangevat

om me te leren wat ècht programmeren was stond ik nogal veel in die andere

bureau. Goed, de gehele waarheid is natuurlijk ook dat Martin me overtuigde

om in Linux te werken en hij toendertijd de enige was die mijn geknoei op dat

besturingssysteem terug recht kon trekken. Aldaar zaten ook twee onverlaten,

Yannick en Bart genaamd, die mijn bureaudecoratie al eens overhoop kwamen

gooien. Ik had in die dagen een mooie medaille van Aditya gekregen (thanks

for that New Dehli tourist gadget you once gave me, and the nice collaboration

during microphotonics!), en daar moeten die twee kastaars van over de gang

jaloers op geweest zijn. Chance dat ik daar pas zeer laat achtergekomen ben,

zodat ik hen tegen dat ik het eindelijk wist toch al sympathiek vond.

Laat ik even duidelijk maken dat de boog niet altijd even strak gesponnen

3Volgens de overleveringen zou hij stiekem geëmigreerd zijn uit Wilrijk, maar voorlopig heb ik
nog geen zwart-op-wit bewijzen van deze verdachtmakingen onder ogen gehad.
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stond bij ons, met alle voornoemde namen (en bijhorende liefjes) gingen we al

eens regelmatig een pintje pakken in de Vooruit, de Ploeg en dies meer. Daarbij

waren meestal de leden van de cadeau-maffia aanwezig, tortelduifjes Elewout

(ondanks alles denk ik dat je mijn aanwezigheid stiekem best wel verdraagt)

en Cristina (vrouwelijke dansgoeroe van de groep), Wout en Marie en ook mijn

persoonlijke postdoc, Kristof (mannelijke dansgoeroe van de groep, ook wel ge-

naamd : ’Hij die zijn collega’s leerde dansen’). Andere ’anciens’ die al vaak eens

hun hoofd vertoonden op die evenementen waren Tom en Joris R., mensen die

ons in contact brachten met de buitenwereld, en toonden dat het meestal wel

goed kwam na dat doctoraat.

Tijd voor nog meer collega’s! Over de vakgroepen heen had ik ook het ge-

noegen om naast co-promotor Joni, met Benjamin Schrauwen (merci voor de

tip om Izhikevich te lezen!), Ken (zotte programmeur die de begindagen van

mijn doctoraat best aangenaam heeft gemaakt) en Michiel H. (tof dat je elke

keer weer afkomt met van die coole concepten tijdens de PRC meetings).

Nu ik dan toch over de PRC meetings bezig ben, naast Kristof, Martin, Mi-

chiel en beide promotoren was daar ook de polyglot Bendix terug te vinden.

Recent maakte ook Andrew zijn intrede. Hun aanwezigheid in het PRC-groepje

maakt duidelijk dat er ook in de toekomst nog belangrijke nieuwe reservoir

computing concepten zullen ontstaan in onze fotonica-groep!

Ook het Caphe-Ipkiss verhaal moet ik ten berde brengen. Martin verliet

zo’n jaar geleden ons PRC-groepje om zijn eigen software spin-off rond Caphe

en Ipkiss, twee nu al wereldbefaamde softwaretools die in onze groep zijn ont-

wikkeld, te starten samen met Wim, Pieter D., Erwin, Pierre, Joris G. (bedankt

trouwens voor die keren dat ik per ongeluk een map simulatieresultaten per

ongeluk had gewist en je me uit de nood probeerde te helpen!).

And I’m still not there yet, the list is almost endless, I also have to mention

Herbert (waardige opvolger voor het matrix-practicum bij microfotonica!), Sar-

vagya (once we will write a paper about this effective index story), Nannisha

(it’s a pity you’re gone, who else is going to teach me how to cook decent Thai

food?), Gunay (gewoon beginnen schrijven aan je boek, dat is het beste advies

dat ik kan geven), Pauline (Bedankt om me de trucjes van al je meetopstellin-

gen te willen uitleggen...) and Sam, Michael (die automatische meetsetup van

jou heeft mij veel tijd bespaard), Kristien (redster in nood in gevallen van ex-

treem geknoei met mijn laptop), Ang Li, Daan, Jan-Willem, Chen, Paul, Ananth,

Sarah, Frédéric, Geert (altijd paraat voor advies bij problemen in de meetka-

mer), Dries, Alfonso, Muhammed, Pieter, François, Ananth, Shahram and Leili

(another two friendly Perzians, Leili being the girlfriend of office-mate Amin),

Jeroen, Utsav, Jesper, ... A lot of people with whom I had interesting discussions

about work and non-work-related topics.

I should also mention my stay in LPN, CNRS. Thanks to Alejandro, Philippe,
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Samir, Kamel and Ariel for letting me join your group during those few months.

Working on these photonic crystal cavities gave me a lot valuable new insights.

Thanks to all my room mates in the Cité U, I really had a pleasant time there.

Bedankt ook aan beide Ilses om me daar in die toen volledig door sneeuw be-

dekte straten te komen opzoeken.

Recent werd ik ook goed onthaald door de beide Guys, Mulham en Romain

in de VUB. Hopelijk komt er nog iets uit die experimenten die we zijn gestart!

Ik had overigens ook enorm veel geluk met mijn thesisstudenten, ik heb er

in totaal twee gehad. Koen vermelde ik eerder al, maar er was ook nog Michiel

C., die zich heeft bezig gehouden om beurskoersen te proberen voorspellen met

(photonic) reservoir computing. Het ga je goed daar bij de collega’s van ELIS.

Met zoveel collega’s is het achteraf gezien bizar dat ik ook nog met andere

mensen contact had, maar er waren wel degelijk Jense, Brenda (van een moge-

lijkheid tot ondervoeding is in jouw aanwezigheid geen sprake), Sophie, Michel,

Erik en Sarah (ik plan nog steeds jullie te komen opzoeken!), die me de vinger

aan de pols deden houden in het modale burgie-huishouden. Gelukkig waren

daarbij meestal Kathleen (die plant leeft nog, ik zweer het!) en Seba (ik hoop dat

ik je voor je naar Princeton vertrekt nog eens meekrijg op Boomtown) aanwezig,

zodat ik daar niet als enige doctoraatstudent tussen al dat ’belastingbetalend

werkmens’-geweld stond!

Buiten die burgie-huiskamergroep was er ook een heel team dat klaar voor

me stond om me te voeden, te luisteren naar mijn verzuchtingen, met mij naar

toneel, thé dansants, film, jazzfestivals te gaan, mij te kleden. Ellen (rots in de

branding, en vat vol goede ideeën, door jou tel ik nu elk jaar af tot het vriest

zodat ik nog eens in Hulst kan gaan schaatsen en zo draag ik veel mooie herin-

neringen aan mijn weekends in het Waasland en omstreken mee - goed dat jij

eindelijk in Gent bent komen wonen), Marijke (zonder mensen als jij was het

concept rookthee me volledig ontgaan, wat zonde zou zijn, bedankt trouwens

voor het naleeswerk van mijn premature doctoraatshoofdstukken) en Sonny

(jaja, ooit kook ik nog eens terug voor jullie), Dominique (bij jou heb ik het

gevoel dat ik nog eens zal mogen opscheppen dat ik je al kende toen je nog

jong en onbekend was, blijven schrijven De Meyst! Om je wat entertainment

te bieden verstopte ik alvast zeven taalfouten in dit dankwoord, benieuwd of

je ze vindt. Ik hoop stiekem ook op de verderzetting van onze leesclub.), Freek

(het Gentse horeca-leven had er zonder jouw introductie stukken anders uitge-

zien voor mij, speciaal voor jou deze quizvraag: ’Hoe heet het Europese project

dat momenteel loopt waarin het einddoel is het volledige menselijke brein te

simuleren?’), Ruth (wanneer gaan we nog eens naar de Roma?), Ingrid (chance

dat er toch iemand op mijn mentale gezondheid let! Er zijn ook maar weinig

mensen met wie naar de film gaan zo tof is als met jou...), Jean-Luc, Anja, Laura

en Eline (met jullie gaan lunchen geeft me altijd een beetje een vakantiegevoel),
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Lode, lindy-hoppende Rein (altijd aangenaam om je tegen het lijf te lopen in

de verste uithoeken ter wereld, zoals in Peking), Joksie, Tineke, Ramses, Inge

(ongeneerd chique gaan eten, blij dat jij er was om dat met me te doen), Elke

en Matthias (altijd een beetje thuiskomen in jullie bungalow) en pas in mijn

laatste doctoraatsjaar er bij gekomen: Dorien (ben ik even blij dat je op Jazz

Middelheim op me toestapte, zonder jouw creatieve chaos had ik mijn vrije tijd

de laatste maanden heel wat saaier doorgebracht) en Sofie (zonder jou was er

van Fig. 1.1 geen sprake, ik ben ontzettend blij dat ik via Eva zo’n gepersona-

liseerde reisbegeleidster heb ontmoet, bedankt ook voor de goede zorgen in

tijden van schrijfmoeheid en om me tijdens het badmintonnen toch nog de

indruk te willen geven dat ik alvast een beetje vooruitgang maak). Of ik nu in

Gent, Antwerpen of Sint-Niklaas vertoefde, altijd stonden jullie voor me klaar.

Of toch verdacht veel. Ik ga er al lang niet meer van uit dat ik ooit iets equiva-

lents zal kunnen terugdoen van wat jullie voor mij beteken(d)en.

Buiten mijn vriendenkring kreeg ik ook nog steun uit familiale hoek (tante,

nonkel, nicht, bedankt om me te komen opzoeken in Parijs en neef en Irene, ik

hoop dat we elkaar nog tijdens veel Gentse Feesten edities tegen het lijf lopen).

Speciale vermelding verdienen hier alvast oma en opa, jammer dat jullie er niet

meer bij zijn. Mijn bezoekjes aan Molenberg hadden vaak een therapeutische

uitwerking. Aan de andere zijde van de familie motiveerde pepe, vanop zijn

wolkje daarboven, me ook om dit doctoraat tot een goed einde te brengen, door

mij vijftig jaar geleden het goede voorbeeld te geven. Speciale dank ook voor Jo

en Suzy om me in de periode dat ik mijn bureau beu gezien was bij jullie in de

living te laten verderschrijven.

Tot slot dienen ook nog de leden van het geslacht Van Vaerenbergh-Van

Den Meersschaut aan bod te komen: moeder, vader (bedankt voor het nalezen

van mijn Nederlandstalige samenvatting!) en zus. Zij boden me de afgelopen

vier jaar telkens weer een plaats waar ik me kon terugtrekken van al dat Gents

geweld. Fris gewassen, gestreken en gevoed kon ik dankzij jullie zorgen na

één van de vele weekendjes thuis weer monter het strijdperk tegemoet treden.

Bedankt beste ouders en zusje (het spijt me overigens zeer dat ik niet gewoon

postbode ben geworden dierbare zus, maar dat is een ander verhaal) voor het

onuitputtelijke begrip, de goede zorgen en de steun die jullie me boden. Niet

iedereen heeft even veel geluk met zijn thuisfront!

Ter conclusie zou ik graag iedere thesisstudent die erover twijfelt om al dan

niet een doctoraat aan te vatten willen aanraden om het gewoon te doen! Van

dit soort jobs zijn er niet veel.

Gent, 21 mei 2014

Thomas Van Vaerenbergh







Table of Contents

Dankwoord i

Nederlandse samenvatting xxxix

1 Neuromorf rekenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl

2 Fotonica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl

3 Neuromorf rekenen op basis van fotonica . . . . . . . . . . . . . . xli

4 Optische gepulste neuronen geïntegreerd op een fotonische chip xlii

English summary xlv

1 Neuromorphic computing . . . . . . . . . . . . . . . . . . . . . . . . xlvi

2 Photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlvi

3 Neuromorphic computing using photonics . . . . . . . . . . . . . . xlvii

4 All-optical spiking neurons integrated on a photonic chip . . . . . xlvii

1 Introduction 1

1.1 Neuromorphic computing . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Photonics and the link with optical computation . . . . . . . . . . 4

1.3 Neuromorphic computing using photonics . . . . . . . . . . . . . . 6

1.4 All-optical spiking neurons integrated on a photonic chip . . . . . 7

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Optical Spiking Neural Networks 17

2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Neuron type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3.1 Feedforward versus recurrent neural networks . . 23

2.1.3.2 The combination of feedforward and recurrent

neural network properties using reservoir com-

puting . . . . . . . . . . . . . . . . . . . . . . . . . . 24



x

2.2 Optical implementations of neural networks . . . . . . . . . . . . . 25

2.2.1 Photonic reservoir computing . . . . . . . . . . . . . . . . . 26

2.2.2 Optical Spiking Neural Networks . . . . . . . . . . . . . . . . 28

2.3 Excitability in nonlinear dynamical systems . . . . . . . . . . . . . 30

2.3.1 Nonlinear dynamical systems theory . . . . . . . . . . . . . 31

2.3.1.1 Saddle-node or fold bifurcation . . . . . . . . . . . 32

2.3.1.2 Andronov-Hopf bifurcation . . . . . . . . . . . . . . 33

2.3.1.3 Saddle-node on an invariant circle bifurcation . . 35

2.3.2 The origin of excitability and its classification . . . . . . . . 35

2.4 Excitability in optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Adler model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Slow-fast dynamics . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Phenomenological modeling of photonic integrated circuits 53
3.1 Towards phenomenological models . . . . . . . . . . . . . . . . . . 54

3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 The need for a new software package . . . . . . . . . . . . . 57

3.2.2 Choice of programming language . . . . . . . . . . . . . . . 58

3.3 Signal representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Envelope approximation . . . . . . . . . . . . . . . . . . . . 60

3.4 Scatter matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Passive component . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Reciprocal component . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Example scatter matrices . . . . . . . . . . . . . . . . . . . . 63

3.4.3.1 Scatter matrix of a waveguide . . . . . . . . . . . . 64

3.4.3.2 Scatter matrix of a directional coupler . . . . . . . 64

3.5 Beyond the scatter-matrix: the node description . . . . . . . . . . 64

3.6 Generalized source term . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Generalized connection matrix of a circuit . . . . . . . . . . . . . . 67

3.7.1 Derivation of the generalized connection matrix . . . . . . 67

3.7.2 Application of the framework to a microring resonator . . . 69

3.7.2.1 Frequency-domain simulations . . . . . . . . . . . 71

3.7.2.2 Time-domain simulations . . . . . . . . . . . . . . 74

3.7.3 Speeding up the matrix calculations . . . . . . . . . . . . . . 74

3.8 Integration of the state variables . . . . . . . . . . . . . . . . . . . . 76

3.8.1 Node elimination during time-domain simulations . . . . . 77

3.8.1.1 Efficient evaluation of the time derivative of the

system . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xi

3.8.1.2 Node elimination in a nanophotonic reservoir . . 78

3.8.2 Choice of integration algorithm . . . . . . . . . . . . . . . . 79

3.8.2.1 Stability, accuracy and speed . . . . . . . . . . . . . 79

3.8.2.2 Numeric integration of coupled nonlinear cavity

dynamics . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Temporal Coupled Mode Theory . . . . . . . . . . . . . . . . . . . . 82

3.9.1 Derivation of CMT equations for a microring resonator . . 84

3.10 Extending the framework to CMT-models . . . . . . . . . . . . . . . 86

3.10.1 Reshaping the system equation towards CMT . . . . . . . . 87

3.10.2 Calculation of the linear transmission . . . . . . . . . . . . . 88

3.10.3 Increasing sparseness . . . . . . . . . . . . . . . . . . . . . . 89

3.10.4 Applicability of the extended framework . . . . . . . . . . . 91

3.11 Example: frequency simulation of a Coupled Resonator Optical

Waveguide circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.12.1 Multiwavelength simulations . . . . . . . . . . . . . . . . . . 94

3.12.2 Time-domain model of dispersion . . . . . . . . . . . . . . . 94

3.12.3 Co-simulation of electronic and photonic circuits . . . . . . 95

3.12.4 Noise modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.12.5 Variability and yield analysis . . . . . . . . . . . . . . . . . . 96

3.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Cascadable excitability in microrings 105
4.1 Excitability in thermo-electrical nonlinear photonic components 106

4.2 Silicon-on-insulator microring resonator . . . . . . . . . . . . . . . 108

4.2.1 CMT-equations of a nonlinear microring . . . . . . . . . . . 109

4.2.2 Numerical details of the simulations . . . . . . . . . . . . . 110

4.3 Nonlinear dynamical analysis of bistability and self-pulsation . . 111

4.3.1 Physical origin of bistability in a ring . . . . . . . . . . . . . 112

4.3.2 Physical origin of self-pulsation in a ring . . . . . . . . . . . 113

4.3.3 Power sweep for fixed wavelength . . . . . . . . . . . . . . . 114

4.3.3.A Calculation of the steady state equations . . . . . . 115

4.3.4 Phase-plane analysis . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.4.A Calculation of the nullclines . . . . . . . . . . . . . 117

4.3.4.B Proof of the bijection between (∆T ,N )-plane and

d a/d t = 0-surface . . . . . . . . . . . . . . . . . . . 117

4.3.5 2D approximation . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.5.A Calculation details of the 2D approximation . . . 119

4.3.6 Bifurcation analysis of the onset of bistability and the onset

of self-pulsation . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xii

4.4 Excitability: single and double ring configuration . . . . . . . . . . 122

4.4.1 Threshold behaviour . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.2 Refractory period . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.3 Cascadability . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.4 Energy consumption and speed . . . . . . . . . . . . . . . . 128

4.5 Measurement of the microring neurons . . . . . . . . . . . . . . . . 128

4.5.1 Fabrication, design and measurement setup . . . . . . . . . 129

4.5.2 Single microring self-pulsation . . . . . . . . . . . . . . . . . 130

4.5.3 Single microring excitability . . . . . . . . . . . . . . . . . . 131

4.5.4 Cascadable microring excitability . . . . . . . . . . . . . . . 133

4.6 Derivation and analysis of the scaling laws of the cavity dynamics 135

4.6.1 Context of the calculation method . . . . . . . . . . . . . . . 136

4.6.2 Dimensionless version of simplified rate equations . . . . . 136

4.6.3 Influence of cavity design on nonlinearity enhancement . . 140

4.6.3.1 Influence of Qi and k on p, ep and qp . . . . . . . 140

4.6.3.2 Influence of V on p, ep and qp . . . . . . . . . . . 141

4.6.3.3 Influence of Qi and k on q and e . . . . . . . . . . . 142

4.6.4 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . 142

4.6.5 Influence of model parameters on bistability, self-pulsation

and excitability . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6.5.1 Influence of q : FCD versus SSA . . . . . . . . . . . 146

4.6.5.2 Influence of timescale ratio ε . . . . . . . . . . . . . 146

4.6.5.3 Influence of free carrier lifetime τ f c . . . . . . . . . 150

4.6.5.4 Influence of f : FCA versus FCD . . . . . . . . . . . 150

4.6.6 Summary of the derivation: towards design guidelines . . . 152

4.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5 Cascadable excitability in microdisk lasers 159
5.1 Excitability in integrated semiconductor lasers . . . . . . . . . . . 160

5.1.1 Excitability due to optical injection in single-mode semi-

conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1.2 Excitability near the onset of passive Q-switching . . . . . . 161

5.1.3 Excitability in asymmetric Semiconductor Ring Lasers . . . 162

5.1.4 Excitability due to optical injection in microdisk lasers . . . 163

5.2 The microdisk laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.1 Rate equation model of a single microdisk laser . . . . . . . 164

5.2.2 Bifurcation diagram for increasing current . . . . . . . . . . 165

5.3 Optical injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



xiii

5.4.1 Neuron circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4.2 Reaction of the system to a typical trigger pulse . . . . . . . 170

5.4.3 Threshold behaviour as a function of input pulse power . . 172

5.4.4 Threshold behaviour as a function of input pulse phase . . 174

5.4.5 Integrating behaviour . . . . . . . . . . . . . . . . . . . . . . 176

5.4.6 Refractory period . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.7 Complex addition of two input pulse streams . . . . . . . . 179

5.5 Towards cascadability . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5.1 Connection of the disk neurons . . . . . . . . . . . . . . . . 181

5.5.2 Rate equation model of two coupled microdisk lasers . . . 183

5.6 Transfer of the excitation . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.6.1 Symmetrical coupling - Oscillations . . . . . . . . . . . . . . 185

5.6.2 Asymmetrical coupling - Unidirectional excitation transfer 186

5.7 Sensitivity to parameter variations . . . . . . . . . . . . . . . . . . . 188

5.7.1 Influence of current variations . . . . . . . . . . . . . . . . . 188

5.7.2 Influence of detuning variations . . . . . . . . . . . . . . . . 190

5.7.3 Compensating for variations in detuning . . . . . . . . . . . 191

5.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Conclusions and Perspectives 201
6.1 High-level simulations of nonlinear photonic integrated circuits . 202

6.2 Cascadable excitability . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2.1 A microring as a spiking neuron . . . . . . . . . . . . . . . . 203

6.2.2 A microdisk as a spiking neuron . . . . . . . . . . . . . . . . 203

6.2.3 Towards large-scale optical Spiking Neural Networks . . . . 205

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206





List of Figures

1 (a) Als de trigger puls voldoende sterk is, exciteert het de ring,

met een vaste pulsvorm. Lagere triggersterktes resulteren in sub-

threshold oscillaties. (b) Als de resonanties van twee identieke

all-pass ringen voldoende dicht bij elkaar liggen, zullen ze ex-

citeerbaar zijn bij hetzelfde pompsignaal, wat te zien is aan de

uitgang van het circuit als twee afzonderlijke pulsen. . . . . . . . . xlii

2 (links) De gebruikte topologie om twee microdisklasers te cas-

caderen. De connecties tussen beide lasers komt overeen met

een faseverschil ∆φ. (rechts, boven) Als een externe perturbatie

de eerste disk triggert, exciteert die op zijn beurt de tweede disk.

Als beide disks hetzelfde locking signaal ontvangen exciteert de

tweede disk op zijn beurt terug de eerste disk door de symme-

trie van het systeem. Dit proces herhaalt zichzelf en resulteert

in alternerende excitaties tussen de twee disks. (rechts, onder)

Symmetriebreking door het creëren van een faseverschil tussen

de twee locking signalen van de disks kan de pulstransfer uni-

directioneel maken: de tweede disk herexciteert de eerste disk

niet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliv

1 (a) If the trigger pulse is sufficiently strong it excites the ring with

a fixed pulse shape, while for lower trigger powers subthreshold

oscillations are visible. (b) If the resonances of two identical All-

Pass (AP) rings with common bus waveguide are sufficiently close

to each other, they will show excitability for the same pump wave-

length and power, which is visible in the output of the circuit as

two seperate pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . xlviii



xvi

2 (left) Topology used to cascade two microdisk lasers. The connec-

tion between both lasers corresponds to a phase difference ∆φ.

(right,top) If an external perturbation triggers the first disk, it ex-

cites in its turn the second disk. If both disks receive the same

locking signal, due to the symmetry, the second disk excites again

the first disk, and as this process repeats itself this results in al-

ternating excitations between the two disks. (right,bottom) Sym-

metry breaking by inducing a difference in phase between the two

locking signals of the disks can make the pulse transfer unidirec-

tional: the second disk does not re-excite the first disk. . . . . . . . xlix

1.1 The human brain outperforms state-of-the-art computer hard-

ware with respect to parallelization and power consumption. It

processes massive amounts of time-dependent data in parallel,

while its power consumption is comparable to a simple light bulb.

Furthermore, by learning from previous experiences it is able to

solve tasks, even without having a fixed algorithm for them. . . . 2

1.2 Just like its biological example, Spiking Neural Networks (SNNs)

consist of interconnected neurons, that communicate with each

other by sending spikes. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Prototype of a CMOS chip with an on-chip optical interconnect

overlay (reproduced from [12]). Optical interconnects would allow

to increase the information transfer rate and this transfer of large

amounts of information would happen at higher speeds and using

less power than using current electronic interconnects . . . . . . 5

1.4 An integrated optical neuron should be excitable and this ex-

citability should be cascadable. . . . . . . . . . . . . . . . . . . . . . 8

2.1 Different neuron models have different types of output signals.

Due to the increase in temporal detail, there is an increase in infor-

mation content from the binary output of the perceptron, over the

analog output of an analog neuron, to the spike-trains produced

by a spiking neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The input of a neuron is a linearly combination of the output sig-

nals of the other neurons. A connection from neuron j to i has a

weight wi j . If the Neural Network (NN) is time-dependent, then

the connection also has a delay τi j . . . . . . . . . . . . . . . . . . . 21

2.3 (left) A feedforward Neural Network (FNN) has no feedback loops,

which makes it relatively easy to train (right) A Recurrent Neural

Network has feedback, providing memory, but is more difficult to

train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xvii

2.4 (left) The Reservoir Computing paradigm combines the easy train-

ability of a Feedforward Neural Network (FNN) in the readout

layer with the dynamic richness of a Recurrent Neural Network

(RNN) in the reservoir. (right) the RNN in the reservoir can be

replaced by another nonlinear dynamic system, paving the way

towards hardware implementations. . . . . . . . . . . . . . . . . . . 24

2.5 The details of the local connection topology of a fully connected

optical neuron (grey circle) embedded in a 2D-mesh implemen-

tation of a Photonic Reservoir Computing (PRC) network. The

power division over the different output branches of the splitter

is determined by the splitting ratio S. Adopted from [37, 44]. . . . 27

2.6 In a saddle-node bifurcation a stable Fixed Point (FP) (black cir-

cle) and unstable FP (white circle) collide and disappear. Arrows

indicate the direction of the flow on the x-axis. . . . . . . . . . . . . 32

2.7 Two different types of Andronov-Hopf bifurcations: in a super-

critical Andronov-Hopf bifurcation a stable Limit Cycle (LC) orig-

inates from a stable FP, while in a subcritical Andronov-Hopf bi-

furcation an unstable LC collides with a stable FP, resulting in an

unstable FP. In most physical systems with subcritical Andronov-

Hopf bifurcation the unstable FP is surrounded by another stable

LC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 A saddle-node on a invariant circle bifurcation gives rise to a LC. . 35

2.9 Neural excitability can be subdivided in three classes based on the

frequency-current relation at the onset of spiking [18]. . . . . . . . 37

2.10 The three optical excitability types have a different characteristic

pulse shape [75]. The smooth pulse shape of type 1 excitability

is linked with the Adler model discussed in Sec. 2.4.1, while the

block-shape of type 2 excitability is linked to slow-fast dynamics

discussed in Sec. 2.4.2. Type 3 excitability will not be discussed

in-depth in this dissertation, but an important feature here is that,

in between the excitations, at the rest state there is no output light. 39

2.11 The Adler model describes how a sufficiently strong perturbation

can let the system cross the stable manifold of the unstable FP (a

saddle, hollow circle in the figure), and initiates as such a pertur-

bation, as the system has the make a full round trip before it can

return to the stable rest state (full circle). . . . . . . . . . . . . . . . 40



xviii

2.12 (left) If in a slow-fast system the slow (vertical) nullcline intersects

the middle branch (from A to C) of the S-shaped fast nullcline, the

intersection is an unstable FP and the system oscillates with a typ-

ical blockwaved pulse shape. (right) If the slow nullcline intersects

the fast nullcline in one of the stable branches, near the oscillation

onset, excitability appears. . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 A microring can be investigated using different simulation algo-

rithms. A full vectorial Finite Difference Time Domain (FDTD), by

discretizing the Maxwell’s equations both in space and time will

return a detailed distribution of the electromagnetic fields. How-

ever, to reduce simulation time, one can also use an eigenmode

solver to calculate the mode profile of the waveguides. One can

then calculate effective refractive indices based on this mode pro-

file, and use this information in black box models that do not in-

corporate any spatial information of the field distribution. For in-

stance, the ring can be considered to be a combination of a direc-

tional coupler and a waveguide, which can be modelled using a

scatter-matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 In scatter-matrix theory a linear N-port optical component is

treated as a black box. Its input-output relationship is fully deter-

mined by the scatter-matrix S. . . . . . . . . . . . . . . . . . . . . . 62

3.3 Properties of a node with N ports in Caphe. A linear and instan-

taneous node is described by its scatter-matrix S. State variables

(e.g., temperature and free carriers), accompanied by the corre-

sponding (nonlinear) Ordinary Differential Equations (ODEs),

can be added to this description. This makes the node non-

instantaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 A microring resonator consists of two parts: a directional cou-

pler and a bent waveguide. In Caphe, we would probe this com-

ponent with two memory-containing components, a source (the

laser) and a detector (the Optical Spectrum Analyzer (OSA)) each

having only one port. If the memoryless nodes are eliminated

from the circuit, the transmission of the ring is summarized in a

small (2×2) generalized connection matrix Ci n,ex , being equal to

the scatter-matrix S of this microring. . . . . . . . . . . . . . . . . . 70

3.5 The power transmission of a critical coupled ring as a function of

wavelength, calculated by Caphe. The ring properties are A = τ=
0.85, L = 50µm, ne f f (1550nm) = 2.43 and ng = 4.3. We also show

the Lorentzian approximation of the spectrum of one of the reso-

nance peaks, calculated using Eq. (3.28). . . . . . . . . . . . . . . . 72



xix

3.6 A Coupled Ring Optical Waveguide (CROW) circuit can be subdi-

vided in multiple sections that consist of a directional coupler and

two waveguides. Port numbers in such a section are shown in the

left. A N ring CROW circuit contains N +1 coupling sections. . . . 75

3.7 Calculating the frequency response of a passive circuit. Using

KLU, a sparse matrix solver suited for circuit-like matrices, we can

easily calculate scatter matrices of very large circuits. . . . . . . . . 76

3.8 At every time step Eq. (3.34) needs to be evaluated. For this pur-

pose we first calculate sext ,MC . Next we calculate si n,MC . And fi-

nally si n,MC is used si n,MC in the evaluation of f(a,si n , t ). . . . . . 77

3.9 (left) Topology of a nanophotonic reservoir, containing both

memoryless (ML) and memory-containing (MC) nodes. Each

circle represents a Semiconductor Optical Amplifier (SOA) (MC),

which are connected via waveguides (ML) and splitters (ML, not

shown) to other SOAs, detectors and sources (MC) (right) Due to

the nearest neighbour connection topology of the network and

sparse implementation of the matrix products, both the simula-

tion time and memory use increase linearly with the number of

SOAs, but this increase is less steep if the ML nodes are elimi-

nated. The offset in the memory consumption graph is related to

initialization overhead in Python. . . . . . . . . . . . . . . . . . . . 79

3.10 (left) When using forward Euler integration, larger timesteps de-

crease the accuracy. (right) An adaptive stepsize integration al-

gorithm automatically uses the optimal dt when targeting a given

accuracy level. Indeed, during the sudden jump in the input the

integration step is clearly decreased. Parameters are identical as

in [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Structure of a Coupled Mode Theory (CMT) resonator with p ports

and m modes. The matrix S couples light directly from input to

output ports, the matrix KT couples light from the input to the

modes, the matrix M contains information about the resonance

frequencies, losses and intermodal coupling and the matrix D

couples light from the states to the output. . . . . . . . . . . . . . . 82

3.12 (left) In a long chain of inline Photonic Crystal (PhC) cavities,

incorporation of the CMT formalism improves the simulation

speed. In this simulation we used an equally long input signal as

in Fig. 3.10(a). (right) A similar improvement can be seen in a

simulation of a nanophotonic reservoir of inline PhC cavities in

the topology of Fig. 3.9(a). In the latter simulation we used the

same input signals as in Fig. 3.9(b), and this time the signals travel

in two directions through the connections. . . . . . . . . . . . . . . 91



xx

3.13 (left) The the κi of a Coupled Ring Optical Waveguide (CROW) can

be optimized to match a desired filter characteristic. (right) If re-

alistic process variations are added to the original design specifi-

cations, performance deteriorates. . . . . . . . . . . . . . . . . . . . 93

4.1 The transmission of an all-pass ring is minimal at the resonance

wavelength, while the energy in the cavity is maximal. For high

input powers, this implies that nonlinear interactions will be en-

hanced in the ring for wavelengths near the resonance wavelength. 108

4.2 The transmission of an all-pass ring with (λr,e f f −λr ) ∝∆T ∝|a|2
gets skewed to the right for higher input powers. This results in

bistability (blue points are stable FPs, while red points are unstable).112

4.3 Changes in temperature or free carrier concentration change the

effective resonance wavelength, resulting in different detuning

scenarios with respect to an input signal at a fixed wavelength.

This can result in self-pulsation. . . . . . . . . . . . . . . . . . . . . 113

4.4 For a detuning λ − λr = 62pm, Pout (Pi n) is bistable (left fig-

ure), for Pi n > 191µW the lower Pout -branch becomes unstable,

which is an indication of self-pulsation. For Pi n = 0.6mW and

(a,∆T, N )(t=0)=(0,0.7,0) this gives the self-pulsation time-traces

on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 On the phase portrait for Pi n = 0.6mW and a 62pm detuning, the

d(N , a)/d t = 0, d(∆T, a)/d t = 0 nullclines only intersect at the

three FPs (orange circles). In correspondence with Fig. 4.4 two

of those FPs are unstable (open circle), while one is stable (filled

circle). The example time-trace from Fig. 4.4 (black line) clearly

follows both the d(∆T, N )/d t directions on the d a/d t = 0-surface

(grey arrows) and the corresponding direction changes indicated

by the nullclines. Moreover, (grey) contour lines of d a/d t = 0 for

|a|2 = 1fJ−31fJ are elliptic and do not overlap (Sec. 4.3.4.B). . . . . 116

4.6 The phase portrait obtained by neglecting the Two Photon Absorption

(TPA)-contribution in γloss in Eq. (4.6), looks similar to Fig. 4.5

and still explains (approximately) the dynamic behaviour of the
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4D-behaviour, both in phase-plane and in time-domain, although

the shape of the limit cycle (LC) is slightly different. The yellow

line is the separatrix of the simplified system. . . . . . . . . . . . . 118
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4.7 At the red side of the resonance (e.g., left: δλ= 62pm) the Andronov-

Hopf (Andronov-Hopf (AH)) bifurcation (blue dot) tends to be

supercritical, while it can be subcritical at the blue side of the

resonance (e.g., right: δλ = −16pm). FPs (black) and both maxi-

mum and minimum values of the LCs (magenta) in a ∆T (Pi n)-

bifurcation diagram, calculated using PyDSTool [1], illustrate

this. Moreover, at δλ = 62pm the ring is bistable in-between two

Saddle-Node (SN) bifurcations (red dots), while at δλ = −16pm

a stable and unstable LC annihilate in a LC Fold bifurcation at

Pi n = 2.836mW (black dots indicate the maximum and minimum

of the LC at this bifurcation). Relevant Pi n-values used in the

other figures are indicated. . . . . . . . . . . . . . . . . . . . . . . . 120

4.8 For some input powers and wavelength settings the LC encloses

a stable FP (filled circle) in the (∆T, N ) phase-plane. This indi-

cates a subcritical AH bifurcation. We illustrate this here for Pi n =
2.85mW and δλ = −16pm. Depending on the initial conditions,

the trajectory will converge to the LC (black curve (∆T, N )(t=0) =
(1.5K,8e16cm−3) ) or to the FP (magenta curve (∆T, N )(t=0) =
(1.2K,8e16cm−3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.9 A temporary increase from Pi n = 1.8mW to 2.9mW at δλ =
−16pm, during 2ns, triggers an excitation. Although for this input
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of the nearby LC from Fig. 4.8. . . . . . . . . . . . . . . . . . . . . . 122

4.10 The excitability-threshold power Pthr eshol d is more λ than Pi n-

dependent. Trigger pulses are Ttr = 10ns long and have been sent

in the opposite direction as the pump light. . . . . . . . . . . . . . 123

4.11 The refractory period Tr f is the time after a pulse during which

the ring is insensitive to a second perturbation (a). It is on the or-

der of magnitude of τth , and is not much power dependent for

δλ = −35pm (b), while there is a clear wavelength dependency

for Pi n = 1.8mW (c). Ptr = 1.65mW for (b) and Ptr = 3.42mW for

(c) (the need for the high Ptr -value of the latter is necessary to be

above threshold for all wavelengths in the sweep range, as can be

inferred from Fig. 4.10(b)). The refractory period can be predicted

by looking at the time needed for ∆T (t ) to relax to the rest state

(Tr f ,pr edi ct .). Moreover, the width of the pulse Twi d th is propor-

tional to the rise time of the temperature, i.e., the time needed to

reach the maximum temperature after a pulse. In the phase por-

trait we indicate the trajectory the ring makes during the external

perturbations with cyan, while we use black for the rest of the re-

sponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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4.12 If a ring is excited by a trigger signal, this excitation can excite

another ring. To demonstrate this we send a Continuous Wave

(CW) pump signal with Pi n = 1.8mW and δλ = −16pm through

the common bus of a series of two Add-Drop (AD) filters. By excit-

ing the first ring via the drop port (with a 10ns trigger with Ptr =
250µW,λtr =λ) we guarantee that the external trigger pulse never

reaches the second ring. The second pulse in the circuit’s out-

put, which corresponds to the second ring’s excitation, is thus trig-

gered by the first pulse, originating from the first ring. In contrast

to the perturbation of the first ring (caused by the trigger), the sec-

ond ring is initially perturbed (by the first ring) towards lower ∆T

and N (right phase portrait). This causes the delay between the

two excitations to be bigger than the delay between the trigger and

the first pulse (time-trace bottom left). . . . . . . . . . . . . . . . . 127

4.13 Schematic of the setup for a single-ring measurement. Light of a

tunable laser (TL), polarized with polarization controllers (PC) is

coupled in and out the chip via grating couplers (GC). The ring

output is measured with a 10GHz photodiode and visualized with

a 1GHz real-time scope. In the excitability experiment a second

TL is used, mostly coupled in the opposite direction via a circu-

lator. The pulses are created using a signal generator (SG) and

a pulse pattern generator (PPG) and an electro-optical modula-

tor (EOM). At the bottom, spectral details of both the single-ring

(left figure) and double-ring resonances (right figure), used in this

chapter, are included. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.14 Both the input power and wavelength clearly change the pulse

shape and period of the self-pulsation in an AP ring with a 550nm×
220nm cross section, a 4.5µm radius, near the resonance wave-

length at 1530.708nm. (a) Input power sweep with pump wave-

length detuning δλ=λ−λr = 40pm. Power values are those at the

output of the laser. Due to the grating coupler the on-chip input

power of the ring is expected to be ∼ 6dB lower. (b) Detuning

sweep of the same ring with 5.0dBm output power at the TL laser.

The self-pulsation period is on the order of ∼ 50ns. . . . . . . . . 131
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4.15 (a) If the trigger power is sufficiently high (≥ 7dBm@TL) the ring

excites with a fixed pulse shape, while for lower trigger powers

subthreshold oscillations are visible. The 4dBm pump light is de-

tuned at δλ = −4pm from the λr = 1530.708nm resonance. The

trigger light is tuned δλtr = 9pm near another ring resonance at

λr ′ = 1550.671nm. (b) The refractory period is on the order of

magnitude of the self-pulsation period. The pump settings are

similar to (a), while the trigger pulse settings are δλtr = 9pm and

Ptr = 5dBm. Mentioned power values are those at the output of

the lasers, due to GCs and EOM the on-chip input power of the

ring is expected to be ∼ 6dB lower for the pump light and ∼ 14dB

lower for the trigger signal. . . . . . . . . . . . . . . . . . . . . . . . 132
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waveguide are sufficiently close to each other, they will show self-

pulsation (a) and excitability (b) for the same pump wavelength

and power. Both rings have a 5.0µm radius. The self-pulsation is

measured at 10.5dBm@TL (this starts at ∼ 1529.120nm and ends

around 1529.260nm in hysteresis with single-ring self-pulsation),

the excitability with the pump at λ = 1529.007nm and Pi n =
13.60dBm, while Ptr = 12.00dBm. Trigger pulse and pump light

are now co-directional. On-chip powers are therefore expected to

be resp. 10.00dB and 18.00dB lower, as ∼ 4dB is lost in a splitter

used to combine pump and trigger signals. . . . . . . . . . . . . . . 133

4.17 In simulations, triggering two cascaded AP rings through the com-

mon bus with a 5ns power increase from 1.8mW to 2.59mW at

δλ=−16pm results in a similar time-lapse between two pulses in

the time-trace (left) as in Fig 4.12. The phase-plane (right) clearly
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4.18 At δ=−3 and p = 18.676 the microring self-pulsates, while at δ=
0.5 and p = 23.345 the ring is excitable: a sufficiently strong per-

turbation can trigger a pulse. Ring parameters are q = 0.397, ε =
0.0815, f = 0.0714 and e = 5. Simulations are done with Caphe. . . 140
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while in between these transitions it slowly follows those branches. 141
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4.20 The steady state response at δ = −3 is, in between two saddle-

node (SN) bifurcations, bistable and has also a supercritical Hopf-

bifurcation. At δ = 0.5 no bistability is present, but an unsta-

ble limit cycle branch (LC) originates from a subcritical Hopf-

bifurcation and annihilates with a stable limit cycle branch in a

limit cycle fold (LC Fold). To visualize the limit cycles, both the

minimum and maximum values of the cycles are plotted. Stable

and unstable Fixed Points (FP) or limit cycles are indicated with

resp. solid or dashed lines. . . . . . . . . . . . . . . . . . . . . . . . 144

4.21 By tracking both the saddle-node bifurcations (BI onset) and Hopf

bifurcation (SP onset) in the (δ,p)-plane we can determine resp.
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eralized Hopf bifurcation on the self-pulsation onset, for higher δ
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limit cycle fold. In between the self-pulsation onset and limit cy-
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act q-value, the self-pulsation region and the corresponding ex-

citability region shifts clearly to higher δ for increasing q . Cal-

culation done for q = 0.5q0 (dotted line), q = q0 (solid line) and

q = 1.5q0 (dashed line), with q0 = 0.397, i.e., the value from Fig.

4.18. For reference we also included the bistability curve for q = 0

(dash-dotted line), i.e., without any free carrier effects. . . . . . . . 147

4.23 While the bistability region is independent of ε (with q = 0.397

fixed), the self-pulsation region becomes larger for smaller ε. For
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onset, red (or middle gray) lines). For a given δ, self-pulsation is
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4.24 Summary of the regions with self-pulsation (SP) and bistability

(BI) in the (ε,δ)-plane. The color levels represent the ’on’ free car-

rier detuning nH ,− and the ’off’ free carrier detuning nH ,+ (with

q = 0.397 fixed, definitions illustrated in Fig. 4.23). (εsp ,δsp )

encloses the region where some input powers result in self-

pulsation (solid line), similarly (εb ,δb) encloses the region with

bistability (dotted line). Furthermore, the curve p(nH ,−) = p(nb,−)

(dashed line) divides the region with bistability into a domain

where B I ∩ SP = ; where self-pulsation sets in only for powers

above the bistable knee for up-switching, and a domain where

B I ∩SP 6= ;, where self-pulsation is present at the upper branch

of the bistability curve. Finally, the Generalized Hopf bifurcation

location (εG H ,δG H ) on the nH ,−/+-surfaces is tracked (orange (or

light gray) line), indicating excitability is mainly present at the
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4.25 If ε = τ f c

τth
is changed by tweaking τ f c , q ∝ p

ε due to q ∝ p
τ f c .

Consequently, the decreasing q for ε→ 0 causes the self-pulsation

region to disappear (e.g., δ=−3 and δ= 0.5). . . . . . . . . . . . . 151

4.26 If q = q0

√
ε
ε0

(q0, ε0 are the values used in Fig. 4.18), this changes

the color levels of the ’on’ free carrier detuning nH ,− and the ’off’

free carrier detuning nH ,+ with respect to Fig. 4.24, such that the

self-pulsation region now disappears for ε → 0. For lower δ the

self-pulsation region comes closer towards ε = 0, e.g., at δ = −15

the self-pulsation region disappears at ε≈ 1.5×10−3. Moreover, δb

is now slightly ε-dependent (dotted line). Additionally, a second
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5.1 The bifurcation diagram of the microdisk laser for increasing cur-

rent reveals three lasing regimes. Just above the laser threshold

the output is bidirectional (II), at high injection currents it is uni-

directional (IV), while in between those two regimes an oscillatory

regime appears (III). For both output powers Pout , i = |Eout , i |2,

the extrema are plotted. If the output is constant, maximum and

minimum power are equal and the markers overlap. If the output

power oscillates, two markers are plotted per current, per mode.
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5.2 (left) The bifurcation lines form the boundaries of the different

locking regions. Here, I = 2.3 mA, red lines represent Hopf-

bifurcations, while blue lines correspond to Saddle-Node on an

Invariant Circle (SNIC) bifurcations. We will use the SNIC bi-

furcation to induce excitability. (right) When crossing the SN1

bifurcation at ∆ω = −15 ns−1, |Ei n | = 2.77
√
µW the oscillatory

unlocked behaviour becomes steady-state. At t = 10 ns the lock-

ing amplitude is raised from 2.65 to 2.76
√
µW, at t = 20 ns, the

bifurcation is crossed by again increasing |Ei n | to 2.78
√
µW. . . . 167

5.3 (left) When increasing the injection strength |Ei n | from zero to the

locking strength, the self-pulsation frequency decreases to zero.

This is a consequence of the SNIC bifurcation. (right) In addi-

tion, the amplitude of the of the self-pulsation in the mode energy

grows from zero to a finite size for increasing |Ei n |. Both simula-

tions are done at ∆ω=−15 ns−1. . . . . . . . . . . . . . . . . . . . . 168
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strong pulses at the other input of the splitter, perturb the mi-
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Response to pulses of fixed length (0.2 ns), for different pulse pow-
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a function of input peak power. d)-f) Response to pulses of fixed
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5.8 The microdisk laser reacts as well to a phase-modulated locking
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5.14 (a) The output of a microdisk neuron can be connected by a wave-

guide to the input of another microdisk neuron. The connection

between both lasers corresponds to a phase difference ∆φ. (b)

Input and output power of the first disk when the second disk is

‘turned off’ (current as well as locking signal are absent). The bot-

tom graph shows the phase difference between the output pulse

and the locking signal. This phase can be used to choose an opti-

mal ∆φ to allow the first disk to excite the second one. . . . . . . . 181
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are 3.8
√
µW. The input pulse is 1

√
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Symmetry breaking by difference in locking amplitude. The lock-

ing signal for the first disk has an amplitude of 4
√
µW. For the

second disk, the locking amplitude is 3.9
√
µW. Both disks are
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in locking phase. The locking signals for both disks have an ampli-
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The locking amplitude for both disks is 3.55
√
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Nederlandse samenvatting

–Summary in Dutch–

Vanaf de geboorte worden onze hersenen continu geconfronteerd met steeds

nieuwe uitdagingen. Vaak moeten die hersenen taken leren oplossen waarmee

ze nog nooit eerder in aanraking kwamen. Soms kunnen ze bij het oplossen van

zo een nieuwe taak gebruik maken van een stappenplan. Wanneer bijvoorbeeld

je ouders je stapsgewijs uitlegden hoe je een fles melk moet openen, dan duurde

het wellicht niet lang eer je daar zelf toe in staat was. Maar in andere gevallen

zijn onze hersenen in staat om taken op te lossen zonder dat een gedetailleerd

stappenplan voorhanden is. Als een kind begint met lopen doet het dat door het

voorbeeld van volwassenen na te bootsen. Gelukkig hoeven ouders hun kinde-

ren tijdens deze leerfase niet te voorzien van een gebruikshandleiding van de

eigen benen.

Om onze levenskwaliteit te verbeteren voelen we de drang om sommige ta-

ken naar machines over te hevelen, taken die we vroeger oplosten met onze ei-

gen hersencapaciteit. Als we een algoritme hebben voor dergelijke taken, heb-

ben we genoeg aan de combinatie van een computer en een software-ingenieur.

In andere gevallen, waarin er geen algoritme voorhanden is, zijn de algoritme-

gebaseerde traditionele computers hulpeloos en moeten we van aanpak veran-

deren. In dergelijke gevallen bestaat de oplossing erin om onze hersenen na te

bootsen. Onze hersenen bestaan uit neuronen, die onderling verbonden zijn en

met elkaar communiceren door het uitzenden van pulsen. Wanneer zo een neu-

ron een voldoende groot aantal pulsen van andere neuronen ontvangt, zal het

- afhankelijk van de interne dynamica van dit neuron - zelf een puls uitzenden.

Het neuron ’pulseert’ dan. Door het aanpassen van de sterktes van de neuron-

verbindingen kunnen we delen van onze hersenen trainen om nieuwe taken op

te lossen.

Het doel van dit doctoraatsonderzoek is om een optische chip te bouwen

die het biologische raamwerk van onze hersenen voldoende dicht benadert en

daardoor taken kan oplossen waarvoor geen algoritmes bestaan. Door de gepa-

rallelliseerde manier van rekenen zal dit ons toelaten om eenzelfde vermogen-

efficiëntie als van het biologische voorbeeld te verkrijgen. Daardoor heeft deze
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technologie het potentieel om de meer traditionele manieren waarin serieel ge-

rekend wordt te overtreffen. Die laatste zijn gebaseerd op een Von Neumann

architectuur, zoals in de huidige computerhardware gebruikelijk is. Een neu-

romorfische hardware implementatie in fotonica heeft het potentieel om een

elektronische implementatie te overstijgen door de intrinsiek rijkere dynamica

en hogere snelheden in fotonische systemen.

Dit interdisciplinair project combineert technieken uit machinaal leren, zo-

als neuromorf rekenen, met fotonica.

1 Neuromorf rekenen

Neuromorphic computing, in het Nederlands letterlijk vertaald als neuromorf

rekenenen, bootst het grote neurale netwerk in onze hersenen na in hardware.

Er zijn ontzettend veel redenen om dit te doen. Inderdaad, in het dagelijkse

leven functioneren onze hersenen net als de CPU’s in onze computers als de

centrale verwerkingseenheid van ons lichaam. Wegens hun grote flexibiliteit

zijn ze in staat om een enorm aantal taken uit te voeren, in een continu ver-

anderende omgeving. Hierbij verbruiken ze slechts het vermogen-equivalent

van een gloeilamp. Onze hersenen kunnen dit omdat ze bestaan uit een gi-

gantisch netwerk van neuronen die grote hoeveelheden tijdsafhankelijke infor-

matie in parallel kunnen verwerken. Daarenboven kunnen onze hersenen le-

ren van voorbeelden wanneer ze bepaalde taken oplossen. Dit in tegenstelling

tot traditionele computerchips die oorspronkelijk serieel werken en enkel een

vooropgesteld algoritme kunnen volgen. Gebruik makend van fundamenteel

verschillende computationele principes overtreffen artificiële neurale netwer-

ken conventionele seriële computeralgoritmes in een variëteit van taken, zoals

autonome signaalgeneratie, controlefuncties in robotica, voorspelling van cha-

otische tijdreeksen en spraakherkenning. Hoewel de huidige neurale netwerk-

technieken uitzonderlijk goed presteren in een verscheidenheid aan taken, wor-

den ze gesimuleerd op traditionele computers. Hierdoor genieten ze niet van

het volledige potentieel van het biologische geïnspireerde ontwerp. Dit vraagt

om de ontwikkeling van een specifieke chip.

2 Fotonica

Fotonica is een breed onderzoeksdomein waarin, in het algemeen, toepassin-

gen van elektromagnetische straling met een golflengte dicht tegen die van

het zichtbaar licht onderzocht worden (zowel infrarood, zichtbaar licht en UV-

straling zijn daarbij inbegrepen). Het onderzoeksgebied is ontstaan door de

verschijning van de eerste laser, en de naam verwijst zowel naar het concept
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van een foton als naar elektronica. De naam benadrukt daardoor dat in veel

van de toepassingen de deeltje-golf dualiteit van licht een belangrijke rol speelt,

terwijl het onderzoeksgebied eveneens dezelfde weg kiest richting grootscha-

lige, kostenefficiënte miniaturizatie als in de elektronica-industrie gebruikelijk

is. Naast de laser hebben veel van de successen van dit onderzoeksgebied een

fundamentele rol in ons dagdagelijks technologiegebruik: fotonica is onmis-

baar geweest voor de ontwikkelijk van zeer verschillende toepassingen, zoals

state-of-the-art schermtechnologie, DVD’s, laser pointers, efficiënte oogchirur-

gietechnieken en hogesnelheidsdatatransfer.

3 Neuromorf rekenen op basis van fotonica

Het idee om een neuromorfische chip te implementeren in fotonica is eerder

nieuw, en was bij de start van dit onderzoek nog niet experimenteel gedemon-

streerd. Hoewel de technologie nog niet zo matuur is als elektronica is het een

beloftevol platform. Inderdaad, de transfer van grote hoeveelheden informatie

kan in het optische domein gebeuren tegen hogere snelheden en met een lager

vermogenverbruik dan in eender welke elektronische implementatie.

Biologische neuronen communiceren door middel van pulsen. Artificiële

neuronen die eveneens informatie overbrengen via pulstreinen worden ge-

pulste neuronen genoemd. Om te kunnen reageren op inputpulsen van andere

neuronen moeten ze exciteerbaar zijn. Hiermee wordt bedoeld dat een vol-

doende sterke perturbatie van het ingangsignaal één of meerdere pulsen met

een vast pulsformaat moet initiëren. Gelukkig zijn een behoorlijk aantal geïn-

tegreerde optische componenten exciteerbaar. Hieronder bevinden zich zowel

lasers als andere componenten. Daardoor lijken deze componenten geschikt

om gebruikt te worden als een basisbouwsteen van een geïntegreerde versie

van een gepulst neuraal netwerk in optica. In zo een implementatie worden de

neuronen verbonden met elkaar door golfgeleiders en vermogensplitters. Deze

vorm van implementatie laat een dense integratie toe van optische gepulste

neurale netwerken, wat niet kan bereikt worden met een vezelgebaseerde op-

stelling met individuele componenten. Bovendien zijn in een elektronische

chip, in tegenstelling tot in een fotonische neuromorfische chip, meerdere

componenten nodig om één enkel neuron te kunnen representeren. Zoals eer-

der aangetoond in onze onderzoeksgroep is een bijkomstig voordeel van een

coherente fotonische implementatie dat de fase die overeenkomt met de inter-

connectielengte een nuttige computationele rol kan spelen. Dat laatste is on-

mogelijk in een meer traditionele elektronische implementatie. Daarenboven

herbergt fotonica een hele zoo van dynamisch rijke effecten, waarvan sommige

extreem snel kunnen zijn (zoals bvb. het optische Kerr-effect). Bijgevolg is het



een zeer interessant platform voor snel en energie-efficiënt neuromorf rekenen.

4 Optische gepulste neuronen geïntegreerd op een

fotonische chip
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Figuur 1: (a) Als de trigger puls voldoende sterk is, exciteert het de ring, met

een vaste pulsvorm. Lagere triggersterktes resulteren in subthreshold

oscillaties. (b) Als de resonanties van twee identieke all-pass ringen vol-

doende dicht bij elkaar liggen, zullen ze exciteerbaar zijn bij hetzelfde

pompsignaal, wat te zien is aan de uitgang van het circuit als twee af-

zonderlijke pulsen.

In dit doctoraat onderzoeken we nanofotonische componenten op een

silicon-on-insulator (SOI) chip die het fenomenologisch gedrag van een her-

sencel nabootsen. Het doel is in het bijzonder om geïntegreerde optische

componenten te vinden die de functionaliteit van een gepulst neuron heb-

ben. Vermits een gepulst neuron informatie verwerkt gebruik makend van

pulstreinen moeten deze componenten exciteerbaar zijn. Om communica-

tie tussen verschillende optische neuronen toe te laten moet de geëxciteerde

outputpuls van een neuron in staat zijn om een excitatie te veroorzaken in

een ander neuron. Anders verwoord: het exciteerbaarheidsmechanisme moet

cascadeerbaar zijn. Om de snelheidsbeperking door elektro-optische signaal-

conversie te vermijden onderzoeken we componenten met een geheel optische

variant van exciteerbaarheid. Hiermee bedoelen we dat zowel het ingangs- als

het uitgangssignaal van de component zich in het optische domein bevinden.

Dit resulteert niet alleen in een snelheidsvoordeel in vergelijking met elektroni-

sche oplossingen, maar maakt het ook mogelijk om de fase van het licht als een
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extra vrijheidsgraad in toekomstige optische gepulste neurale netwerken aan

te wenden. Door dit concept van optische cascadeerbaarheid in geïntegreerde

fotonica te demonstreren tonen we daarenboven de schaalbaarheid aan van

toekomstige grootschalige ultrasnelle optische neurale netwerken.

In dit onderzoek onderzoeken we exciteerbaarheid in het SOI platform. Dit

doen we omdat deze chips gefabriceerd zijn met dezelfde infrastructuur als

digitale chips, wat ons toelaat om van de vooruitgang in de CMOS-fabricatie-

technologie te profiteren. In het bijzonder onderzoeken we twee componenten

met cascadeerbare exciteerbaarheid die beide integreerbaar zijn op het SOI

platform.

Ten eerste onderzoeken we het samenspel tussen de thermische en vrijela-

dingsdragers niet-lineariteiten in passieve hoge-Q microring resonatoren. Het

doel is exciteerbare pulsen te verkrijgen die voldoende sterk zijn om andere rin-

gen te kunnen exciteren. Een experimentele demonstratie van dit mechanisme

mondt uit in het eerste experimentele bewijs van exciteerbare pulstransfer in

een geïntegreerd optisch circuit (Fig. 1).

Ten tweede onderzoeken we, door middel van simulaties, exciteerbaarheid

in optisch geïnjecteerde microdisklasers (Fig. 2). Door de koppeling tussen de

sterke en onderdrukte mode in de microdisklasers resulteert een excitatie van

de disk door een perturbatie van de sterke mode in een puls van de onderdrukte

mode. Deze puls is vergelijkbaar qua sterkte en grootte met de inputpuls. Bij-

gevolg is de output van een disk in staat om een andere disk te exciteren, wat de

exciteerbaarheid cascadeerbaar maakt.

Samengevat demonstreren we cascadeerbare exciteerbaarheid in twee ver-

schillende geïntegreerde fotonische componenten. Dit is een belangrijke stap

op weg naar de verwezenlijking van optische gepulste neurale netwerken.
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Figuur 2: (links) De gebruikte topologie om twee microdisklasers te cascade-

ren. De connecties tussen beide lasers komt overeen met een fasever-

schil ∆φ. (rechts, boven) Als een externe perturbatie de eerste disk trig-

gert, exciteert die op zijn beurt de tweede disk. Als beide disks hetzelfde

locking signaal ontvangen exciteert de tweede disk op zijn beurt terug

de eerste disk door de symmetrie van het systeem. Dit proces herhaalt

zichzelf en resulteert in alternerende excitaties tussen de twee disks.

(rechts, onder) Symmetriebreking door het creëren van een faseverschil

tussen de twee locking signalen van de disks kan de pulstransfer unidi-

rectioneel maken: de tweede disk herexciteert de eerste disk niet.



English summary

During our life, our brain is continuously confronted with new challenges. Of-

ten it needs to learn how to solve tasks it has never solved before. Sometimes we

can follow a fixed set of rules to solve such a new task. For instance, after your

parents had shown you once the steps needed to open a bottle of milk, it didn’t

take long before you managed to do it yourself. However, our brain is also able

to solve tasks without knowing in detail the rules needed to solve them. When a

young child starts to walk, it does this by mimicking the example of other walk-

ing people. Fortunately, parents do not need to provide their children with a

user manual of their legs.

To improve our quality of life, we feel the urge to delegate certain tasks to

machines that could previously only be solved by our brain. If we have an algo-

rithm for those tasks, the combination of a computer and a software engineer

can fix this job. However, in some cases we do not have an algorithm available

and we need to shift gears.

In this case, a solution is to mimic the brain. Our brain consists of neurons,

which are mutually connected and communicate with each other by sending

out pulses. When such a neuron receives a sufficient number of pulses from

other neurons, it will - depending on its internal dynamics - send out a pulse

itself. The neuron then ’spikes’. By tweaking the strengths of the connections

between the neurons we are able to train a part of our brain to solve a new task.

The idea behind this PhD research is to build optical chips that mimic the

biological framework of the brain. This will allow to exploit the same power

efficiency and highly parallelized computational capabilities as the biological

ancestor, therefore having the potential to outperform the more traditional way

of serialized computing that uses the Von Neumann architecture, like current

computer hardware. A neuromorphic hardware implementation in photonics

has the potential to outperform an electronic one, due to the intrinsically richer

dynamics and higher speeds in photonic systems.

This interdisciplinary project combines machine learning techniques, such

as neuromorphic computing, with photonics.
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1 Neuromorphic computing

Neuromorphic computing mimics the NNs found in our brain in hardware, as

there are plenty of reasons to do so. Indeed, in everyday life, our brain functions

as the central processing unit of our body. Being very versatile, it is able to exe-

cute a tremendous number of tasks, in a continuously changing environment,

solely using the energy equivalent of a light bulb. The brain is able to do this

because it consists of a gigantic network of neurons that can process a large

amount of time-dependent information in parallel. Additionally, our brain is

able to learn from examples when it tries to solve a certain task. In contrast, reg-

ular computers originally worked in a serialized manner and can only follow a

predefined algorithm. Using fundamentally different computational principles,

artificial NNs can outperform conventional serialized computer algorithms in

a variety of tasks, such as autonomous signal generation, control functions in

robotics, chaotic time series prediction and speech recognition. Although cur-

rent NN techniques reach state-of-art performance on many different tasks,

they are simulated on traditional computers, and hence intrinsically not lever-

aging the full potential of the biological design. This calls for the development

of a dedicated chip.

2 Photonics

Photonics is a broad research area, in which, in general, applications of elec-

tromagnetic radiation with a wavelength close to visible light are investigated

(including infrared, visible and UV-radiation). It originated with the appearence

of the first laser, and its name refers both to the concept of a photon and to elec-

tronics. Thereby, its name emphasizes that in many applications the particle-

wave duality of light plays an important role, while the field also envisages to

follow the same road towards large-scale, cost-efficient miniaturization as cho-

sen by the electronics industry. Besides the laser, many of its successes now

play a fundamental role in our every-day life technology use: photonics has

been invaluable in the development of very different applications such as state-

of-the-art display technology, DVDs, laser pointers, laser printers, efficient eye

surgery techniques and high-speed data transfer.
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3 Neuromorphic computing using photonics

The idea to build neuromorphic chips in photonics is a fairly new one, and the

first experimental demonstration of the concept still needed to be done at the

start of this work. Although the technology is not yet as mature as electronics,

it is a very promising platform. Indeed, the transfer of large amounts of infor-

mation in the optical domain can happen at higher speed and using less power

than in any electronic implementation.

Biological neurons communicate using pulses. Artificial neurons that con-

vey information using pulse-trains are called spiking neurons. To be able to re-

act to input spikes of other neurons they have to be excitable, i.e., a sufficiently

strong perturbation of the input signal should trigger one or more pulses with

a fixed output pulse shape. Fortunately, a lot of integrated optical components

are excitable, both lasing and non-lasing. Therefore, these components seem

suited to be used as basic building blocks for an integrated version of a Spiking

Neural Network (SNN) in optics, in which the neurons are connected to each

other using waveguides and power splitters. This type of implementation al-

lows for a dense integration of the optical SNN, which would not be possible in

a fiber-based setup with individual components. Additionally, in contrast to a

photonic neuromorphic chip, in an electronic implementation multiple com-

ponents are needed to represent a single neuron. As has been shown previously

in our group, an additional advantage of a photonic implementation is that the

phase corresponding to the interconnection length can play a beneficial role in

computation. The latter is impossible in more traditional electronic implemen-

tations. Furthermore, photonics exhibits a whole zoo of rich dynamic effects,

some of which can be extremely fast (e.g., the optical Kerr effect). Hence, it is a

very interesting platform for fast and energy-efficient neuromorphic comput-

ing.

4 All-optical spiking neurons integrated on a pho-

tonic chip

In this PhD research, we investigate nanophotonic components on a Silicon-

On-Insulator (SOI) chip that can closely mimic the phenomenological be-

haviour of a brain cell. More specifically, the objective is to bring forth in-

tegrated optical components with the functionality of a spiking neuron. As

spiking neurons process information using pulse trains, these components

need to be excitable. To allow for communication between different optical

neurons, an excited output pulse of one neuron should be capable of triggering
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an excitation in another neuron. In other words, the excitability mechanism

should be cascadable. To avoid the speed bottleneck of electro-optic signal

conversion, we investigate components that incorporate an all-optical version

of excitability, i.e., both the input and the output of the device are in the opti-

cal domain. We show that this does not only result in an advantage in speed

compared to electronic solutions, but also in the potential to use the phase of

light as an additional degree of freedom in future all-optical SNNs. Additionally,

the demonstration of this concept in an integrated photonics platform provides

scalability, opening the door to future large-scale, ultrafast all-optical SNNs.

In this research, we investigated excitability in the SOI platform, as these

photonic chips are fabricated by the same infrastructure as digital chips, allow-

ing to benefit from the advances in CMOS-fabrication technology. In particular,

we analyse two different components, both integrable on the SOI platform, that

show such cascadable excitability.
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(a) (b)

Figure 1: (a) If the trigger pulse is sufficiently strong it excites the ring with

a fixed pulse shape, while for lower trigger powers subthreshold oscil-

lations are visible. (b) If the resonances of two identical AP rings with

common bus waveguide are sufficiently close to each other, they will

show excitability for the same pump wavelength and power, which is

visible in the output of the circuit as two seperate pulses.

First, we address the interplay between thermal and free carrier nonlinear-

ities in a passive high-Q microring resonator to obtain excitable pulses that are

sufficiently strong to excite other microrings. Experimental demonstration of

this mechanism results in the world’s first experimental proof of excitable pulse

transfer in an integrated optics circuit (Fig. 1).
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Figure 2: (left) Topology used to cascade two microdisk lasers. The con-

nection between both lasers corresponds to a phase difference ∆φ.

(right,top) If an external perturbation triggers the first disk, it excites in

its turn the second disk. If both disks receive the same locking signal,

due to the symmetry, the second disk excites again the first disk, and as

this process repeats itself this results in alternating excitations between

the two disks. (right,bottom) Symmetry breaking by inducing a differ-

ence in phase between the two locking signals of the disks can make the

pulse transfer unidirectional: the second disk does not re-excite the first

disk.

Second, using simulations, we investigate excitability in optically-injected

microdisk lasers (Fig. 2). Due to the coupling between the strong and sup-

pressed mode in the microdisk lasers, excitation of the disk by a perturbation

of the strong mode, results in a pulse of the suppressed mode, which is compa-

rable in strength and size to the input pulse. Consequently, the output pulse of

the disk is able to excite other disks, again giving rise to cascadable excitability.

In conclusion, we demonstrate cascadable excitability in two different inte-

grated photonic components, an important step towards the demonstration of

large-scale all-optical SNNs.





1
Introduction

During our life, our brain is continuously confronted with new challenges. Of-
ten it needs to learn how to solve tasks it has never solved before. Sometimes we
can follow a fixed set of rules to solve such a new task. For instance, after your
parents had shown you once the steps needed to open a bottle of milk, it didn’t
take long before you managed to do it yourself. However, our brain is also able to
solve tasks without knowing the rules needed to solve them. Day in, day out we
have conversations with fellow human beings. Importantly, we do this without
having access to a step-by-step list that explains us how to distinguish speech
from environmental sound and how to detect words and sentences in it. Even
so, in many cases, we are able to correctly interpret the message being sent by
the person with whom we have a conversation. Similarly, when a young child
starts to walk, it does this by mimicking the example of other walking people.
Fortunately, parents do not need to provide their children with a user manual of
their legs.

To improve our life quality, we feel the urge to delegate certain tasks to ma-
chines, which could previously only be solved by our brain (Fig. 1.1). If we have
an algorithm for those tasks, the combination of a computer and a software en-
gineer can fix this job. However, in some cases we do not have an algorithm
available and we need to shift gears. In this case, the solution is to mimic the
brain. Our brain consists of neurons, which are mutually connected and com-
municate with each other by sending out pulses. When such a neuron receives
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Figure 1.1: The human brain outperforms state-of-the-art computer hard-

ware with respect to parallelization and power consumption. It pro-

cesses massive amounts of time-dependent data in parallel, while its

power consumption is comparable to a simple light bulb. Further-

more, by learning from previous experiences it is able to solve tasks,

even without having a fixed algorithm for them.

enough pulses from other neurons, and depending on the internal dynamics of
this neuron, it will spike, i.e., send out a pulse itself. By tweaking the strengths
of the connections between the neurons we are able to train a part of our brain
to solve a new task.

The idea of this PhD research is to build optical chips that mimic the biologi-
cal framework of the brain very closely. This will allow to exploit the same power
efficiency and highly parallelized computational capabilities as the biological
ancestor, therefore having the potential to outperform the more traditional way
of serialized computing that uses the Von Neumann architecture, like current
computer hardware. A neuromorphic hardware implementation in photonics
has the potential to outperform an electronic one, due to the intrinsically richer
dynamics and higher speeds in photonic systems.

This interdisciplinary project combines machine learning techniques, such
as neuromorphic computing, and photonics. In Sec. 1.1 and Sec. 1.2, we will
provide general background on those two research fields, while in Sec. 1.3 we
will make the link between both research areas. Next, in Sec. 1.4 we will explain
the goal of this PhD research more in detail. Finally, in Sec. 1.5, the outline of
this dissertation is discussed.

1.1 Neuromorphic computing

Neuromorphic computing mimics the NNs found in our brain in hardware, as
there are plenty of reasons to do so. Indeed, in everyday life, our brain functions
as the central processing unit of our body. Being very versatile, it is able to exe-
cute a tremendous number of tasks, in a continuously changing environment,
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solely using the energy equivalent of a light bulb. The brain is able to do this
because it consists of a gigantic network of neurons that can process a large
amount of time-dependent information in parallel. Additionally, our brain is
able to learn from examples when it tries to solve a certain task. In contrast, reg-
ular computers work in a serialized manner and can only follow a predefined
algorithm. Using fundamentally different computational principles, artificial
NNs can outperform conventional serialized computer algorithms in a variety
of tasks, such as autonomous signal generation, control functions in robotics,
chaotic time series prediction and speech recognition [1–3]. Although current
NN techniques reach state-of-art performance on many different tasks, they
are simulated on traditional computers, and hence intrinsically not leveraging
the full potential of the biological design. This calls for the development of a
dedicated chip.

Such neuromorphic chips, currently implemented in electronics, have been
studied for a few decades, but only recently has the technology become suf-
ficiently mature and chips start to make the initial predictions on energy-
efficiency come true [4]. Due to the initiation of large international research
projects both in the US (BRAIN initiative [5]) and Europe (the Human Brain
Project [6]), aiming for a hardware platform that can simulate a full human
brain, drastic progress is to be expected in the next decade.

connection

(spiking) neuron

spike train

Figure 1.2: Just like its biological example, Spiking Neural Networks (SNNs)

consist of interconnected neurons, that communicate with each other

by sending spikes.

One subtype of NNs, the Spiking Neural Network (SNN) has become in-
creasingly popular during the last decade [7, 8]. A SNN consists of spiking
neurons, i.e., excitable (nonlinear) dynamical systems that are able to produce
pulses with a fixed output shape [9]. By transferring information using pulses
instead of less detailed ’activity’ levels in analog neurons, they more accurately
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mimic the behavior of biological neurons than previous generations of neural
networks [8]. This incorporates a computational advantage, as in pulse trains
in SNNs, information can not only be encoded in the average firing rate of a
neuron (corresponding to the activity level of an analog neuron), but also the
precise timing of the pulses can contain information, making it a more general
information processing tool. The computational power of SNNs is comparable
to a Turing machine [1].

Functional SNNs have recently been realized in electronics [3, 10]. Notwith-
standing the potential of these electronic systems, they are subject to a funda-
mental bandwidth fan-in product limit. In principle, using photonics, higher
speeds and bandwidths are possible. Therefore, NNs operation at time scales
that are orders of magnitude faster than their biological and electronic counter-
parts could be achieved [11].

1.2 Photonics and the link with optical computation

Photonics is a broad research area, in which, in general, applications of elec-
tromagnetic radiation with a wavelength close to visible light are investigated
(including infrared, visible and UV-radiation). It originated with the appearence
of the first laser, and its name refers both to the concept of a photon and to elec-
tronics. Thereby, the name emphasizes that in many of its applications the
particle-wave duality of light plays an important role, while the field also envis-
ages to follow the same road towards large-scale, cost-efficient miniaturization
as chosen by the electronics industry. Besides the laser, many of its successes
now play a fundamental role in our every-day life technology use: photonics
has been invaluable in the development of very different applications such as
state-of-the-art display technology, DVDs, laser pointers, laser printers, effi-
cient eye surgery techniques and high-speed data transfer.

In particular, photonic technology has a tremendous worldwide influence
on the transmission speed of digital information, such as webpages, movies
and music. Currently, using fibers and laser diodes, photonics provides the
necessary technology to transfer digital signals over large (∼ 100km) distances,
at continuously increasing bitrates (∼ 100Gbit/s and more [13]). This perfor-
mance would not be possible using the more traditional electronic coax-cables.
Given these successes of photonics for information transfer over large dis-
tances, there is a tendency to apply it also to information transfer over smaller
distances and in the limit even to the information transfer in future generation
digital chips (Fig. 1.3). There too, optical on-chip interconnections would allow
to increase the information transfer rate and this transfer of large amounts of
information would happen at higher speeds and using less power than using
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Figure 1.3: Prototype of a CMOS chip with an on-chip optical interconnect

overlay (reproduced from [12]). Optical interconnects would allow

to increase the information transfer rate and this transfer of large

amounts of information would happen at higher speeds and using less

power than using current electronic interconnects

current electronic interconnects [14–16]. In these digital chips, digital compu-
tations would be performed in the electronic domain by transistors, while the
signals between these transistors would be transfered using optical links.

One could take this concept one step further, by doing the calculations in
the optical domain as well, avoiding the need to transfer signals back and forth
between the optical domain and the electronic domain, resulting in an addi-
tional speed increase. Hence, on-chip optical computation has the potential
to outperform electronics in speed, bandwidth and power consumption. How-
ever, to perform computations, one needs nonlinearities. This can be illustrated
for the calculation in one of the fundamental gates of digital logic, the ’exclusive
or’ (XOR) gate. The output of this XOR gate for two digital input signals x and
y , is one if only one of the two input signals is one, and zero otherwise. The
output can be expressed using (x − y)2. Even though alternative expressions
exist, they will always contains a term ∝ x y , which is clearly nonlinear and
mathematically expresses that the photons of the two different input signals
need to interact with each other. As photons are bosons with a zero rest mass,
they can not directly interact with each other and can only do this in an indirect
way using optical nonlinearities of the surrounding material. Consequently,
generally applicable optical computation requires the use of materials with
optical nonlinearities. However, nonlinear photonic components still do not
reach the high yield standards of their electronic counterparts, the transistors.
One way of circumventing this problem is to shift the computational paradigm,
using the neuromorpic approach presented in Sec. 1.1. Indeed, instead of using
a photonic version of the standard Von Neumann architecture, one can, for
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example, try to emulate neural networks on-chip [17].

1.3 Neuromorphic computing using photonics

The idea to build neuromorphic chips in photonics is a fairly new one, and the
first experimental demonstration of the concept still needed to be done at the
start of this work. Although the technology is not yet as mature as electronics,
it is a very promising platform. Indeed, as we discussed in the previous section,
the transfer of large amounts of information in the optical domain can happen
at higher speed and using less power than in any electronic implementation.

Neurons communicate using pulses. To be able to react to input spikes of
other neurons they have to be excitable, i.e., a sufficiently strong perturbation
of the input signal should trigger one or more pulses with a fixed output pulse
shape [18]. Fortunately, a lot of integrated optical components are excitable,
both lasing [11, 19–24] and non-lasing [25–27]. Therefore, these components
seem suited to be used as basic building blocks for an integrated optical SNN,
in which the neurons are connected to each other using waveguides and power
splitters. This type of implementation allows for a dense integration of the
optical SNN, which would not be possible in a fiber-based setup with individ-
ual components, such as in [28, 29]. Additionally, in contrast to a photonic
neuromorphic chip, in an electronic implementation multiple components are
needed to represent a single neuron [4]. As has been previously shown in our
group [17, 30, 31], an additional advantage of a photonic implementation is
that the phase corresponding to the interconnection length can play a benefi-
cial role in computation. The latter is impossible in more traditional electronic
implementations. Furthermore, photonics exhibits a whole zoo of rich dynamic
effects, some of which can be extremely fast (e.g., the optical Kerr effect). Hence,
it is a very interesting platform for fast and energy-efficient neuromorphic com-
puting.

So far, in the field of non-linear optics, many publications about excitability
deal only with single components (although there are a few exceptions, such
as [11, 23, 32, 33]). The leap towards larger networks is still to be made. Al-
though recent theoretical simulations on on-chip all-optical SNNs gave a first
glimpse of the potential of these networks [11], the first experimental demon-
stration remains to be done and a fully-integrated approach, in which the neu-
ron connections are also incorporated on-chip, has not yet been experimentally
demonstrated. Therefore, in this PhD research, we will focus on experimentally
feasible mechanisms to let neurons interact using their excitations.

Recently, feedback mechanisms are being investigated to adapt the strength
of optical neuron interconnections to allow for training in optical SNNs [34].
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Nonetheless, an efficient, dedicated technique for the training of an all-optical
SNN is still missing. In this PhD research, we opt for integrated circuits in sili-
con photonics, which is compatible with CMOS-fabrication, such that in future
work the chips with electronic circuits that implement control and training of
the actual SNN can be easily combined with the photonics part. Since these
control tasks can be performed at low speeds compared to the photonic signals,
the information processing as a whole is not held back by the lack of speed in
electronics as compared to optics.

In conclusion, the rationale of research on excitability in integrated pho-
tonic components is that it paves the way towards the development of a minia-
turized version of a ’brain’ on a photonic chip. This brain-inspired system has
the potential to solve non-trivial tasks in which, e.g., many time-varying in-
put signals have to be processed simultaneously. Similarly to our brain, which
faces an equivalent computational challenge every day, it will do this in an
energy-efficient way. By processing optical signals instead of electrical ones, it
will also be faster than electronic solutions. Indeed, as illustrated by the recent
development of optical interconnections to increase the information transfer
in future generation digital chips, the transfer of large amounts of information
can happen at higher speeds and using less power. Additionally, optical phe-
nomena have much richer intrinsic dynamics, making it easier to mimic neural
behaviour.

1.4 All-optical spiking neurons integrated on a pho-

tonic chip

The aim of this PhD research is to propose nanophotonic components on a
SOI chip that can closely mimic the dynamical behaviour of a brain cell. More
specifically, the objective is to bring forth integrated optical components with
the functionality of a spiking neuron. As spiking neurons process information
using pulse trains, these components need to be excitable (Fig. 1.4, top). To
allow for communication between different optical neurons, an excited output
pulse of one neuron should be capable of triggering an excitation in another
neuron. In other words, the excitability mechanism should be cascadable (Fig.
1.4, bottom). To avoid the speed bottleneck of electro-optic signal conversion,
we investigate components that incorporate an all-optical version of excitabil-
ity, i.e., both the input and the output of the device are in the optical domain.
We will show that this does not only result in an advantage in speed compared
to electronic solutions, but also in the potential to use the phase of light as
an additional degree of freedom in future all-optical SNNs. Additionally, the
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demonstration of this concept in an integrated photonics platform provides
scalability, opening the door to future large-scale, ultrafast all-optical SNNs.

In our research, we investigate excitability in the SOI platform, as these pho-
tonic chips are fabricated by the same infrastructure as digital chips, allowing
to benefit from the advances in CMOS-fabrication technology. In particular, we
will study excitability in SOI microrings and hybrid III-V on silicon microdisk
lasers. These two components have a different excitability mechanism due to
the differences in underlying physics, but we will demonstrate in both compo-
nents the potential for all-optical excitation transfer.

1.5 Thesis outline

In chapter 2, we place the state-of-the-art research on excitability in optical
nonlinear components in the context of the quest for fast and energy-efficient
hardware implementations of neuromorphic computing techniques such as
SNNs. In addition, to be able to analyse excitable systems in an adequate way,
we discuss some suitable mathematical tools from the field of nonlinear dy-
namical system theory.

To study the dynamics in circuits of excitable optical components, we need
to be able to simulate the time-domain behaviour of those circuits. Therefore,
in chapter 3, we introduce Caphe, an in-house software framework that we have
developed to simulate this type of circuits of nonlinear dynamical components.
Scalable simulation tools for nonlinear photonic circuits will be crucial during
the design of future large-scale optical SNNs.

The transfer of an excitation from one neuron to another one is a key re-
quirement when building SNNs using these neurons. In this dissertation we
focus on an all-optical excitation transfer. The demonstration of this feature in
integrated optical circuits is the most important innovation discussed in this
dissertation. In chapters 4 and 5, we will discuss two different components,
both compatible with the SOI platform, that show such cascadable excitability.

More specifically, in chapter 4, the interplay between thermal and free car-
rier nonlinearities in a passive high-Q microring resonator will be addressed to
obtain excitable pulses that are sufficiently strong to excite other microrings.
Experimental demonstration of this mechanism results in the world’s first ex-
perimental proof of excitable pulse transfer in an integrated optics circuit.

In chapter 5, using simulations, we investigate excitability in optically-
injected microdisk lasers. Due to the coupling between the strong and sup-
pressed mode in the microdisk lasers, excitation of the disk by a perturbation
of the strong mode, results in a pulse of the suppressed mode, which is compa-
rable in strength and size to the input pulse. Consequently, the output pulse of
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the disk is able to excite other disks, giving again rise to cascadable excitability.
Finally, in chapter 6 we will summarize the conclusions of the preceding

chapters and give an outlook on promising future research.
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2
Optical Spiking Neural Networks

In Spiking Neural Networks (SNNs), information is processed by excitable neu-
rons, that communicate with each other using pulses. Theoretically, they out-
perform the computational power of non-spiking artificial neural network types
[1]. Given the natural appearance of excitability in many different non-linear
optical components, both lasing [2–7] and non-lasing [8, 9], there is an intrinsic
advantage to implementing such networks in photonic hardware, as this would
allow to operate at timescales that are orders of magnitude faster than typical
biological and electronic implementations [10]. In this introductory chapter,
we will provide some additional background on Neural Networks (NNs) and
excitability, and explain how those two concepts can be emulated in photonic
hardware.

In Sec. 2.1, we start this chapter with a general introduction on neural net-
works. Next, in Sec. 2.2, state-of-the-art implementations of neural networks in
photonics are discussed. Subsequently, in Sec. 2.3, we introduce the concept of
excitability, while in Sec. 2.4, we discuss the appearance of excitability in optics.

2.1 Neural networks

In machine learning, one tries to construct computational systems that can
learn from data [11]. Artificial neural networks belong to this category and are
heavily inspired by our brain. Similarly to their biological counterparts, they
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consist of a collection of computational units, called ’neurons’, that send infor-
mation to each other through their ’connections’. The purpose of this network
is to solve a certain task, i.e., to obtain desired output signals, for given input
signals. The neurons in a NN process information inherently in a parallel way.

In contrast to sequential computational systems based on the Von Neu-
mann architecture, which are programmed using a predefined step-by-step
algorithm, a NN is ’trained’ to solve a task. During training the behaviour of
a NN is compared with the desired behaviour, and if the performance is not
satisfactory, the NN is adapted to improve it. Throughout this training process,
representative example data is fed to the network.

Ideally, after training, the network should be able to ’generalize’ what it has
learned from the training examples to unseen data. This ability to generalize
does not only depend on the complexity of the task and the capacity of the NN,
but also on the quality of the training set. For instance, if a network is trained
to distinguish pictures of fruit from pictures of vegetables using a collection of
typical pictures of lemons, tomatoes, potatoes and apples, it should have no
problems to identify a new picture of a lemon as a type of fruit. Nonetheless,
it might have problems with the classification of a picture of a carrot, as the
training data did not contain any representative carrot-like vegetables.

An important asset of a NN is its flexibility: the very same NN topology can
be trained to solve different tasks. In the previous fruit/vegetable example, the
same NN could as well be trained to return the color of the item on the picture.

In this section we will explain some of the properties of a NN in more detail.
As an extensive survey on NN theory is outside the scope of this work, we refer
to [11–13] for more elaborate and rigorous introductions to this topic.

NN techniques exist in many flavours, and can be subdivided on the basis
of the training algorithm, the type of neurons and the connection topology.

2.1.1 Training

Training of a NN allows it to learn from input data. Training techniques can be
subdivided according to the availability of the desired behaviour during train-
ing.

For instance, in supervised learning, the reaction of a network to the input
is compared to the target output, and the network is adapted based on the dif-
ference between the current output and the desired output. To achieve this,
for each data sample of the training set, one needs to have the corresponding
desired output. For instance, in a classification task, the samples of the differ-
ent classes need to be labeled. In the previous example, in which fruit pictures
need to be distinguished from vegetable pictures, each picture would have a
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label ’fruit’ or ’vegetable’.
In contrast, during unsupervised learning, the NN only sees input data,

without any information about the desired output. In the aforementioned ex-
ample, the training data would contain the same set of pictures, but without
the labels. Unsupervised learning would allow to group those pictures into
different classes, in which the members of a given class are more similar to its
class members than to members of other classes. In the fruit/vegetable exam-
ple, applying supervised learning with a predefined number of four classes to a
training set of pictures of lemons, tomatoes, potatoes and apples, would result
in four classes of pictures of food with a similar shape. Most likely, those four
classes will more-or-less correspond to lemon-, tomato-, potato- or apple-like
pictures, even though the unsupervised learning algorithm had no access to
these labels. It is even possible to let the algorithm determine the optimal num-
ber of classes. This type of training techniques are applied to find structure and
similarity in high-dimensional input data sets.

Finally, for some tasks, one does not know the desired output in advance,
and defining structure in the input data is not sufficient. For instance, if one
wants to steer a remote-controlled helicopter such as in [14], initially, no ex-
amples of successful flights are available. However, we can still tell whether
the training was succesful (there is no crash) or not (the helicopter crashes). In
this case, one should resort to reinforcement learning in which, during training,
the NN is rewarded when it performs good on a task and/or punished when it
performs badly.

The precise optimization algorithm depends on the choice of neuron and
topology, but in general, similar to our brain, most techniques focus on the
adaptation of the connection strengths of the neurons. Furthermore, the pa-
rameters of a NN can be optimized using general-purpose optimization algo-
rithms, such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
but as we will explain in Sec. 2.1.3, faster convergence can be obtained using
algorithms that are dedicated to the neuron type and topology.

2.1.2 Neuron type

The basic computational building block of a NN is the neuron. This can be
seen as a mathematical entitity that incorporates the phenomenological be-
haviour of a biological neuron. Different levels of detail in the approximation
of the biological behaviour result in different neuron types. A biological neuron
communicates with other neurons by sending and receiving pulses, also called
’spikes’. These spikes are considered to be more-or-less identical, such that in-
formation needs to be encoded in the presence of the spike or, more precisely,
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its timing. A neuron ’fires’ when it sends out spikes. Typically, in a network,
a single neuron receives many different signals from other neurons, and the
importance of each corresponding input signal of this neuron is weighted by
the strength of this connection. Consequently, the activity level, i.e., the firing
of a neuron, depends on this weighted sum of the input signals.

In the most conceptually reduced model, the neuron is static, and given
the activity levels of its preceding neurons, a neuron can only take a binary
output: a neuron either fires or not. A neuron with this behaviour is called a
perceptron. On the other side of the spectrum of neuron complexity, depen-
dent on the input spike trains, a time-dependent neuron model can generate
individual spikes. Such a model does not only reveal whether the neuron fires
or not, but also tells at which precise moments in time this neuron fires. This is
the spiking-neuron description of a neuron, the description which will be used
throughout the subsequent chapters. Finally, in between those two extremes,
one can average the number of spikes over a short period of time, and represent
the overall activity of a neuron by its average firing rate. This analog model can
be used both in a static or non-static version. In the latter model type, this firing
rate is a rather smooth and continuous signal, in contrast to the output signal
of spiking neurons, which is closer to an event-based model.

spike train

analog signal

binary

increase in 
information

Figure 2.1: Different neuron models have different types of output signals.

Due to the increase in temporal detail, there is an increase in informa-

tion content from the binary output of the perceptron, over the analog

output of an analog neuron, to the spike-trains produced by a spiking

neuron.

In the transition from a perceptron, over an analog neuron, towards a spik-
ing neuron, the neuron’s activity level incorporates an increasing amount of
temporal detail (Fig. 2.1). This gives rise to an increase in the potential of a
neuron to encode information. As a consequence, for a neural network with a
fixed number of neurons, the computational capacity rises with an increase in
neuron complexity. For instance, since an analog NN can be seen as a spike-rate
encoded version of a SNN, one can conceptually understand that a SNN with
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an identical connection scheme can solve all the tasks that are solvable by this
analog NN. In addition, as information in a SNN can not only be encoded in the
average firing rate, but also in the precise timing of the pulses [15], theoretically,
a SNN can outperform an analog NN in computational capacity. This can be
mathematically proven [1, 16, 17].

Figure 2.2: The input of a neuron is a linearly combination of the output sig-

nals of the other neurons. A connection from neuron j to i has a

weight wi j . If the NN is time-dependent, then the connection also

has a delay τi j .

Usually, for the three neuron model types, one assumes that the signals trav-
elling between the neurons are linearly weighted by the connections (Fig. 2.2).
Additionally, in a time-dependent neuron model, a connection can also have a
delay. Consequently, for a time-dependent neuron model the input zi (t ) of a
neuron i , that recieves input of a set Si of preceding neurons, can be described
by:

zi (t ) = ∑
j∈Si

wi j y j (t −τi j ). (2.1)

In this, y j (t ) is the output of neuron j , while wi j is the weight and τi j the delay
of the connection from neuron j to i .

A spiking neuron reacts to this input by firing spikes. To do so, the intrinsic
dynamics of the model need to able to create such a spike. This can be done
by describing a spiking neuron as a nonlinear dynamical system, with a corre-
sponding set of rate equations [18], or by using a phenomenological descrip-
tion of the spiking behaviour, such as in a spike-response model [19]. In this
case, y j (t ) represents the amplitude as a function of time of the output spike
train of neuron j . In contrast, as previously explained, for analog neurons y j (t )
corresponds to the average firing rate of neuron j , and the model only needs to
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generate an average fire-rate as output for neuron i instead of a detailed spike
train.

In a static neuron model, one often uses an activation function f to calculate
the output of a neuron using yi = f (zi ) and, therefore:

yi = f

( ∑
j∈Si

wi j y j

)
. (2.2)

This activation function depends on the application. It can be, e.g., a linear
function, a piecewise linear function, a tanh or a sigmoid function. In the case
of a sign or threshold function, a perceptron is obtained. Apart from the linear
function, for all those functions the output remains bounded for large input
values. This sublinear increase of the output as a function of the input is a
representation of the behaviour in a biologic spiking neuron. In those neurons,
the internal timescale that is responsable for the spike generation will result in
an effective upper limit on the firing rate, as it takes some time for a neuron to
recover from the effort needed to create a spike. As a consequence, if the input
firing rate is too high, the neuron can only respond with an output firing rate
that is substantially lower. In chapter 5, we will demonstrate in Sec. 5.4.5 how a
microdisk, as an optical spiking neuron, can indeed reproduce this trend. For
non-stationary analog neurons, one sometimes uses yi (t ) = f (zi (t )), in which
case the neuron has no intrinsic memory. Memory can be added to this de-
scription by using τd yi

d t = f (zi ), with τ the internal timescale of the neuron.
Although a SNN is theoretically the most powerful tool from a computa-

tional point-of-view, currently, in most engineering applications, analog NNs
are used. If the activation function is differentiable, gradient-descent tech-
niques can be used for training, making the convergence during training less
cumbersome than in perceptron networks or SNNs. Additionally, the simplicity
of an analog neuron model makes it easier to simulate the temporal evolution
of these networks. Furthermore, when using a SNN, information is encoded
using spikes. However, in many real-life applications the input signals are ana-
log signals, such that conversion of these input signals to spike trains is needed.
Different methods can be used to do this, but they all have their own advantages
and disadvantages. Furthermore, as the output signal, too, is in most cases an
analog signal, algorithms to construct an analog signal from a spike train or
population encoding techniques, in which one can average the activity of a
certain subset of spiking neurons to obtain an analog value, could be used. For
the latter option large-size SNN are needed, again increasing the computational
effort to simulate those networks. In summary, apart from the difficulty to train
SNNs, we currently do not leverage their full computational potential due to
the increased complexity to simulate them. In fact, this is part of the rationale
of this work, as we investigate the possibility to implement neural networks
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directly in hardware to avoid the need to simulate them.

2.1.3 Network topology

Input

Output

Input

Output

Figure 2.3: (left) A feedforward Neural Network (FNN) has no feedback loops,

which makes it relatively easy to train (right) A Recurrent Neural Net-

work has feedback, providing memory, but is more difficult to train.

Another very important network property is its connectivity, and more
in particular, the presence of feedback. If a network does not contain neu-
rons that send their output to preceding neurons, it is a Feedforward Neural
Network (FNN), while in the other case, in which the connections between
neurons do make loops, it is a Recurrent Neural Network (RNN) (Fig. 2.3). The
choice of connectivity has an important influence on the trainability and mem-
ory behaviour of the network.

2.1.3.1 Feedforward versus recurrent neural networks

The advantage of a FNN over a RNN is that it is easier to train. A famous example
of this case is a static and analog FNN, which is often referred to as a multilayer
perceptron (even though the neurons are no binary perceptrons, but analog).
If the neurons have a differentiable activation function, the combination of
supervised learning and gradient-descent techniques, such as stochastic gra-
dient descent, leads to the well-known error-backpropagation algorithm [11],
which is due to its efficiency and simplicity one of the most-used techniques in
contemporary applications. As the optimization of a FNN already encounters a
non-convex error landscape, the convergence of training techniques for RNN,
such as backpropagation through time, is even more peculiar due to local op-
tima, bifurcations and sensitivity to initial conditions [12, 20, 21]. Techniques
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to circumvent these problems do exist, but are non-trivial to apply and have a
high computational cost [12, 21–23].

However, due to the lack of feedback loops, a FNN can not retain infor-
mation from the input signals for a long time, making it less suitable to apply
to input signals in which the information is spread over a certain amount of
time, encountered in, e.g., speech recognition and robot or machine control.
In principle, the information of previous time-steps can be fed externally to
the network by additional delayed versions of the input signals such as in [24].
Nonetheless, this technique has as a disadvantage the finite and artificial length
of the delay and the need for many additional parameters if long delays are
needed. Consequently, it would be useful if the network has intrinsic access
to memory. The delay of the neuron interconnections in the feedback loops in
RNNs provide such an intrinsic memory on the network level, as the informa-
tion of the input signals can circulate in those loops. So, while their training is
more difficult, the use of RNNs is inevitable when dealing with tasks in which
memory is required.

2.1.3.2 The combination of feedforward and recurrent neural network
properties using reservoir computing

Input

Output

Readout

Reservoir

Input

Output

Readout

Reservoir
Nonlinear

Memory

Figure 2.4: (left) The Reservoir Computing paradigm combines the easy train-

ability of a FNN in the readout layer with the dynamic richness of a

RNN in the reservoir. (right) the RNN in the reservoir can be replaced

by another nonlinear dynamic system, paving the way towards hard-

ware implementations.

To obtain the best of both worlds, the Reservoir Computing (RC) paradigm
has been proposed as a golden mean [25, 26]. In this decade-old machine learn-
ing technique, a NN is subdivided into two parts: the reservoir layer, and the
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readout layer (Fig. 2.4). The reservoir consists of a randomly connected RNN
that is left untrained. In contrast, the readout layer is a simple FNN neural net-
work that is trained to map the states of the reservoir to the desired output. Im-
portantly, as the readout layer is a FNN, it has no intrinsic memory, but is easily
trainable. In most cases, the output of the readout is just a linear combination
of the input signals and reservoir states, such that standard linear regression
techniques can be used for training. On the other side, the recurrence in the
reservoir allows for memory, making the network suitable for processing time-
dependent input signals. In conclusion, RC combines the advantages of both
feedforward neural networks (easy trainability) and recurrent neural networks
(memory, processing of time domain information) into one single network.

Before the term RC was proposed, the concept to separate a network in a
highly dynamic recurrent part and an easy trainable output layer, was almost
simultaneously proposed in the context of discrete-time analog NNs [21] and
continuous-time SNNs [12], and the same idea appeared shortly afterwards in
[27], before it was unified under the RC umbrella in [25, 26]. These different
backgrounds elucidate that the precise nature of the reservoir is less important.
Indeed, the reservoir only needs to project the input signals into a higher dimen-
sional space (in both space — i.e., number of neurons of the reservoir — and
time), in such a way that it becomes easier for the readout layer to calculate the
desired system output using the information of the states than using the inputs
directly. The reservoir makes feature extraction for the readout layer easier, and
hence behaves similarly to the kernels in regular classification theory, in which
input vectors are transformed to a higher dimensional space, using nonlinear
functions, allowing an easy linear classification algorithm to perform nonlinear
separation of the different classes [11]. Consequently, in principle, many non-
linear dynamical systems with intrinsic memory can function as a reservoir. Re-
searchers have proven this by even using a bucket of water as a reservoir to do
speech recognition [28]. While a bucket of water is not such a practical solu-
tion, the flexibility in reservoir choice opens possibilities towards hardware im-
plementations of the reservoir, as we will see in the next section. Additionally,
because only the readout layer is trained, different readouts can use the same
reservoir and can consequently solve different tasks on the same input, making
the concept even more flexible. Finally, RC networks are not only easy to use,
but they also offer state-of-the-art performance on many tasks [15, 21, 26].

2.2 Optical implementations of neural networks

In the previous section, we described how a NN consists of interconnected neu-
rons. All those neurons process the input information in parallel. However,
when these NNs are executed on a regular microprocessor, the neuron states
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are calculated sequentially, making the calculation less efficient. In a hardware
implementation of the NN, this disadvantage can be circumvented, resulting in
higher speeds, a better power efficiency and intrinsic parallelism.

Although electronic hardware implementations of, e.g., SNNs exist [29–34],
we will focus on optical implementations, as this allows to map one neuron onto
one single component, instead of a small circuit, and, due to the efficiency of
data transfer in the optical domain, in a potential speed increase [35–37]. These
hardware networks could be used for event detection, chaotic time-series gen-
eration, massive parallel classification problems of large amounts of data, such
as radar information related to traffic safety, LIDAR and the processing of data
of the Large Hadron Collider. Due to the analog nature of the hardware imple-
mentation it can also be used in the context of brain-machine interfaces [38].
Additional applications are those in which the input signals are already in the
optical domain, processing telecom signals or video-streams.

In early implementations, free-space configurations, using a spatial light
modulator to implement the weighting by the neuron interconnections, were
proposed [39, 40]. Another approach is the all-optical neural network proposed
in [41], in which ring lasers, each on a separate lasing wavelength, are cou-
pled with each other using fibers and directional couplers. However, these ap-
proaches are rather bulky, and hence have a limited scalability towards large
network sizes. In the next two subsections, we will summarize some state-of-
the-art results related to analog neuron implementations of Photonic Reservoir
Computing (PRC) (Sec. 2.2.1), as it gives a good example of an integrated neural
networks implementation and, optical SNNs (Sec. 2.2.2), as this is the final goal
of the research presented in this work.

2.2.1 Photonic reservoir computing

PRC offers a very promising road for the implementation of neural networks
with state-of-the-art performance in optical hardware. In this approach one
uses the RC paradigm and applies it to photonics. More specifically, the reser-
voir is replaced by an optical dynamical system. In some applications this is
done by combining a single optical nonlinear component with a long delay-
line, using time-multiplexing and masking techniques of the input signal to
obtain an effective multi-neuron-like behaviour [42, 43].

However, an approach more related to our work, is the integrated ver-
sion of PRC, as proposed in simulations for circuits of Semiconductor Optical
Amplifiers (SOAs) [35, 36], or Photonic Crystals (PhCs) with a Kerr nonlinear-
ity [37]. In this framework, the neurons from the photonic reservoir are emu-
lated by optical nonlinear components, connected by waveguides. Due to the
planar nature of integrated photonics, waveguide crossings need to be avoided,
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Figure 2.5: The details of the local connection topology of a fully connected

optical neuron (grey circle) embedded in a 2D-mesh implementa-

tion of a PRC network. The power division over the different output

branches of the splitter is determined by the splitting ratio S. Adopted

from [37, 44].

resulting in restrictions on the connection topology. As a consequence, this
connection topology is more regular than in the original software version of RC.
Although intentional predefined length differences of the waveguides between
the optical neurons are in principle possible, the currently proposed topology
designs use identical interneuron waveguide lengths. Hence, the only irregular-
ity is due to the process variations caused by fabrication imperfections, which
result in small offsets between the experimental waveguides and the design
target.
An additional issue that is not present in the software version of RC is the effec-

tive power loss in the splitters (combiners) that are needed to send (collect) the
output (input) of a neuron to (from) several other neurons. Due to a fundamen-
tal physical limitation, a symmetric splitter (combiner) that divides (collects)
a signal over (from) N -ports diminishes the amplitude of the light at each of
those channels with a factor 1p

N
. Consequently, to avoid the need to compen-

sate these losses with additional (power consuming) amplification, the number
of splitters and combiners is kept limited, resulting in additional connectivity
restrictions. Therefore, in the current implementations the nonlinear optical
neurons are placed in a 2D-grid, in which each neuron receives (sends) input
(output) from (to) maximal two other neurons. If in addition a neuron receives
an external input signal, and the output of the neuron is send to a detector,
additional splitters and combiners need to be incorporated (Fig. 2.5). In those
power dividers and combiners, the splitting ratio can be optimized, such that
the power loss in the neuron connections is reduced. Two-channel splitters
and combiners can be easily defined in integrated photonics, using standard
components such as multi-mode interferometers, directional couplers or Y-
junctions. Advantageously, a small fan-in and fan-out per neuron also reduce
the design complexity of the network topology.

Recently, the concept of integrated PRC was demonstrated in Silicon-On-
Insulator (SOI) using a ’passive’ reservoir [45]. In this case, the same connection
topology is used as in the previously mentioned simulations, but no nonlinear
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components are included. The neuron corresponds to the waveguide part on
the places of the original nonlinear component positions. Hence, the whole
reservoir solely consists of waveguides, splitters, combiners and grating cou-
plers to couple light into and out of the chip. In this case, the nonlinearity of
the system, needed to do computations, is shifted to the readout layer, as the
output of the system consist of a linearly weighted sum of the output power of
the passive neurons. By reading out the optical power, the square of the optical
field is taken, resulting in the desired nonlinearity. Using this nonlinearity in the
readout layer, the passive network is able to perform different calculations on
bit-streams, and in simulation a larger network shows to be able to do speech
recognition. Further research is needed to investigate which set of tasks can be
succesfully solved by this reservoir type.

2.2.2 Optical Spiking Neural Networks

Although the RC paradigm can also be applied to SNNs, no spiking PRC net-
works have thus far been proposed. As we will show in Sec. 2.4, optical non-
linearities are very suitable to exhibit excitability, a property that is necessary
for emulating a spiking neuron. However, even though there is a large amount
of literature on excitability in single components, the research towards optical
SNNs is still in its initial stage. Indeed, even though the dynamics in coupled
excitable components have been studied [46–48], the devices in these experi-
mental setups were coupled through fibers or free space optics and not much
attention was spent on future prospects for scalability and training.

A first promising technology platform for optical SNNs was the excitability
found in integrated InP-based multi-quantum-well Semiconductor Ring Lasers
(SRLs) [2, 3, 49]. In [3], simulations demonstrated how pulse transfer between
two optical excitable units is allowed. However, an experimental demonstra-
tion of this pulse transfer is still missing, and the excitability mechanism has no
straight-forward analogon in biological NNs or currently used software-based
versions of SNNs. In chapter 5, we will propose how optically injection in this
type of structure results in a more well-known excitability behaviour. We do this
for a microdisk laser on hybrid III-V on SOI, but as the physical behaviour in
this component is identical to a SRL, the results should be transferable to the
SRL platform as well.

During this PhD research, the first real attempt towards optical SNNs was
taken by the Lightwave Communications Research Lab at Princeton in the re-
search on what they call ’Lightwave Neuromorphic Signal Processing’. A review
of this work can be found in [50]. Initially, they worked with fiber-based systems,
in which different filters and nonlinear optical components were used to emu-
late Leaky-Integrate and Fire (LIF) behaviour all-optically, with a 108 speed-up
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compared to biological neurons [51–55]. The LIF model is an ad-hoc descrip-
tion of excitable behaviour in biological (integrating) neurons, and, due to its
simplicity and strength, it is currently used in a lot of the SNN-related theory
and applications [19, 56]. Before we proceed to their implementation of this be-
haviour, we will first explain this model.

In the LIF neuron model, the state of the neuron is represented by its mem-
brane potential V . The capacitance C of the membrane, and the parallel resis-
tance R of the current channels through this membrane, make that this neuron
is a simple RC-circuit:

C
dV

d t
=−V +RI (t ). (2.3)

Without external input pulses the neuron resides at its rest potential VL . If the
neuron receives pulses from the outside world through its input current I , they
charge the potential until a certain threshold Vth is reached. If this threshold
is reached, nonlinear processes change the behaviour of the current channels
through the membrane, resulting in an output spike. After the spike the mem-
brane potential is reset to the value VR < VL , making it temporarly harder for
external perturbations to reach the threshold. This period in which external
perturbations have less influence is called the relative refractory period. In prin-
ciple, the model can also be extended with an absolute refractory time, where
it is completely insensitive to external inputs by fixing the membrane potential
during a period ∆r f after the spike, before restarting the integration of V using
Eq. (2.3) at VR .

In [51–55, 57, 58] the behaviour of this model is conceptually subdivided into
different stages that can be emulated by a single optical unit. For instance, to
emulate the integration by Eq. (2.3), they used cross-gain saturation in a com-
mercial SOA or in a Electro-Absorption Modulator (EAM) (due to interaction
with a device in which four-wave mixing takes place), while threshold behaviour
can be obtained in Germanium-doped nonlinear loop mirror. These different
stages are then connected using fibers and filters, resulting in a rather bulky set-
up. Furthermore, the material nonlinearities that are needed in the different
units are not straightforward to obtain on a single integrated chip. However,
this type of system was succesfully used to experimentally mimic the crayfish
tail-flip escape response [54]. This is the world’s first demonstration of a signal
feature recognition task using an all-optical SNN-based methodology. More-
over, using the combination of an Electro-Optic Modulator (EOM) and an EAM
even the potential for synaptic plasticity in this optical system was experimen-
tally demonstrated, offering a technique to allow training in optical SNNs. So,
even though we aim for an integrated optical SNN, the literature on this fiber-
based network is a valuable source of inspiration.

Recently, using simulations, the same group has proposed other optical SNN
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platforms in which an optical neuron is represented by only one component in-
stead of a circuit of components, making it more suitable for integration [58–60].
In this work the excitability mechanism related to Q-switching in a Vertical Cav-
ity Surface-Emitting Laser (VCSEL) with intra-cavity saturable absorber [7], is
adapted such that it mimics the behaviour of Eq. (2.3). In [60] VCSELs are as-
sumed as well, while [58] is based on nonlinearities in graphene whithin a fiber-
based set-up, hence, both approaches need additional off-chip components to
connect the neurons. In contrast, in [59] hybrid III-V on SOI integrated lasers are
proposed, which can be connected using waveguide circuitry, clearly paving the
way for all-optical integration. Furthermore, [58, 60] show how small all-optical
circuits with these optical spiking neurons can mimic the functionality of real-
life biological circuits, such as the implementation of a circuit emulating the
auditory localization algorithm seen in the barn owl. The experimental demon-
stration of these integrated all-optical SNNs still remains to be done.

2.3 Excitability in nonlinear dynamical systems

To emulate spiking neuron behaviour using a single optical device, this device
should be excitable, i.e., sufficiently strong (but still small) input perturbations
can trigger a fixed-shape large-amplitude response, after which it returns to
its initial state. During its response the system is relatively insensitive to new
perturbations. This is called the refractory time. Excitability is related to the
concept of a threshold: if the input perturbations are below threshold, the sys-
tem linearly relaxes to the rest state, and the amplitude of this response is pro-
portional to the strength of the input perturbation. However, above threshold,
the system reacts with a characteristic nonlinear response (e.g., one or more
pulses) and the amplitude of this response is rather independent of the input
perturbation strength. As we will see in the subsequent chapters of this dis-
sertation, some properties of the system’s reaction, such as the latency of the
pulse compared to the input perturbation, can be dependent on this perturba-
tion strength.

Nonlinear dynamical systems theory offers the mathematical tools to anal-
yse the appearence of excitability in a device, based on its rate equations. We
will explain some important concepts from this field in Sec. 2.3.1. Next, in Sec.
2.3.2, these concepts will be used to explain the origin of excitability and we
will introduce classification schemes of excitability in biological neurons, allow-
ing to link the behaviour in optical neurons with their biological counterparts.
For detailed and more exhaustive introductions to nonlinear dynamical systems
and excitability, we refer to [18, 61, 62].
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2.3.1 Nonlinear dynamical systems theory

The dynamics in many optical components can be described using a first or-
der Ordinary Differential Equation (ODE), describing the time evolution of a
N -dimensional real state vector x (in the case of complex fields, it is always pos-
sible to represent this field by the combination of its real and imaginary part):

dx

d t
= f (x) . (2.4)

Based on a geometrical study of f (x), nonlinear dynamic system theory often
allows to predict the behaviour for t →∞ of the system for a given initial con-
dition x(t = 0) = x0, without explicitly integrating Eq. (2.4). To achieve this,
the attractors of the system are calculated, and their corresponding basins of
attraction. These attractors of a dynamic system are the (stable) types of dy-
namic behaviour to which the system can evolve. A nonlinear system can have
more than one attractor, and the initial condition determines to which attractor
x(t ) will converge, depending on in which attractor’s basin it starts. A system
can relax to a single ’steady-state’ point, a self-sustained periodic oscillation (if
N ≥ 2) or even a chaotic state (if N ≥ 3).

In the study of excitability, especially the interplay between steady-state
points and oscillations is important, so we will limit our discussion to those two
phenomena. Points for which

dx

d t
= f (x) = 0 (2.5)

holds are called Fixed Points (FPs). A FP xF P is stable if, after a small perturba-
tion, the system relaxes back to the same point. Hence, stable FPs are attractors
of the system. If the real part of all the eigenvalues of the Jacobian ∂f

∂x |xF P eval-
uated at xF P is purely negative, this FP is stable. FPs can also be unstable, i.e.,
even for very tiny perturbations the system will never relax back to its initial
state. This will happen if the real part of at least one of the eigenvalues of the
Jacobian in this FP is positive. If the real parts of one of the eigenvalues is equal
to zero, higher-order terms in the Taylor expansion around the xF P might pro-
vide more information on the stability. Importantly, the latter condition is often
an indication that the system is in a transition between two dynamic regimes.
Indeed, suppose that the system also depends on a parameter vector µ, then Eq.
(2.4) can be rewritten to:

dx

d t
= f

(
x,µ

)
. (2.6)

Changes in µ can affect the dynamic behaviour of the system. For instance, due
to a changing µ a stable FP can become unstable, causing the system to diverge
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or to relax to another attractor. At the transition between those two regimes,
the real part of at least one of the eigenvalues of the Jacobian will become zero.
We say that the system bifurcates at this special value of the parameter vector
µ = µc . These bifurcations incorporate a lot of information on the system, as
they help us to identify the boundaries between different dynamic behaviour.

A similar story holds for the attractors that are periodic self-sustained oscil-
lations. One can define a Limit Cycle (LC) as a non-constant solution of Eq. (2.4)
for which a T > 0 exists such that

∀t : x(t +T ) = x(t ). (2.7)

The smallest T for which the previous equation holds, is called the period of the
oscillation. As with the FPs, after a small perturbation the system can relax back
to the LC, or diverge from it, resulting in a stable and unstable LC, respectively.

In general, a bifurcation occurs when a change in the parameters of the sys-
tem results in a qualitative change in the dynamic behaviour of this system. We
will now illustrate this concept a bit more in-depth for some bifurcations that
are relevant to excitability, explaining how bifurcations can give birth to LCs.

2.3.1.1 Saddle-node or fold bifurcation

Figure 2.6: In a saddle-node bifurcation a stable FP (black circle) and unstable

FP (white circle) collide and disappear. Arrows indicate the direction

of the flow on the x-axis.

Consider the one dimensional system:

d x

d t
=µ−x2. (2.8)

If µ > 0, the system has two FPs, one stable at x1 = p
µ and one unstable at

x2 = −pµ. At µ = 0 those two FPs collide, and for µ < 0 the FPs have disap-
peared. This bifurcation is a saddle-node or fold bifurcation (Fig. 2.6). Any
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system that shows this bifurcation is topologically identical to Eq. (2.8) in the
proximity of this bifurcation, which we call the normal form corresponding to
this bifurcation. This bifurcation can also appear in systems with N > 1.

Importantly, the stable FP disappears by colliding with an unstable FP. It
can be proven that a FP can only change its stability by interaction with another
invariant set (e.g., an unstable FP or LC).

2.3.1.2 Andronov-Hopf bifurcation

If the dimensionality of the system N ≥ 2, then LCs can appear. This can be
easily seen in the following example:

d x

d t
=µx −ωy −x(x2 + y2), (2.9)

d y

d t
=ωx +µy − y(x2 + y2). (2.10)

This system can be expressed in its polar coordinates:

dr

d t
= r (µ− r 2), (2.11)

dθ

d t
=ω. (2.12)

The phenomenological behaviour of this system in the xy-plane is shown in
the upper part of Fig. 2.7. If µ< 0, the system has a stable FP at r = 0, while for
µ> 0 this FP looses stability and a stable LC appears with oscillation frequency
ω, and amplitude r =p

µ. The bifurcation at µ = 0 is a supercritical Andronov-
Hopf bifurcation. In this case, a stable FP is converted in an unstable FP and a
stable LC. If in a physical system that resides in its stable FP for µ< 0, µ is slowly
increased, such that it crosses the bifurcation, noise will let the system diverge
from the unstable FP to the stable LC. The amplitude of this oscillation grows
∝p

µ, resulting in very small oscillations above threshold.
Another type of Andronov-Hopf bifurcation is the subcritical Andronov-

Hopf bifurcation, in which a stable FP coexists with an unstable LC, and after
the bifurcation this unstable LC is converted to an unstable FP. In physical
systems, due to energy conservation, the unstable LC is normally surrounded
by another stable LC (Fig. 2.7, bottom). An example of this type of system is:

dr

d t
= r (µ+ r 2 − r 4), (2.13)

dθ

d t
=ω. (2.14)
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Supercritical

Subcritical

Figure 2.7: Two different types of Andronov-Hopf bifurcations: in a supercrit-

ical Andronov-Hopf bifurcation a stable LC originates from a stable

FP, while in a subcritical Andronov-Hopf bifurcation an unstable LC

collides with a stable FP, resulting in an unstable FP. In most physical

systems with subcritical Andronov-Hopf bifurcation the unstable FP

is surrounded by another stable LC.

The contrast between this system and the one describing the supercritical
Andronov-Hopf bifurcation, can be observed by slowly increasing the param-
eter µ from µ < 0 to µ > 0, starting in the stable FP. In this case, after the
bifurcation, noise kicks the system out of the equilibrium to oscillations which
have immediately a large amplitude (r ≈ 1). Even more, for negative µ-values
close to zero, sufficiently large noise can bring the system in an initial condition
outside the amplitude of the unstable LC (which has a small amplitude ∝p−µ),
and the system can switch as well to the large amplitude oscillations of the sur-
rounding stable LC. It can be calculated that at µ f = − 1

4 the unstable LC that
originates from the subcritical Andronov-Hopf bifurcation and the surrounding
stable LC collide and disappear for µ<− 1

4 . This is a LC fold bifurcation. In the
µ-region between the LC fold bifurcation and the subcritical Andronov-Hopf
bifurcation, the system is bistable: x can converge to two different attractors,
the FP at the origin, or the surrounding stable LC.
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slow region

Figure 2.8: A saddle-node on a invariant circle bifurcation gives rise to a LC.

2.3.1.3 Saddle-node on an invariant circle bifurcation

In the previous example we discussed how a small-amplitude LC can originate
from a change in stability of a FP. Another mechanism of LC creation is shown
in Fig. 2.8. It occurs in the following example:

dr

d t
= r (1− r 2), (2.15)

dθ

d t
=α− sin(θ). (2.16)

This system has an unstable FP at the origin, and trajectories are attracted to
the circle with r = 1. Ifα ∈]−1,1[ the system has one stable FP and one unstable
FP on this circle, at θ1 = arcsin(α) and θ2 = π−arcsin(α), respectively. At α= 1
and α = −1 these FPs collide in π

2 and −π
2 , respectively, and the circle r = 1

becomes a stable LC. This bifurcation is called a saddle-node on an invariant
circle, as during this bifurcation a saddle-node bifurcation takes place in the θ-
dimension. Interestingly, in this case, the oscillation had immediately a large
amplitude r = 1, and for values close to the bifurcation, an infinite period is
obtained. Indeed, close to the bifurcation at α= 1, due to continuity, for θ ≈ π

2 ,
the derivative dθ

d t will still be very small, slowing down the dynamics, so for α→
1 this period will diverge. This type of slowing down, is sometimes also called a
’ghost’ effect of the nearby bifurcation.

2.3.2 The origin of excitability and its classification

In most cases, a superthreshold perturbation of an excitable system results in
a single pulse. In the previous subsection, we have explained how bifurcations
can give rise to LCs, which can be considered as periodic pulse or spike trains.
Most excitable behaviour is linked to the presence of such spiking behaviour.
Before the arrival of the perturbation, the system resides in a stable rest state,
and the perturbation kicks the system into a large amplitude trajectory, of
which the shape is a reminiscent of the dynamics of the nearby periodic spiking
regime. Rougly said, the perturbations triggers a ghost pulse from the nearby
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spike train.
This explains why excitability in biological neurons is often characterized

using the bifurcation-type that causes self-sustained oscillations. Four typical
examples of such onsets are:

• Supercritical Andronov-Hopf bifurcation

• Subcritical Andronov-Hopf bifurcation

• Saddle-node on an invariant circle

• Saddle-node off an invariant circle

A saddle-node off an invariant circle is a normal saddle-node bifurcation, in
the presence of a LC. After the stable FP has lost its stability, noise will kick the
system to this stable LC. Both the saddle-node off an invariant circle and the
subcritical Andronov-Hopf bifurcation have a parameter range for which there
is bistability between a stable FP and a stable LC. Another important criterium
to classify those bifurcations is considering the reaction to (subthreshold) per-
turbations near the oscillation onset. Both Andronov-Hopf bifurcations will
respond with subthreshold oscillations, i.e., a damped oscillatory response,
that relaxes to the FP, with a frequency related to the nearby self-sustained
oscillation. A neuron with this behaviour is called a ’resonator’. On the con-
trary, for the two saddle-node bifurcations, small perturbations do not result in
subthreshold oscillations, only in an exponential relaxation. A neuron with this
type of bifurcation is an ’integrator’.

Apart from the difference in reaction to subthreshold pulses, integrators
and resonators differ in the type of threshold. In the case of an integrator, the
threshold is theoretically always well-defined by a threshold manifold [18]. For
instance, in the case of a saddle-node on an invariant circle bifurcation, the un-
stable FP is a saddle point which has a stable manifold that accurately separates
two regions in phase space (and is hence called a separatrix). Consequently, this
stable manifold of the unstable FP serves as a threshold manifold. In the case
of a resonator neuron, this threshold manifold is not always properly defined,
and in many cases a continuous transition between subthreshold oscillations
and excitability exists. However, sometimes the sensitivity to the perturbation
strength is extremely narrow, even below the experimental noise level, such that
these neurons in practical situations do exhibit proper all-or-none reactions on
external perturbations. This is quasi-threshold behaviour.

The classification of neurons in resonators and integrators can be explained
by another computational property of each class. Indeed, two sufficiently
closely-spaced subthreshold pulses can result in an excitation if the neuron is
an integrator, the neuron ’integrates’ their combined perturbation. This corre-
spons to the LIF behaviour, described in Eq. (2.3). In the case of a resonator, two
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subthreshold perturbations can also result in an excitation, but in this case the
two pulses need to be in resonance, i.e., in phase with the intrinsic frequency
related to the subthreshold perturbations. If the time spacing is too small or too
large, no excitation will occur.

Class 1 Class 2 Class 3

Current

Fr
e
q
u
e
n
cy

UndefinedLimited frequency range

Figure 2.9: Neural excitability can be subdivided in three classes based on the

frequency-current relation at the onset of spiking [18].

By experimentally slowly changing the current in biological neurons be-
tween the rest state and the spiking state of the neuron, different classes of
excitability can be defined based on the frequency-current relation at the onset
of spiking (Fig. 2.9). This often-used classification scheme is the one proposed
by Hodgkin based on the study of squid axons. Rephrased in our terminology
his classification becomes:

• Class 1 neural excitability: spike trains can be generated with arbitrarily
low frequency, depending on the strength of the applied current.

• Class 2 neural excitability: spike trains are generated in a certain fre-
quency band that is relatively insensitive to changes in the strength of the
applied current.

• Class 3 neural excitability: A single spike is generated in response to a
pulse of current. Repetitive spiking can be generated only for extremely
strong injected currents or not at all.

In other words, the frequency-current relation for Class 1 neurons starts from
zero and continuously increases, for Class 2 neurons it is discontinuous, while
for Class 3 neurons it is not defined [18]. During the slow current ramp, both
Class 1 and Class 2 neurons encounter a bifurcation, and it will depend on the
type of bifurcation to which class a neuron belongs. For instance, Andronov-
Hopf bifurcations and a saddle-node (off an invariant circle) result in Class 2
behaviour, while saddle-node on invariant circle bifurcations result in Class 1
behaviour. In some publications, all integrators are considered to be Class 1,
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while all resonators (even the saddle-node off invariant circle bifurcations) are
considered to be Class 2, but this is in principle in contradiction with Hodgkin’s
original classification. As stated by [18], due to this confusion it is better to ex-
plicitly mention the bifurcation that is responsable for excitability.

In Hodgkin’s scheme, Class 3 excitability is a special case, gathering neurons
that do not bifurcate from rest state to self-sustained oscillations for a current
ramp, and that are therefore not characterized by a nearby oscillation-onset bi-
furcation in the current. Hence, this class seems an apparent counter example
of the statement that excitability is always related to a close bifurcation from rest
state to self-sustained oscillation. However, such a bifurcation appears when
other parameters of the neuron than the current are changed [18]. This class is
not relevant for our dissertation.

2.4 Excitability in optics

Not only biological neurons exhibit excitability. It also occurs in other parts of
our body, such as the muscle cell membrane in our heart [62, 63]. Excitability
also appears in chemical reactions, in a driven mechanic pendulum or even in
electronic systems (e.g., the Van der Pol oscillator we will discuss in Sec. 2.4.2).
In this section, we investigate excitability in optics [5, 6, 9, 50, 64–72]. Apart
from the development of optical SNNs, these different optical excitability mech-
anisms have interesting potential applications in photonics such as clock recov-
ery, pulse reshaping, and optical delay lines [7, 73, 74]. However, it is not our
purpose to discuss every single excitability phenomenon that appears in optics,
and we will only mention the most relevant ones from the perspective of this
PhD research.

Optical excitability is just as neural excitability related to a bifurcation from
stationary to oscillatory behaviour, of which three generic bifurcations in the
plane (i.e., a two dimensional system) exist. In optics, those three1 types can be
associated with different physical mechanisms. Therefore, in literature on op-
tical excitability, these three types are used as another classification scheme of
excitability: [7, 68, 75] (using the name conventions of [18]):

• Type 1 optical excitability: due to a saddle-node on an invariant circle
bifurcation,

• Type 2 optical excitability: due to a Andronov-Hopf bifurcation,

• Type 3 optical excitability: due to a saddle homoclinic orbit bifurcation.

1In principle, a fourth mechanism to lose oscillatory behaviour, a LC Fold bifurcation could be
listed as well [18], but in the following classification this is incorporated in type 2.
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Figure 2.10: The three optical excitability types have a different characteristic

pulse shape [75]. The smooth pulse shape of type 1 excitability is

linked with the Adler model discussed in Sec. 2.4.1, while the block-

shape of type 2 excitability is linked to slow-fast dynamics discussed

in Sec. 2.4.2. Type 3 excitability will not be discussed in-depth in this

dissertation, but an important feature here is that, in between the

excitations, at the rest state there is no output light.

As we will explain later on in this section, type 1 appears in optically-injected
lasers near the the locking threshold [64] or in lasers with optical feedback [67],
while type 2 typically appears in slow-fast systems with Fitzhugh-Nagumo dy-
namics, often due to the interaction between thermal and free-carrier nonlin-
earities [9, 69], while type 3 appears in lasers with a saturable absorber near the
transition to Q-switch-like pulsing [7, 75]. If we compare this with Hodgkin’s
classification discussed in Sec. 2.3.2, type 1 corresponds to Class 1 excitability,
and type 2 is an example of class 2 excitability. However, confusingly, type 3
has nothing to do with class 3 excitability, but is an example of Class 1 excitabil-
ity. The three underlying physical mechanisms related to these three excitabil-
ity types bring along a characteristic pulse shape (Fig. 2.10). Importantly, in
both type 1 and type 2 excitability, true to the original definition of excitability,
the amplitude of the excursion is independent of the perturbation, because the
slow manifold and the invariant circle determine the maximum of the pulse, re-
spectively [75]. In contrast, type 3 excitations have a (slight) dependence on the
initial perturbation strength. In [10, 59] it is claimed that the dependence on
the input perturbation strength of type 3 excitability can be effectively lowered
by a good choice of the lifetimes of both gain and saturable absorber lifetime,
and the pump current settings, such that the model mimics more closely LIF-
behaviour.

Additionally, the previous typology does not accurately describe all the dif-
ferent optical excitability cases. For instance, the excitability due to asymmetric
intermodal coupled encountered in SRLs [2, 3, 49] is caused by a weakly broken
Z2-symmetry close to a Bogdanov-Taken bifurcation. Even though the inter-
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modal coupling can be seen as a version of optical feedback whithin this laser
system, it shows ’resonator’ behaviour, and is hence Class 2 excitable.

In this PhD research, we will study both type 1 (in microdisk lasers, chapter
5) and type 2 (in passive SOI microrings, chapter 4) excitability. We will provide
additional context on both types by explaining the Adler model (Sec. 2.4.1) and
by introducing slow-fast dynamics (Sec. 2.4.2), respectively.

2.4.1 Adler model

Perturbation

Excitation

Threshold

Figure 2.11: The Adler model describes how a sufficiently strong perturbation

can let the system cross the stable manifold of the unstable FP (a sad-

dle, hollow circle in the figure), and initiates as such a perturbation,

as the system has the make a full round trip before it can return to

the stable rest state (full circle).

An intuitive example of the appearence of a saddle-node on invariant circle
bifurcation in optics, is the one of an optically injected laser. During injection
locking, a laser with free-running lasing frequency ω0 is injected with an exter-
nal signal at ω1. If the input power of the injected signal is sufficiently strong,
the slave laser will phase-lock to the field of the injected signal. This can be de-
scribed using the Adler model, developed to describe the coupling between two
oscillators [76]:

dθ

d t
=∆ω−B sin(θ). (2.17)

Here, θ is the phase difference between master and slave laser, B represents
the strength of the optically injected signal, while ∆ω = ω1 −ω0. This one-
dimensional model corresponds to a rescaled version of Eq. (2.16), so the analy-
sis in Sec. 2.3.1.3 can be applied to this system usingα= ∆ω

B . As the Adler-model
is one-dimensional, only the phase of the oscillation is incorporated, and there
is no explicit analogon of Eq. (2.15), governing the amplitude of the oscillation.
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However, similar to Sec. 2.3.1.3, it is assumed that the system exhibits an in-
variant circle, to which the trajectory converges. Consequently, the system has
a saddle-node on an invariant circle bifurcation.

Suppose that we are in a rest state close to the bifurcation at ∆ωB = 1. Exter-
nal perturbations can kick the system state accross the stable manifold of the
unstable FP (Fig. 2.11). To return to the stable FP, the laser has to make almost a
full round trip, over the remaining part of the invariant circle, which will be vis-
ible as a pulse in the phase of the laser, often accompagnied by a related pulse
in the amplitude. Hence, the Adler model clearly describes Class 1 excitability.

An optically injected laser is not the only system where the Adler model
can be applied. For instance, this also happens in an optical torque wrench,
in which the high spatio-temporal resolution of optical tweezers is combined
with the angular control of tailored microscopic birefringent cylindric particles.
These birefringent cylinders can be forced by a rotating linear polarization in
the optical tweezer beam, resulting in a locking between the rotation of the par-
ticle and the rotation of the beam that can be mapped to Eq. (2.17). Again, we
find excitability, which can be used to implement a conceptually new sensing
technique capable of detecting single perturbation events, such as the detection
of another particle that passes by at a certain distance [71, 77]. This technique
is believed to have a high signal-to-noise ratio and a continuously adjustable
sensitivity.

2.4.2 Slow-fast dynamics

In optics the large separation between the timescales of thermal effects and
free-carrier effects result in slow-fast dynamics, such as self-pulsation and ex-
citability. Already in 1994, this was observed in semiconductor resonator cav-
ities [78]. In 2003, similar phenomena were demonstrated in semiconductor
optical amplifiers and the behaviour could be explained using the simple Van
der Pol-Fitzhugh-Nagumo model proposed to explain excitability in biological
neurons [69]. This excitability also appears in PhC cavities, while the related
self-pulsation is observed as well in silicon microrings and microdisks [79–81].
Applications of this physical effect are not only found in the field of excitability.
Recently, the frequency dependence of the thermo-electrical self-pulsation to
humidity changes was proposed as a sensing mechanism. Additionally, interac-
tions with other nonlinearites with other timescales, such as the instantaneous
Kerr-effect, might have similar consequences.

A two-dimensional slow-fast system can typically be rewritten in the fol-
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Figure 2.12: (left) If in a slow-fast system the slow (vertical) nullcline inter-

sects the middle branch (from A to C) of the S-shaped fast nullcline,

the intersection is an unstable FP and the system oscillates with a

typical blockwaved pulse shape. (right) If the slow nullcline inter-

sects the fast nullcline in one of the stable branches, near the oscilla-

tion onset, excitability appears.

lowing format:

d x

d t
= f (x, y), (2.18)

d y

d t
= εg (x, y). (2.19)

Here, the ratio of the timescales ε is very small, such that x is the fast variable,
while y is the slow variable. Typically, the fast x-nullcline f (x, y) = 0, has a cubic
or S-shaped form. A prototype of such a system is the forced Van der Pol model
[61]. The forced Van der Pol equation describes a driven non-linear electronic
circuit and can be written as [61]:

d 2x

d t 2 +µ(x2 −1)
d x

d t
+x = a, (2.20)

We investigate the regime with µ >> 1. After a coordinate transformation, this
system can be converted to the first order ODE [61]:

d x

d t
=µ

(
y −

(
x3

3
−x

))
,

d y

d t
=− 1

µ
(x −a) (2.21)

This could in principle be rewritten to the format of Eq. (2.19) by using a
rescaled version of the time t ′ =µt , resulting in ε= 1

µ2 , but we will continue our
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analysis with the current format of the equations. The x-nullcline y = x3

3 − x is
clearly cubic, while the y-nullcline x = a is parallel to the y-axis (Fig. 2.12, left).
This system has only one FP. If |a| > 1 this FP is stable, as it intersects the ’sta-
ble’ branches of the fast x-nullcline. However, at |a| = 1, when the y-nullcline
intersects the x-nulline at one of the two knees, the system has a supercriti-
cal Andronov-Hopf bifurcation. During such oscillations the system slides up
along the left stable branch of the x-nullcline until it reaches the left knee, A.
This requires O(µ) time. Next, it quickly jumps, nearly horizontally, to point
B and then slowly slides down along the right stable branch of the x-nullcline.
This requires O( 1

µ ) time. When the system reaches the right knee, C, the system
jumps back to the left branch and completes the oscillation by sliding down
again. This type of oscillatory behaviour is called a relaxation oscillation.

If |a| > 1, but near the oscillation-threshold, the system is excitable, as small
perturbations can kick the system accross the nearby knee of the system, after
which a fast transfer to the other stable branch of the nullcline happens and the
system consequently has to make a full round trip before it can return to the
initial rest state again (Fig. 2.12, right).

A special feature is that the frequency of the sub-threshold oscillations is
O(1) (calculated from the Jacobian at the FP at the bifurcation onset), while the
frequency of large-amplitude relaxation oscillation is on the order µ, because
it takes 1

µ units of time to pass up and down the stable branches of the fast

nullcline. This is a difference in order of magnitude of ε
1
2 Consequently, in a

slow-fast system, the period of small subthreshold oscillations might not be on
the same order of magnitude as the period of the self-sustained oscillations.

The forced Van der Pol oscillator can be seen as a restricted version of the
Fitzhugh-Nagumo (FN) model of a neuron, which is a phenomenological 2D
approximation of the 4D Hodgkin-Huxley neuron model obtained from experi-
mental measurements on a squid axon [18]:

dV

d t
=V (a −V )(V −1)−w + I ,

d w

d t
= bV − cw. (2.22)

In some publications an additional constant term in the d w
d t -equation is present,

see, e.g., [19]. Although in the Hogdkin-Huxley model the slow nullcline is still
linear, it does not need to be parallel to the w-axis anymore, allowing for the
possibility to have more than one FP. For the parameter range where the null-
clines have only one intersection and if b and c are both very small, relaxation
oscillations will appear, and the results from the forced van der Pol oscillator
still hold. However, if the w-nullcline is not parallel to the w-axis, depending on
the settings of this model, the oscillation onset can now be a sub- or supercriti-
cal Andronov-Hopf bifurcation, and the bifurcation does not take place exactly
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at the knees of the V-nullcline, but at a position at the stable branch close to this
knee [18, 19, 82–84]. If the nullclines do intersect in more than one FP, then ad-
ditional phenomena can appear.

For some parameters of the FN-model, near the onset of oscillation, in a
very narrow region of control parameters, special LC trajectories exist, which
closely follow the unstable manifold near the unstable knee of the S-shaped
nullcline. Due to their shape, this type of trajectories is called ’canards’ (French
for ’ducks’). In the excitable regime, canard trajectories are related to the exis-
tence of quasi-thresholds in resonator neurons [18].

2.5 Conclusion

In this chapter, we have given a general introduction on both NN theory and
excitability, to put the research of the subsequent chapters in perspective.

In Sec. 2.1, we have explained how a NN consists of a collection of inter-
connected neurons. Furthermore, we have introduced the concept of a spiking
neuron, which is the neuron type that most accurately mimics the behaviour of
a biological neuron, compared to rate-coding based analog neurons or percep-
trons. Later on in this work, we will emulate such a spiking neuron in optical
hardware and we will study the potential to couple these neurons. Additionally,
in Sec. 2.2, state-of-the-art research on the implementation of neural networks
in (integrated) photonics has been discussed, of both analog and spiking NNs.
These implementations can serve as a guideline for the implementation of all-
optical SNNs in silicon photonics.

A spiking neuron can be described as an excitable nonlinear dynamical sys-
tem. The concept of excitability was introduced in Sec. 2.3. If sufficiently strong
perturbations can trigger one or more fixed-shape output pulses, a system is
excitable. This dynamic behaviour often appears close to a regime with self-
sustained oscillations.

Next, in Sec. 2.4, we discussed the appearance of excitability in optics. In
general, three relevant categories for optical excitability can be distinguished:
excitability due to slow-fast dynamics related to the interplay between thermal
and electronic nonlinearities, excitability close to the onset of injection lock-
ing in optically-injected lasers and excitability close to the onset of Q-switching
in a laser with a saturable absorber. In this work we will demonstrate the oc-
curence of two such mechanisms in silicon photonics: slow-fast excitability in
a microring (chapter 4) and excitability close to the onset of injection locking in
a microdisk laser (chapter 5).
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3
Phenomenological modeling of

photonic integrated circuits

The final aim of this PhD is to design photonic integrated circuits that behave
as optical Spiking Neural Networks (SNNs). For this purpose, we need to be
able to model the dynamics in such a photonic system on a circuit level. In
our research we often need to interchange component models to verify their
influence on the circuit dynamics. Additionally, in future work, we will need to
simulate very large optical SNNs. State-of-the-art software tools do not exhibit
the required flexibility and scalability. For this reason, we have devoted part of
our research time to the development of Caphe, an in-house nonlinear circuit
simulator. In this chapter, we will discuss the underlying theoretical framework
of this simulator.

Caphe is based on the definition of a node, the basic building block of the
framework, representing optical components or circuits. Nodes can contain
subnodes and are coupled to other nodes using ports. Every node can have an
arbitrary number of ports. It can as well have its own set of state variables, de-
scribed by arbitrary Ordinary Differential Equations (ODEs). In addition, each
node has access to previous states or inputs.

Due to this flexibility in the definition of circuits and components, Caphe
is currently applied in very different research contexts, such as the frequency-
domain analysis of optical filters [1], the time-domain analysis of very large
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nanophotonic reservoirs [2] and finally, as discussed in the subsequent chap-
ters, the study of the dynamics in small circuits of microrings and microdisks.

We start this chapter by comparing the simulator requirements in the con-
text of our research to the capabilities of existing simulation tools (Sec. 3.1).
We explain the need for a new software tool, and the choice of programming
language in Sec. 3.2. In Sec. 3.3, we discuss the signal representation in our
framework: we work with travelling-waves, using a slowly-varying envelope ap-
proximation. After that, in Sec. 3.4, we summarize the theory on scatter-matrix
representation, before we propose the definition of a node, i.e., an extension
of the scatter-matrix model, in Sec. 3.5. Based on this node definition, we de-
velop the framework in Sec. 3.6-3.8. Subsequently, as the simulations in the
following chapters are based on Coupled Mode Theory (CMT) models of com-
ponents, we introduce this in Sec. 3.9, and make our framework in Sec. 3.10
compatible to this type of models. Next, we apply our framework to an example
frequency-domain simulation in Sec. 3.11 (examples of time-domain simu-
lations are ubiquitous in subsequent chapters). Finally, challenges for future
work are discussed in Sec. 3.12.

The work discussed in this chapter has been carried out in close collabora-
tion with dr. ir. M. Fiers, who applied the framework to perform large nonlinear
circuit simulations [2, 3]. We have published the main results in [4]. Addition-
ally, Chapter 4 from his PhD-dissertation [5] has served as an important source
of inspiration during the writing of the current chapter.

3.1 Towards phenomenological models

When designing a photonic integrated circuit, it is important to validate whether
the circuit processes the input signals as it should. The behaviour of optical sig-
nals is described by Maxwell’s laws, and ideally, one would like to have simple
analytic solutions to these equations to model the circuit behaviour. How-
ever, while such analytic solutions can be derived for some simple systems, in
general such a solution is not available. When modeling large and complex
circuits, even approximate analytic solutions are not sufficient, as some under-
lying assumptions might be violated in experimental conditions. One then has
to resort to simulation algorithms. These algorithms can be classified by the
level of spatial detail they include during the simulation. As a rule of thumb
one can assume that an increase in spatial accuracy implies an increase in com-
putation time and memory requirement of the simulation. Therefore, a full
three-dimensional field profile as a function of time can only be calculated for
relatively small circuits of a limited set of components. Due to this trade-off,
when investigating circuits of increasing size and complexity, the dimension-
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Figure 3.1: A microring can be investigated using different simulation algo-

rithms. A full vectorial FDTD, by discretizing the Maxwell’s equations

both in space and time will return a detailed distribution of the elec-

tromagnetic fields. However, to reduce simulation time, one can also

use an eigenmode solver to calculate the mode profile of the wave-

guides. One can then calculate effective refractive indices based on

this mode profile, and use this information in black box models that

do not incorporate any spatial information of the field distribution.

For instance, the ring can be considered to be a combination of a di-

rectional coupler and a waveguide, which can be modelled using a

scatter-matrix.

ality of the simulation needs to be reduced. In practical design situations, one
will use a bottom-up approach: individual components will be simulated using
algorithms with a high level of spatial details, and this information will be used
in higher-level simulation tools that incorporate less spatial details in the mod-
els.

In this section we illustrate the relevance of different levels of spatial ac-
curacy using the example of a microring (Fig. 3.1). The microring in this figure
consists of a waveguide loop, close to a straight waveguide. Light can couple
from the access waveguide into the ring and can subsequently make roundtrips
in this loop. For some wavelengths, light in the loop will interfere construc-
tively, resulting in resonance behaviour. We will reuse this example later on in
this chapter, and study its nonlinear dynamic behaviour in detail in chapter 4.

For such a microring it is still feasible to calculate the full vectorial field
profile of the whole structure as a function of time, by discretizing Maxwell’s
equations on a discrete grid both in space and time, using, e.g., Finite Element
Methods (FEM) or Finite Difference Time Domain (FDTD). The dimensionality
of this type of simulation can be 3D , 2D (e.g., one simulates in the plane of the
ring) or 1D (e.g., using cilinder symmetry in the plane of the ring). Possible
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outcomes of this type of simulation can be the resonance wavelengths of the
ring and the quality factors of this device. As there are almost no restrictions on
the material properties and geometry, the method is very generally applicable.
However, due to its spatial accuracy it is computationally very demanding. By
decreasing the discretization step size, not only the accuracy increases, but also
the simulation time. Unfortunately, when performing a 3D simulation of a reso-
nant structure such as the ring, in which light can make many roundtrips, a sin-
gle simulation can take hours, consuming a large amount of computer memory.
Hence, this technique is not appropriate to do simulations of very large circuits,
containing > 100 components. The open-source software package MEEP offers
an implementation example of an FDTD simulation method [6, 7].

Another way to analyse this circuit, is by interpreting it as a collection of
waveguides. Indeed, the mode profile and the corresponding effective index
of the guided modes in the waveguide cross-section (Fig. 3.1, bottom left)
incorporates crucial information about the circuit performance. This numer-
ical method analyses the field in the frequency-domain. In this method we
only analyse a cross-section of the waveguide, making the calculation one or
two dimensional. Consequently, a calculation over a reasonable frequency
range only takes a few minutes. Two eigenmode solvers are CAMFR [8, 9] and
FimmWave [10].

When we consider the optical component as a black box, we are not inter-
ested in the spatial field distribution of the component. A passive and linear
element, such as the directional coupler of Fig. 3.1, is then described by a
single scatter-matrix S. Later in this chapter, we will see how we can link the
scatter-matrix of the directional coupler with the scatter-matrix of the ring
waveguide to build the scatter-matrix of the whole microring circuit. Addi-
tionally, using, e.g., dynamic component models based on temporal CMT, the
description of this building block can be further extended with nonlinear or
non-passive behaviour. These extensions pave the way for simulations of non-
linear circuits, such as a nanophotonic reservoir (see the Semiconductor Optical
Amplifier (SOA) and Photonic Crystal (PhC) networks in [2, 5] and [11–13], re-
spectively) or an optical spiking neural network (this work). The scatter-matrix
description and CMT are approximative in nature, but extremely fast, as they
enormously reduce the dimensionality of the system by eliminating all spatial
dependencies in the physical problem. In fact, considering the optical com-
ponent as a black box by ignoring the spatial details of the field profiles can be
seen as the core of the methodology we present in this chapter.

Other techniques, such as the Time-Domain Travelling Wave (TDTW) [14]
or the Split-Step Method (SSM) [14], can be situated on the scale of spatial detail
and computational effort in between the previous black box approaches and
FDTD.
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In the current software landscape, tools are available that use the afore-
mentioned numeric algorithms to design complex optical circuits consisting
of many components. For instance, ASPIC [15] calculates the steady-state re-
sponse of optical circuits, while VPI [16] retrieves the time-domain behaviour.
The TDTW optical model is applied in PicWAVE [17], and RSoft Optsim is
based on SSM [18]. Some tools, e.g., OptiSPICE [19, 20], use Modified Nodal
Analysis (MNA), a technique often used in the simulation of electronic circuits,
therefore allowing for co-simulation of electronical and optical circuits.

In this chapter, we introduce Caphe [21], a framework that simulates net-
works which consist of ’nodes’. Such a node is a very generally-defined property
container that represents an optical circuit or a component. It is important
to note that the concept of node in our framework has nothing to do with the
node definition in MNA. Our node networks can be analysed using both time
or frequency-domain simulations. Each component can be naturally repre-
sented in the node format. For instance, in contrast to the MNA methods used
in SPICE simulators, state variables such as the optical field, the temperature
and the carrier density, do not need to be converted into a voltage and current
representation. By characterizing each component using only a small set of
variables, the simulation speed is considerably faster compared to methods
with a higher spatial accuracy such as FDTD, TDTW and SSM.

In addition, we derive an algorithm to eliminate components with trivial
time-domain behaviour from the network, reducing the number of compo-
nents that need to be explicitly simulated during a time-domain simulation.
The calculations are implemented in a C++ library to improve the speed of the
tool, while users have access to an easy scriptable Python front-end, with allows
for easy interfacing to a large collection of freely-available scientific libraries.

3.2 Implementation details

3.2.1 The need for a new software package

Given the long list of available software packages in the previous section, one
might wonder whether we could not use a commercial solution to perform our
simulations. We found two important limitations when using commercial pack-
ages such as VPI Photonics [16] or OptiSpice [18]. First, we would have been
limited to the available building blocks. However, to investigate the behaviour
of optical spiking neural networks, we regularly needed to use component mod-
els that were not yet available in the libraries of the software package. Second,
the Graphical User Interface (GUI) of those programs makes it difficult to create
large circuits. This is a big limitation to the scalability of the simulations, and
would obstruct the research of the dynamics in large optical SNNs. Therefore,
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we have opted for a scriptable environment for our software package.
During this PhD research, we noticed that commercial software developers

also start to make the jump towards circuit-level simulators combining both
frequency and time-domain, and with scalability due to a scripting interface.
For instance, VPI has also provided an interface to Python, while Lumerical
has launched a new commercial software package for this purpose, called In-
terconnect [22], which is able to interface with Matlab. Lumerical uses a fun-
damentally different approach to our framework, based on digital filters with
multiple timescales, but no satisfying answer is yet given about their possibility
to handle nonlinear components. VPI has independently developed a similar
hybrid frequency-time domain approach as the one presented in this chap-
ter [23–25]. Given the similar rationale of those programs to ours, the need for
this type of software tool is clearly illustrated. Which tool will eventually be used
by the research community within five or ten years will depend largely on the
ease-of-use of the tool and the interfacing possibilities with other simulation
tools. Hence, the amount of manpower to create user-friendly interfaces be-
tween layouting tools, FDTD simulations and phenomenological models, will
be more decisive for the succes of a specific solution than the implementation
and algorithmic details of these high-level simulation tools. Given recent devel-
opments in optical interconnects and the need for proper design tools for this
type of application, the possibility to interface between photonic and electonic
simulation tools is also an important asset.

3.2.2 Choice of programming language

We have chosen to implement the core of our algorithm in C++, while we have
provided a Python scripting interface for the end user. Just like Matlab, Python
is an interpreted language, allowing for a more intuitive, easily-readable style of
programming. Being open source it is heavily used in academic research, and
one can consequently fall back on well-established scientific libraries. Unfor-
tunately, as the language is an interpreted language, each line of code poses an
overhead in calculation time. A good Python programmer will, if possible, try
to combine for-loops into vector or matrix operations as this considerably im-
proves the speed of the program. Unfortunately, when different optical compo-
nents need to be combined, the component-specific computations can not be
combined into one single vector operation without loosing generality. For this
reason, we have implemented the actual calculations in C++, as this tremen-
dously reduces up the computation time. The end-user does not directly have
to interact with this C++ core. He or she can write the ODEs of his component
in a Pythonic format. Behind the scenes these equations are converted on the
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fly to a piece of compiled C++ code in a format usable by the Caphe core.
An additional advantage of the usage of Python is that it paves the way for

the integration of Caphe with IPKISS [26–29], a software package developed in
our group for designing photonic integrated circuits, which can already interact
with other simulation tools such as CAMFR or MEEP.

3.3 Signal representation

In this section we explain why we represent electromagnetic signals using
travelling-waves (Sec. 3.3.1) in the envelope approximation (Sec. 3.3.2).

3.3.1 Travelling waves

The framework we will develop is a high level description of the Maxwell’s equa-
tions for travelling-wave-based systems. In electronics, such a high-level de-
scription is often based on applying Kirchhoff’s current and voltage laws to a
lumped-element representation of the circuit. The underlying assumption of
the voltage law (the sum of voltage differences in a closed loop is zero) is that
the electric field ~E can in this case be considered to be conservative due to
the absence of significant changes in the magnetic field ~H. The underlying
assumption of the current law (the sum of all currents entering a junction is
zero) is that current only flows through conductors, and that it does this with-
out charge accumulation in the lumped element version of conductors. These
laws are implemented very efficiently in the famous electronic circuit simulator
SPICE [30]. Nonlinear electronic circuits can be implemented using the Modi-
fied Nodal Analysis (MNA) [31]. For low-frequency signals in electronic circuits
the representation using currents Ii and voltages Vi does not violate the under-
lying assumptions of Kirchhoff’s law in a significant way. However, for high-
frequency simulations the wave nature of electromagnetic fields appears and,
for instance, due to the large and fast variations in time of ~H, ~E is not conser-
vative anymore. Consequently, given the high-frequency nature of light in our
circuits, the propagation of energy in waveguide modes is better represented
using forward and backward travelling-waves [19]. More specifically, the total
electric field~E(x, y, z, t ) in a lossless waveguide corresponding to a monochro-
matic signal with frequency ω = 2πc

λ (wavelength λ), propagating in an optical
mode i with transversal mode profile~Si ,α is then a sum of a forward ( f ) and a
backward (b) contribution (an analog expression is valid for the magnetic field
~H):

~Ei , f (x, y, z, t ) =ℜ
{

E f ~Si , f (x, y)e j (ωt−βi z)
}

, (3.1)

~Ei ,b(x, y, z, t ) =ℜ
{

Eb ~Si ,b(x, y)e j (ωt+βi z)
}

. (3.2)



60 CHAPTER 3

The propagation constant βi = ne f f ,i
2πc
λ , determining the effective wavelength

λ
ne f f ,i

in the z-direction, depends on the effective refractive index ne f f ,i for the

optical eigenmode. We use a phasor notation for the complex amplitudes Ei ,α =
|Ei ,α|eφi ,α (α ∈ { f ,b}), determining the amplitude and phase of the light, and
normalize Si ,α in such a way that |Ei ,α|2 represents the optical power passing
through the cross-section of the waveguide. Starting from the symmetry prop-
erties of the Maxwell’s equations with respect to the propagation direction, it
can be proven that in the plane of the cross-section~Si , f ;T =~Si ,b;T , while in the
direction of the waveguide Si , f ;z =−Si ,b;z .

Both the transversal mode profile~Si ,α and the propagation constant βi can
be determined using other software tools. In the phenomenological framework
presented in this chapter, we are only interested in the power and phase of light
(represented by Ei ,α) at some well-chosen waveguide cross-sections in the cir-
cuit (see Sec. 3.4).

As explained in [19], in principle, a mathematical mapping of the travelling-
wave representation onto the voltage and current based equations in the MNA
is possible, such that every optical component is represented by an equiva-
lent ’electronic’ circuit. However, this mapping is non-trivial for the end-user.
Hence, in this chapter we propose a framework in which the equations are in-
trinsically consistent with the travelling-wave nature of light, resulting in some
important simplifications of the system description and improvements in sim-
ulation speed. The drawback is that it becomes more difficult to use the opti-
mized algorithms incorporated in SPICE to do efficient and fast opto-electronic
co-simulations. As in future-generation photonic integrated circuits a close in-
teraction between electronic and photonic systems will be required, in future
work this issue will need to be addressed. However, for the tasks in this PhD
research, these opto-electronic simulations are not yet required.

3.3.2 Envelope approximation

From now on, we represent an optical signal at a given waveguide cross-section
travelling in a certain direction as a time-varying complex amplitude s(t ). The
actual real-valued optical field at this cross-section is then the real part of the
product of the very fast carrier (with frequency ω), modulated by a complex-
valued envelope s(t ):

E(t ) =ℜ
{

s(t )e jωt
}

. (3.3)

The representation of the signal by the envelope s(t ) instead of E(t ) is numeri-
cally advantageous. Indeed, s(t ) varies much slower than E(t ), such that a much
larger integration step can be used, while preserving the same accuracy. Of
course, an increase of the bandwidth of the input signal s(t ) still implies that
more samples per time unit are needed for an accurate simulation of the sys-
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tem.
This choice to use the envelope of the signals is based on the slowly-varying

envelope approximation, i.e., the assumption that the envelope of a travelling-
wave pulse with narrow bandwidth varies slowly in both time and space com-
pared to the period and wavelength of the carrier. In high-speed electronics,
this approach is sometimes entitled the circuit envelope simulation [19, 32, 33],
and extensions of it, based on underlying SPICE models, such as the Envelope
Transient Harmonic Balance technique [34] can even model the transfer of en-
ergy to higher order terms in ω due to nonlinearities. However, as such higher
order terms of signals at the telecom wavelength are absorbed in the Silicon-
On-Insulator (SOI) platform, we did not incorporate an equivalent to the latter
technique in our approach.

In principle, if the waveguide transfers multi-wavelength signals in a mode
i , in direction α, on K clearly separated frequency bands, one could define an
envelope E k

i ,α(t ) with carrier frequency ωk for each of these K frequency bands.

Additionally, each carrier frequency has its own transversal mode profile ~Sωk
i ,α

and propagation constant βi ,k , such that the optical field becomes:

~Ei ,α(x, y, z, t ) =ℜ
{

K−1∑
k=0

E k
i ,α(t )~Sωk

i ,α(x, y)e j (ωk t∓βi ,k z)

}
, (3.4)

However, in this dissertation we will only use signals with a single carrier fre-
quency. Although there are no mathematical limitations that inhibit the exten-
sion of our framework to multiple carrier frequencies, the implementation in
software will be rather tedious and is considered to be future work. The im-
plementation of this extension would allow for simulation of (experimentally
often encountered) pump-probe based circuits, needed to perform, e.g., all-
optical wavelength conversion or switching [35–38]. The extension to multi
carrier wavelength simulations would also allow for simulations of four-wave
mixing process [14, 39].

3.4 Scatter matrices

In this section we consider an optical structure to be a black box that exchanges
energy with the outside world through N optical ports (Fig. 3.2). These ports
can correspond to an optical waveguide mode, or even a free space electromag-
netic beam. Each port carries only one mode, but different ports are allowed to
physically coincide to describe waveguides with multiple modes (e.g., in a wave-
guide with both Transverse-electric (TE) and Transverse-magnetic (TM) polar-
ized light two ports might coincide with one waveguide cross-section). Addi-
tionally, we will often choose port positions that simplify the description of the
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x

Figure 3.2: In scatter-matrix theory a linear N-port optical component is

treated as a black box. Its input-output relationship is fully deter-

mined by the scatter-matrix S.

component. For this purpose, if the position of a port corresponding to a cross-
section of a waveguide is moved over a distance ∆L, the scatter-matrix can be
adapted by incorporating a compensating factor e jβ∆L on the appropriate row
and column.

We define ai and bi as the complex amplitude of the ingoing and outgo-
ing normalized electromagnetic mode at port i , respectively. If no sources are
present and if the component only contains materials with a linear and instan-
taneous response to the applied fields, the relationship between the outputs
b = (b0, ...,bN−1) and the inputs a = (a0, ..., aN−1) can be described in a simple
matrix equation:

b = S ·a (3.5)

Here, the N ×N dimensional matrix S is the scatter-matrix of the component,
sometimes also called scattering matrix. By normalization ||a||2 and ||b||2 rep-
resent the input power and output power, respectively. Furthermore, mate-
rial properties of the structure, such as being passive or reciprocal induce con-
straints on this matrix.

3.4.1 Passive component

If a component does not generate energy it is called passive. This implies that
||b||2 ≤ ||a||2, for all possible values of a. Given ||v||2 = vH v (with vH being the
Hermitian transpose of v), this is equivalent to:

∀a : aH (
I−SH S

)
a ≥ 0, (3.6)

Consequently, the matrix
(
I−SH S

)
is semi-positive definite.

In a lossless component, no power is absorbed and the equality holds. In
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this case, this implies that S is an unitary matrix, i.e.,

SH S = 1. (3.7)

However, we derived Eq. (3.5) for a ciruit consisting of instantaneously re-
acting materials. The conditions for being passive are more complicated when
noninstantaneous materials are involved. Apart from the condition that the
component should absorb more energy than it generates, causality should be
respected, such that the release of a certain amount of energy only happens af-
ter a corresponding amount of energy is first absorped by the component [40].

3.4.2 Reciprocal component

A component is reciprocal if only it consists of materials with symmetrical con-
stitutive parameters, i.e., with both permittivity ε=εT and permeability µ=µT , as
Lorenz’ reciprocity theorem will hold. Almost all materials are reciprocal, ex-
cept for magnetic materials in the presence of a magnetic field. Starting from
Maxwell’s equations, it can be proven that for a reciprocal component, S is a
symmetrical matrix,

S = ST . (3.8)

This result has important consequences, as it implies that the transmission
through the component between two different ports does not depend on the
propagation direction. Counterintuitively, no symmetry of the actual geometry
of the component is required to obtain a symmetric S; the fact that a com-
ponent is made out of reciprocal materials is sufficient. As a consequence, a
non-magnetic, linear and time-invariant component can never be used as an
optical isolator [41], i.e., a component that transmits light in one direction but
blocks it in the other direction.

3.4.3 Example scatter matrices

For future reference, we conclude the current section with the inclusion of the
scatter matrices of two components that are very important to the silicon pho-
tonics platform. First, we discuss the scatter-matrix of an optical waveguide.
This device is used to guide light between different places on the chip and can be
considered as the main information carrier in a photonic integrated circuit. Sec-
ond, we discuss a directional coupler, a component that can be used to transfer
light from one waveguide to another. Both components can be used to form a
microring, the component studied in the next chapter.
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3.4.3.1 Scatter matrix of a waveguide

For any geometry, a waveguide without reflection can be represented by the fol-
lowing S-matrix:

Sw g =
[

0 A(λ)exp(− j 2π
λ ne f f (λ)L)

A(λ)exp(− j 2π
λ ne f f (λ)L) 0

]
. (3.9)

In this, λ = 2πc
ω is the wavelength of the light in vacuum. The effective index

ne f f (λ) can be determined using an eigenmode solver. The loss in the wave-
guide is defined by the term A(λ), but in SOI this is usely almost constant around
the telecom wavelengths. The parameters of this scatter-matrix can be obtained
from measurements or from simulation tools such as eigenmode solvers.

3.4.3.2 Scatter matrix of a directional coupler

A directional coupler can be implemented using a 2×2 multimode interferome-
ter, or by bringing two waveguides sufficiently close to each other, such that they
couple through the evanescent fields of the waveguide eigenmodes. Regardless
of the geometrical implementation, the scatter-matrix of an ideal lossless di-
rectional coupler can be described by the following scatter-matrix (if the port
positions are chosen approperiately):

SDC =


0 0 τ jκ

0 0 jκ τ

τ jκ 0 0

jκ τ 0 0

 (3.10)

In this matrix τ andκ are real numbers and, if the device is lossless, |τ|2+|κ|2 = 1.
The phenomenological parameters τ and κ only describe the input-output be-
havior of this component. How these phenomenological parameters are related
to the geometric parameters is determined by the physics of the device. This
can be studied in, e.g., a FDTD simulation or by calculating supermodes using
an eigenmode solver. In principle, this model can be extended to include re-
flections as well [42].

3.5 Beyond the scatter-matrix: the node description

An optical component that is linear, instantaneous and does not generate en-
ergy when there is no incident light, can be perfectly described using only a
scatter-matrix. However, if we want to efficiently describe cavity resonances,
nonlinear optical components, lasers or the delay in long waveguides or fibers,
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this description is not sufficient or optimal. Here we extend the description to
an optical component with different state variables and differential equations
for these states. For instance, the evolution of the optical field in a cavity, or the
temperature and carrier density can be modeled in this way. We will consider
the union of the scatter-matrix and the state variable description to be a ’node’
model of the optical component. Furthermore, each node has access to its in-
put history, which allows us to create delay lines. Additionally, a node can also
be a representation of a circuit as it can contain subnodes, allowing the creation
of hierarchical networks.

States

Buffers

with ODE

Non-linear / non-instantaneous

Linear and instantaneous
Scatter matrix

Output

Memoryless

Memory-containing

(ML)

(MC)

Figure 3.3: Properties of a node with N ports in Caphe. A linear and instanta-

neous node is described by its scatter-matrix S. State variables (e.g.,

temperature and free carriers), accompanied by the corresponding

(nonlinear) ODEs, can be added to this description. This makes the

node non-instantaneous.

Figure 3.3 illustrates the representation of a Node in Caphe. Similarly to the
optical components described in Sec. 3.4, a node can exchange optical energy
with the outside world using N ports. The linear instantaneous transmission
between port i (input si n,i ) and j (output sout , j ) is defined through the scatter-
matrix-element Si j .

As discussed earlier, two optional time-domain related features can be
added to enrich this component (see Fig. 3.3, bottom): a component can have
states and buffers.

First, we can add internal states ak to the node. These are time-dependent
and can be used to describe, e.g., the gain in an SOA or the complex amplitude
of a resonator. A set of ODE equations describes the component as a function of
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its internal variables and input. The equations are not restricted in their format,
allowing for the inclusion of nonlinear terms.

Second, one can add buffers to have access to the values of the inputs si n,i

or states ak at previous timesteps. For instance, this is relevant when mod-
eling a delayed waveguide. To decrease memory use in long simulations, we
implement the buffers using a cyclic buffer approach. Each buffer has a fixed
number of timesteps it can remember, and data will be stored in a cyclic way,
overwriting the oldest inputs.

Because of these two additions, as will be described in Sec. 3.6, the output
sout ,i of a node is a sum of the linear part and a term describing the temporal,
possibly nonlinear behavior of the component.

3.6 Generalized source term

For each component we can add the influence of its (optional) buffers or state
variables to its output signal. The corresponding general input-output relation
has the following format:

sout ,i (t ) =
N−1∑
j=0

Si j si n, j (t )+ sext ,i (a,si n , t ) (3.11)

sout ,i (t ) =sout ,i ,l i n(t ) + sext ,i (a,si n , t ) (3.12)

In this, sext ,i is a ’generalized’ source term. For instance, for a continuous wave
source with complex amplitude A, we get sext = A, while for a two-port wave-
guide with delay τ, we get sout ,i (t ) = sext ,i (t ) = B si n,1−i (t − τ) (with i ∈ [0,1]).
Here, the transmission is complex-valued and combines the loss and phase
change in the waveguide. Importantly, this description does not take waveguide
dispersion into account: both the transmission B and the delay τ are fixed and
calculated for the carrier frequency ω. By approximating the continuous time
impulse response of a waveguide by a digital filter, of which the output is stored
in the generalized source term, it is in principle possible to incorporate disper-
sion effects. Alternatively, we are currently investigating how we could use vec-
tor fitting techniques [43] to transfer the model of a dispersive waveguide in a
state space model, instead of the memory-consuming digital filter approach.

From the moment an external source term appears in (3.11), the component
can show non-instantaneous behaviour. We call this type of nodes the memory-
containing (MC) nodes (Fig. 3.3, bottom), as opposed to the the memoryless
(ML) nodes, which are fully characterized solely by their S-matrix. For instance,
depending on whether the delays in a waveguide are important for a simula-
tion, a waveguide can be modeled with delay (which makes it MC), or without
delay (as a ML component). As will be explained in Sec. 3.7, the latter option



PHENOMENOLOGICAL MODELING OF PHOTONIC INTEGRATED CIRCUITS 67

has the advantage that the waveguide can be eliminated from the total network
representing the circuit.

3.7 Generalized connection matrix of a circuit

In the previous subsection we have made a distinction between ML and MC
nodes. If, apart from sources and detectors, a circuit only contains ML nodes,
the output of the circuit at the detectors is a weighted sum of the input signals
at the sources, with coefficients determined by the scatter matrices of the indi-
vidual components. In this section we will take advantage of the linearity of the
response of the ML nodes for any external input signal, by absorbing their in-
fluence in the system equations of the MC nodes. This corresponds to an elim-
ination of the ML nodes from the list of components that needs to be tracked
during time-domain simulations. This is allowed as long as a ML component
has no significant dispersion effects for the bandwidth of the envelope under
interest. Consequently, for networks that contain both instantaneous and non-
instantaneous components, the dimensionality of the system can be reduced,
resulting in both an effective speed-up and a decrease in the memory use of the
time-domain simulations. This possibility to eliminate components from the
simulation equations is actually the main novelty of our framework (and a simi-
lar framework discussed in [23–25]), compared to other optical simulation tools.
As a side effect, when considering a system containing only ML nodes, sources
and detectors, the same approach can also be applied to do frequency-domain
simulations.

To achieve the elimination of the ML nodes, we start from the representation
of a node shown in Fig. 3.3, and derive in Sec. 3.7.1 a matrix called the general-
ized connection matrix. This describes how all inputs si n of the MC nodes are
related to the generalized source term sext (which is by definition only nonzero
for the MC nodes). This generalized connection matrix is the result of the elimi-
nation of the ML nodes from the circuit. Subsequently, in Sec. 3.7.2, we illustrate
the physical meaning of the generalized connection matrix by calculating it for a
microring, indicating how it can be useful in both time-domain and frequency-
domain simulations. Finally, in Sec. 3.7.3, we describe how we can significantly
improve the scalability of the software by using sparse matrices for the calcula-
tion of the generalized connection matrix, and we perform a test to check the
speed improvements.

3.7.1 Derivation of the generalized connection matrix

To eliminate the ML nodes, we split the input/output vector si n/out (t ) into a part
for the MC nodes (si n/out ,MC (t )) and a part for the ML nodes (si n/out ,ML(t )). For
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notational simplicity, we do not explicitly include the time dependency (t ) in
the following derivation. We can describe the connection of the different com-
ponents in the circuit using a matrix product:(

si n,MC

si n,ML

)
= Ctot

(
sout ,MC

sout ,ML

)
=

(
CMC ,MC CMC ,ML

CML,MC CML,ML

)(
sout ,MC

sout ,ML

)
. (3.13)

In Eq. (3.13), Ctot is a binary connection matrix with Ctot ,i j equal to 1 if port i is
connected to port j and equal to 0 if not. Hence, Ctot is symmetric and contains
at most one element per row and at most one element per column, with zeros
on the diagonal.

Based on the definition of ML and MC nodes, Eq. (3.11) can be reorganized
into the following two equations:

sout ,MC =SMC ,MC si n,MC +sext ,MC , (3.14)

sout ,ML =SML,MLsi n,ML (3.15)

Here, we define the scatter matrices SML,ML and SMC ,MC , as two subparts of the
total scatter-matrix of the circuit Stot , a block diagonal matrix that contains all
the individual scatter matrices of the components. Both are block diagonal ma-
trices, with each block representing the scatter-matrix of a ML and a MC node,
respectively. The second term in Eq. (3.14), sext ,MC , is the generalized source
term described in Eq. (3.11).

Using Eq. (3.13), (3.14) and (3.15) we can derive the input at the MC ports
si n,MC , as a function of sext ,MC . Eliminating sout ,ML in Eq. (3.13) using Eq. (3.15)
and subsequently solving for si n,MC results in

si n,MC =(
CMC ,MC+

CMC ,MLSML,ML
(
I−CML,MLSML,ML

)−1 CML,MC

)
sout ,MC ,

(3.16)

=ĈMC ,MC sout ,MC . (3.17)

While CMC ,MC only considers the direct connections between ports of MC
nodes, ĈMC ,MC extends this matrix with the connections between ports of MC
nodes that are indirectly linked by connections with intermediate ML nodes.
Furthermore, this matrix does not only indicate the presence of such a connec-
tion with a binary 1 or 0 at the appropriate place, but also takes the amplitude
change and phase change into account that is caused by the transmission
through those intermediate ML nodes. As a consequence, we do not need
to track si n,MC during time-domain simulations, resulting both in a reduced
memory use and a reduced number of calculations per simulation time step.

As our final aim is to express si n,MC as a function of sext ,MC , we substitute
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Eq. (3.14) in Eq. (3.16):

si n,MC =(
I− ĈMC ,MC SMC ,MC

)−1
ĈMC ,MC sext ,MC , (3.18)

=Ci n,ext sext ,MC . (3.19)

We end up with a matrix Ci n,ext , the generalized connection matrix of the cir-
cuit. Importantly, this matrix has a smaller size than Ctot or Stot . Addition-
ally, whereas ĈMC ,MC incorporates the influence of the ML nodes in the circuit
equations, Ci n,ext also takes the effect of the instantaneous linear transmission
through the MC nodes, included in SMC ,MC , into account. It transfers the sig-
nals in the generalized source term sext ,MC directly to the input signal vector
si n,MC . As a result, during a time-domain simulation, we do not need to explic-
itly calculate the matrix product SMC ,MC si n,MC in Eq. (3.14) at every time step,
reducing again the number of calculations per time step.

Note that SML,ML is a block diagonal matrix and CML,ML only permutes the
rows of SML,ML . Consequently,

(
I−CML,MLSML,ML

)
is a sparse matrix. However,

depending on the topology of the original circuit and on the individual scatter
matrices of the ML nodes, the inversion of the latter matrix in Eq. (3.16), can
make ĈMC ,MC nonsparse, therefore also affecting the sparseness of Ci n,ext . For-
tunately, in many circuits Ci n,ext is still a rather sparse matrix.

In Sec. 3.7.3, we will show how the sparseness of the circuit matrices, com-
bined with an appropriate choice of scientific libraries, can tremendously in-
crease the speed of the calculations. Before we get to this point, we will first
illustrate the physical meaning of the matrix elements in CML,ML by calculating
them for a microring circuit in the next subsection.

3.7.2 Application of the framework to a microring resonator

To illustrate the process of ML node elimination we will apply it to the micror-
ing resonator circuit of Fig. 3.4. A microring consists of the combination of a
directional coupler and a bent waveguide (the S matrices of these components
were defined in section 3.4). The bent waveguide connects the two top ports of
the directional coupler, making a loop. Additionally, two MC nodes are present
in the circuit, a source (the laser) and a detector (the OSA). Caphe calculates
the transmission through this ring using Eq. (3.16) and (3.18), but we will use
analytic calculations for this purpose, as this is more instructive.

If monochromatic light (having a frequencyω) couples into a microring res-
onator (with coupling coefficient jκ), it starts to circulate inside this ring. At
the end of a roundtrip through the ring waveguide the amplitude of the sig-
nal is multiplied by the complex propagation factor α= A exp(− jβL) (with β=
2π
λ ne f f (λ). We assume that the loss A is independent of the wavelength, which

is a reasonable assumption for SOI around telecom wavelengths. Light then



70 CHAPTER 3

0

1

2

3 45

Laser OSA

ML nodes

Generalized connection matrix = scatter matrix of microring
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Figure 3.4: A microring resonator consists of two parts: a directional coupler

and a bent waveguide. In Caphe, we would probe this component with

two memory-containing components, a source (the laser) and a de-

tector (the OSA) each having only one port. If the memoryless nodes

are eliminated from the circuit, the transmission of the ring is sum-

marized in a small (2×2) generalized connection matrix Ci n,ex , being

equal to the scatter-matrix S of this microring.

again encounters the directional coupler, and, while some part of the light will
couple out of the ring, a fraction τ of this light will start a new roundtrip (we will
assume the directional coupler to be lossless, i.e., |τ|2+|κ|2 = 1). Hence, the field
at port 3 is an infinite sum of all the roundtrip contributions:

sout ,3 = jκsi n,0
(
1+ (τα)+ (τα)2 + ...

)
, (3.20)

This infinite sum only converges if |τα| < 1, and is equal to:

sout ,3 = jκsi n,0
1

1−ατ , (3.21)

which leads us to the the well-known amplitude transmission for a microring
resonator [27]:

si n,MC ,1 = sext ,MC ,0
τ−α

1−ατ . (3.22)

Note that if we would have followed the derivation of Eq. (3.16) and (3.18)
to calculate Ci n,ext ;1,0 we would obtain the same solution. Hence, importantly,
our framework naturally incorporates the influence of closed loops in the ge-
ometrical layout of the circuit on the transmission. Moreover, if one would
combine the directional coupler and ring waveguide into a single component,
representing the microring as a whole, the elements of the scatter-matrix of
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this component would in this case be equal to the corresponding elements of
CML,ML . In general, if the circuit contains only ML nodes, sources and detec-
tors, CML,ML can be interpreted as the scatter-matrix of the circuit formed by
the ML nodes.

The case |τα| > 1 is unphysical, as this would imply A > 1 or τ> 1. If ατ= 1,
the complex roundtrip amplitude in the ring is 1 and as det

(
I−CML,MLSML,ML

)=
0 the inversion of

(
I−CML,MLSML,ML

)
in Eq. (3.16) becomes impossible. This

problem can only occur in the limit case τ = 1, which describes a direc-
tional coupler without coupling, if the ring is at resonance (i.e., βL = 2π, see
Sec. 3.7.2.1). In this rather academic limit situation, the analytic result is
si n,MC ,1 = sext ,MC ,0, while the field in the ring should be zero. As we will discuss
in Sec. 3.7.3, some numeric algorithms will still be able to retrieve part of this
solution (more specifically, si n,MC ,1 = sext ,MC ,0), but if one would monitor not
only the output at the detector, but also the power level in the ring, the results
might be unphysical.

In the next paragraphs, we discuss how the elimination of the ML nodes
in this microring system can be relevant for both frequency-domain and time-
domain simulations.

3.7.2.1 Frequency-domain simulations

As the circuit presented in Fig. 3.4 only contains a source, a detector and ML
nodes, it is suited to do frequency-domain simulations. Indeed, by evaluating
Ci n,ext ;1,0 using Eq. (3.22) at a grid of different wavelengths, the frequency de-
pendency of the (complex-valued) linear steady-state transmission of the mi-
croring at the pass port can be probed. In contrast, if MC nodes would be
present in the circuit, the elements in Ci n,ext could differ from the physical
transmission. For instance, if the instantaneous waveguide model would be
replaced by one that incorporates delay, the delay model would have a zero
scatter-matrix, resulting in Ci n,ext ;1,0 = 0.

Figure 3.5 shows an example transmission spectrum of the ring circuit
from Fig. 3.4, calculated by Caphe. We will now discuss some characteristic
features of a such a ring spectrum and introduce some new definitions as the
corresponding concepts will be useful throughout the remainder of this dis-
sertation. We can calculate the power transmission analytically starting from

TP =
∣∣∣ si n,MC ,1

sext ,MC ,0

∣∣∣2
and Eq. (3.22):

TP (φ) = A2 +τ2 −2Aτcos(φ)

1+ A2τ2 −2Aτcos(φ)
. (3.23)
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Figure 3.5: The power transmission of a critical coupled ring as a function of

wavelength, calculated by Caphe. The ring properties are A = τ= 0.85,

L = 50µm, ne f f (1550nm) = 2.43 and ng = 4.3. We also show the

Lorentzian approximation of the spectrum of one of the resonance

peaks, calculated using Eq. (3.28).

Here, φ = βL = 2πne f f (λ)L
λ is the single pass phase change. It is easy to check

that for a lossless ring (A = 1) the transmission will always be one. In this case
the ring only imposes a wavelength-dependent phase change of the input light.
Equation (3.23) can be rewritten in a more intuitive format:

TP (φ) =
Tmi n +4F 2 sin2

(
φ
2

)
1+4F 2 sin2

(
φ
2

) (3.24)

Tmi n = (τ− A)2

(1−τ2 A2)2 (3.25)

F =
p
τA

(1−τA)
(3.26)

The ring is ’on resonance’ when the phase is an integer multiple of 2π. This hap-
pens when the wavelength of the light fits a whole number of times inside the

optical length of the ring: λr = ne f f (λr )L
m , m ∈ 1,2,3, .... If τ= A, the transmission

at resonance is zero. This condition is called ’critical coupling’ (the ring in Fig.
3.5 is an example of this situation).
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In the remainder of this dissertation, we will often assume linear dispersion,
resulting in a constant group index ng = ne f f (λ)− dn

dλλ. Using this linear ap-
proximation of the dispersion curve of ne f f , the Free Spectral Range (FSR), i.e.,
the distance between subsequent resonance peaks, is in the wavelength domain
given by [27]

∆λF SR = λ2
r

ng L
(3.27)

A similar expression can be defined in frequency-domain using ∆ω
ω = ∆λ

λ . This

spectral distance is related to the roundtrip time Tr = ng L
c of the light in the

ring. In this dissertation, we are mostly interested in the behaviour near one
resonance. In this regime, one often uses a first order approximation in φ of Eq.
(3.24):

TP (φ) =Tmi n +F 2∆φ2

1+F 2∆φ2 . (3.28)

This is called the Lorentzian approximation of the ring resonance [27], and ap-
pears in a rescaled version as a function of wavelength, or as a function of fre-
quency. Starting from this approximation it is easy to characterize the shape
of the resonance more in detail. The 3dB-bandwidth of the resonance is in the
wavelength domain defined as:

∆λ3dB = (1−τA)λ2
r

π
p
τAng L

. (3.29)

This definition of ∆λ3dB corresponds to the wavelength range around reso-
nance for which the optical energy in the cavity is still higher than half of the
optical energy that circulates in the cavity at λr . Only if the ring is critically
coupled, ∆λ3dB can be interpreted as well as the wavelength range around res-
onance for which the transmission is less than 1

2 . The corresponding quality

factor Q = λr
∆λ3dB

of the resonance is:

Q = π
p
τAng L

(1−τA)λr
, (3.30)

while the finesse F= λF SR
λ3dB

is:

F= π
p
τA

(1−τA)
, (3.31)

In Sec. 3.9.1 the physical meaning of both the Q-factor and the finesse will
be discussed.
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3.7.2.2 Time-domain simulations

In a time-domain simulation, if the bandwidth of the input signal is significantly
smaller than the bandwidth of the ring resonator, the ML nodes (i.e., the wave-
guide and the directional coupler) can be eliminated. We then need to evaluate
Eq. (3.22) solely at the wavelength of the input signal, before starting the ac-
tual time-domain simulations. In a ring resonator, the phase change over the
3dB bandwidth is π/2 radians, making the dispersion not negligible. For a ring
with a Q-factor of 62500 (as the one we will model with CMT in chapter 4), if the
ring has a resonance around 1550nm, the photon lifetime is 103ps (in Sec. 3.9.1
we will show how this can be derived from the Q-factor), which corresponds to
an upper limit for the signal bandwidth of ∼ 9.7GHz. If the ML nodes can be
eliminated we would only incorporate 2 ports of the circuit in the simulation,
instead of using 8 ports. If the signal bandwidth is not negligible, one could take
the wavelength dependency in Ci n,ext into account by constructing a digital fil-
ter, or, alternatively, as we will show in Sec. 3.9.1, a CMT model can be used to
convert the combination of the directional coupler and the waveguide to a MC
node with a differential equation. If the input signal bandwidth is negligible,
the elimination of the directional coupler and the waveguide from the circuit
avoids that the signals that travel through the six ports of those two components
(two for the waveguide, four for the directional coupler) need to be calculated
or stored.

3.7.3 Speeding up the matrix calculations

In Sec. 3.7.1 we have derived the matrix product to calculate si n,MC from
si n,ML . In this section we will optimize this calculation with respect to speed. As
CMC ,MC is independent of si n,ML , we can calculate this matrix in advance. For
this purpose, we need to solve two times a linear system that can be rewritten
in the form

AX = B, (3.32)

and needs to be solved for X. Indeed, to calculate
(
I− ĈMC ,MC SMC ,MC

)−1
ĈMC ,MC

in Eq. (3.18) we need to solve(
I− ĈMC ,MC SMC ,MC

)
X = ĈMC ,MC (3.33)

for X and a similar calculation needs te be done in Eq. (3.16). At first sight, one
would be tempted to solve Eq. (3.32) by first calculating A−1 and subsequently
calculating the matrix product A−1B. However, this is not necessary. This sys-
tem can also be solved by first LU factorizing A, followed by the calculation of
X using forward and backward substitution. Using this approach instead of the
matrix inversion results in an improvement of both speed and stability [44].
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Since these matrices are sparse, we can use sparse matrix algorithms to solve
this system. One software package, the Clark Kent sparse LU factorization (KLU)
algorithm, is perfect for our framework, as it is optimized for circuit-like matri-
ces [45–48].

Interestingly, the scientific library that implements KLU in our code returns
the correct output at the detector if we choose τ = 1 in the directional coupler
of the microring circuit discussed in Sec. 3.7.2, in spite of a version of Eq. (3.32)
needs to be solved in which A is not invertable (but subparts of it still are). The
solution of the system using standard Python or Matlab libraries would result
in an error, or NaN. More generally, even if non-invertable matrices appear dur-
ing the calculation, e.g., due to the appearance in the circuit of lossless light-
loops with zero phase change, we see that the current KLU-implementation in
the chosen library still returns correct Cext ,i n-values at the port positions where
signals pass that did not interact with those problematic light loops. In the case
of the aforementioned microring circuit, the user does not even notice the con-
vergence issue in the ring loop, as only the light at the pass port is dedected,
and this signal does not interact with the ring loop. At the other ports, where
Cext ,i n would also theoretically be ill-defined, by convention, a zero is returned.
Of course, the results for these limit cases should always be investigated very
carefully.

+

...

0 1

2 3

0 1
0 1

Figure 3.6: A Coupled Ring Optical Waveguide (CROW) circuit can be subdi-

vided in multiple sections that consist of a directional coupler and two

waveguides. Port numbers in such a section are shown in the left. A N

ring CROW circuit contains N +1 coupling sections.

To benchmark the speed improvement by using KLU compared to other sci-
entific libraries, we simulate the frequency response of an optical filter called
a Coupled Ring Optical Waveguide (CROW) using LAPACK, MKL and KLU. A
CROW is a sequence of optical rings as shown in Fig. 3.6. Each section is made of
a directional coupler (with coupling values κi ) and two waveguides, which then
couples to the next section. Here we will only perform a speed test, whereas in
section 3.11 we consider a real-world use case.

The directional coupler and the waveguide are ML components with four
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Figure 3.7: Calculating the frequency response of a passive circuit. Using

KLU, a sparse matrix solver suited for circuit-like matrices, we can eas-

ily calculate scatter matrices of very large circuits.

and two ports, respectively. This means there are eight ports per CROW sec-
tion. By plotting the simulation time as a function of the number of ports in the
circuit, we observe how scalable our software framework is for the frequency-
domain. This is shown in Fig. 3.7, where we compare the time spent by different
scientific libraries on the matrix calculations as a function of the number of ML
ports. As can be seen in the figure, a large number of CROW sections can easily
be handled with the KLU algorithm in a fast way. This proves the technique is
useful for analyzing very complex systems in steady-state regime.

3.8 Integration of the state variables

A key ingredient of the node model presented in Fig. 3.3 is the vector with the
internal states of the node. Those are stored in the total state variable vector
a(t ). This vector describes some internal variables of components in the circuit,
e.g., the temperature and number of free carriers in a laser, or the complex am-
plitude of light in a cavity. The evolution of this vector as a function of time and
inputs is described by a first-order ODE system:

da

d t
= f(a,si n , t ) (3.34)
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In fact, the ODE system presented here is the core part of the simulator, as it
delivers the basic mechanism to advance time in the simulation. In Sec. 3.8.1
we will discuss an efficient approach to evaluate da

d t for a given input vector si n ,
based on the use of the generalized connection matrix. Next, in Sec. 3.8.2 we
will discuss the numeric integration of Eq. (3.34).

3.8.1 Node elimination during time-domain simulations

Just like in the frequency-domain, if a circuit network contains both ML and
MC nodes, one can eliminate the ML nodes prior to starting the time-domain
simulation, reducing the calculation time needed for the evaluation of da

d t . The
speed of the time-domain simulation depends on the size of the matrix Ci n,ext

after eliminating the ML nodes. We will explain how this matrix is used in the
flow of the calculation in Sec. 3.8.1.1, and demonstrate the speed improvement
due to node elimination for an example in Sec. 3.8.1.2.

3.8.1.1 Efficient evaluation of the time derivative of the system

States

Buffersnodes: output?

Derivative? 

state nodes: input?

}
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Figure 3.8: At every time step Eq. (3.34) needs to be evaluated. For this pur-

pose we first calculate sext ,MC . Next we calculate si n,MC . And finally

si n,MC is used si n,MC in the evaluation of f(a,si n , t ).

By definition, only the MC nodes can have state variables. Consequently,
we only need to know the input of the MC nodes to evaluate Eq. (3.34). Addi-
tionally, in the previous sections we described how the input signals for the MC
nodes si n,MC can be calculated, without explicitly calculating the input signals
si n,ML that correspond to the ML nodes. As argued in Sec. 3.7, elimination of
these variables from the equations can make the algorithm faster.



78 CHAPTER 3

More precisely, in order to perform the integration, we have to be able to
evaluate the function f at every timestep (Fig. 3.8). We do this by looping over
all MC nodes to calculate their contribution to the generalized source term sext ,
based both on the current state or the history of the state variables and external
driving signals. Subsequently, we can calculate the input to each MC node, si n ,
using the matrix product defined in Eq. (3.18). Importantly, Ci n,ext should only
be calculated once at the beginning of the simulation. Finally, based on the
input for each node individually, we can evaluate the ODEs, d ak

d t = fk (a,si n , t ),
and combine them into the derivative of the full system d a

d t .

3.8.1.2 Node elimination in a nanophotonic reservoir

To benchmark the speed improvement by using ML node elimination when in-
tegrating Eq. (3.34), we perform a time-domain simulation of a large network of
photonic components. For this purpose we choose the nanophotonic reservoir
consisting of SOAs studied in [49]. The topology in this simulation is a regular
2D grid of SOAs. Each SOA is connected to its nearest neighbours, in a structure
called a swirl topology [49], see Fig. 3.9(a). To connect the SOAs, we used a com-
bination of splitters and waveguides. The details about the circuit are described
in [49], while additional details on the implementation of such a nanophotonic
reservoir in Caphe are given in [5]. We use Euler integration with timestep 0.1ps,
while the input signal was a 10ns long noise signal, equally distributed over all
the SOAs.

We compare two systems. In the first system the ML nodes behave as MC
nodes (such that their port positions are incorporated in Ci n,ext ), in the second
system we first eliminate all ML nodes. In the first case, we need to calculate
the input at each splitter and waveguide, which means the simulation will take
longer, and consume more memory, compared to the second case, in which
only the input at the SOAs is calculated (Fig. 3.9(b)).

The main contribution to the total simulation time is the evaluation of the
ODEs of the individual SOAs and the matrix multiplication from Eq. (3.18). This
explains why elimination of the ML nodes can approximately double the simu-
lation speed (Fig. 3.9(b), top), even though the calculation time for evaluating
the ODEs is the same for both systems. In the bottom graph of Fig. 3.9(b) we
show the dependency of the total memory usage of the program (i.e., the sum
of the memory allocated in C++ and in Python) on increasing circuit size. Initial-
ization overhead in Python results in a fixed offset. During the simulations, for
each port of a MC containing component a buffer that stores 500 timesteps is
used. Consequently, elimination of the ML nodes drastically reduces the mem-
ory use. The linearity of both the calculation time and memory as a function of
the circuit size is a result of the sparse matrix algorithms used in our framework.
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input output
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(a) (b)

Figure 3.9: (left) Topology of a nanophotonic reservoir, containing both ML

and MC nodes. Each circle represents a SOA (MC), which are con-

nected via waveguides (ML) and splitters (ML, not shown) to other

SOAs, detectors and sources (MC) (right) Due to the nearest neigh-

bour connection topology of the network and sparse implementation

of the matrix products, both the simulation time and memory use in-

crease linearly with the number of SOAs, but this increase is less steep

if the ML nodes are eliminated. The offset in the memory consump-

tion graph is related to initialization overhead in Python.

3.8.2 Choice of integration algorithm

3.8.2.1 Stability, accuracy and speed

For the numeric integration of the system in Eq. (3.34) several types of integra-
tion routines can be used, each with their own advantages and disadvantages.
For instance, forward Euler integration with a fixed timestep∆t allows to calcu-
late the next state based on the current state of the system using:

a(t +∆t ) = a(t )+∆t f(a,si n , t ) (3.35)

This method is based on a first-order Taylor expansion of Eq. (3.34). Hence,
the error per step is on the order of O(∆t 2), while the total error accumulation
is on the order of O(∆t ) (as the total number of steps is ∝ 1

∆t ). This slow con-
vergence of the error as a function of ∆t , combined with stability issues, make
this integration method less suited for some of the more complicated equations
encountered in nonlinear optics.

To improve stability, two advanced integration routines are implemented
in the current framework. The first method is the fourth-order Runge-Kutta
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method, which has an error per step on the order of O(∆t 5), resulting in a total
error accumulation on the order of O(∆t 4). Compared to the first-order Euler
integration it is much more accurate for a given ∆t , but it requires more func-
tion evaluations. The second integration routine is based on Bulirsch-Stoer,
and as it is in most cases a better choice than Runge-Kutta (caveats on this
rule of thumb can be found in [44]), it is this one we will use most throughout
this dissertation. We have implemented this algorithm in combination with an
adaptive stepsize method. In such an adaptive stepsize algorithm, the internal
integration step ∆t is continuously optimized during the integration, trying
to make it as large as possible, while maintaining a given accuracy. As some
photonic components contain very different timescales, their ODEs are some-
times stiff (i.e., some numeric integration algorithms are numerically unstable
or prohibitively slow). Hence, in future work, other integration methods such as
backward Euler and other implicit methods might be implemented to improve
stability of such stiff equations.

In our current implementation of Eq. (3.34), we use complex state variables,
using the default C++ package for complex numbers. This implies that the com-
plex field E = |E |e jφ is represented by its real (Er ) and imaginary (Ei ) part. In
contrast, in [19] one argues that in the case of, e.g., steady-state chirp in a solid
state laser this choice might result in the need to take very small stepsizes. Rep-
resenting the signals by the amplitude |E | and the phase φ might circumvent
this problem, even though it has a larger computational complexity, as for a
constant chirp |E | is fixed, while φ is changing linearly (so a larger stepsize can
be taken to model this). Given the advantages of representing E in the complex
domain, demonstrated in Sec. 3.7.1, we stick to the more natural (Er ,Ei ) signal
representation choice. However, in future implementations of the framework
we will incorporate the option to integrate systems of real variables, such that
users have the possibility to efficiently integrate the ODE equations of a compo-
nent of which the derivatives are expressed in the (|E |,φ)-representation, while
the transfer of signals would still happen in the optimal (Er ,Ei )-representation.

3.8.2.2 Numeric integration of coupled nonlinear cavity dynamics

We will conclude this subsection with a comparison of two integration routines
for an example nonlinear photonic circuit. The first integration scheme is a sim-
ple forward Euler with fixed time step ∆t . The second one is an advanced step-
ping routine based on Bulirsch-Stoer [44], in a version with adaptive stepsize,
to guarantee accuracy and stability. As example circuit, we simulate a system
of two coupled inline photonic crystal cavities. An inline cavity is a two port
component that reflects all the power, if the input wavelength is off resonance.
As proven in [50], this system can be described using CMT. The background on
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(a) Fixed steps (b) Adaptive stepsize

Figure 3.10: (left) When using forward Euler integration, larger timesteps de-

crease the accuracy. (right) An adaptive stepsize integration algo-

rithm automatically uses the optimal dt when targeting a given ac-

curacy level. Indeed, during the sudden jump in the input the inte-

gration step is clearly decreased. Parameters are identical as in [50].

the CMT-equations will be provided in Sec. 3.9, but we include them here to
illustrate the choice to work with complex variables a j ( j = 0,1):

da j

dt
=

[
i
(
ω0 +δω j −ω

)− 1

τ

]
a j +d s j ;0,++d s j ;1,+, (3.36)

s j ;0,− = exp(iφ)s j ;0,++d a j , (3.37)

s j ;1,− = exp(iφ)sl ;1,++d a j , (3.38)

In this, τ is the lifetime of the cavity and φ represents the phase that de-
pends on the waveguide length and the resonator mirror reflection proper-
ties. The coupling between the cavity and its access waveguide is governed
by d = i exp(iφ/2)/

p
τ. The nonlinear frequency shift is δω j = −|a j |2/(P0τ

2),
with P0 the ‘characteristic nonlinear power’ of the cavity [51]. As is common in
CMT, |a j |2 is the energy in the cavity mode, while |s j ;k,+|2 (|s j ;k,−|2) represents
the power flowing in (out) port k (for k = 0,1) of cavity j (for j = 0,1). Port 1
of cavity 1 is connected with port 0 of cavity 2. Consequently, |s0;0,+|2 ≡ Pi n

is the input power, |s1;1,−|2 ≡ Pout is the transmitted power. There is no input
from the right, s1;1,+ = 0. This system exhibits self-pulsation for certain pump
settings [50].

The waveforms obtained by simulating these CMT-equations approximate
very accurately the output of a full-wave FDTD simulation of the same sys-
tem [50] . The difference in simulation time motivates the use of a phenomeno-
logical, high-level simulator as the one presented in this chapter. Indeed, while
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it takes ∼ 10 hours to simulate this system in 2D FDTD, only a few milliseconds
are required when using CMT.

Despite the highly nonlinear equations, the numerics remain very stable
(Fig. 3.10). Furthermore, by using an adaptive stepsize the most important
details of the simulation are taken into account, due to an optimal choice of ∆t
at every time step. Whereas for a fixed stepsize algorithm, like forward Euler,
accuracy over the whole simulation domain can only be obtained by choosing
a very small stepsize (Fig. 3.10(a)), this is not required for the adaptive stepsize
algorithm: during switch-on and switch-off, there are a lot of discretization
steps, while in-between the adaptive stepsize solution can follow the reference
solution with fewer discretization steps (Fig. 3.10(b)).

3.9 Temporal Coupled Mode Theory

As illustrated in Sec. 3.8.2.2, the Coupled Mode Theory (CMT) is often used to
describe the temporal behaviour of a resonator with monochromatic input light
near resonance [50–55]. This theory is developed by Haus and co-workers [56–
58] and describes the coupling of the resonator modes between each other or
between the modes and external excitations (Fig. 3.11 schematically depicts the
information flow in a CMT resonator). It will be heavily used in the subsequent
chapters, therefore we give a brief introduction.

Figure 3.11: Structure of a CMT resonator with p ports and m modes. The

matrix S couples light directly from input to output ports, the matrix

KT couples light from the input to the modes, the matrix M contains

information about the resonance frequencies, losses and intermodal

coupling and the matrix D couples light from the states to the output.

The coupled-mode equations describe the relation between the input sig-
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nal si n and the output signal sout , depending on the temporal evolution of the
modes a. For a lossless and reciprocal linear resonator with m modes and p
ports these equations become [55]:

da

d t
= Ma+KT si n , (3.39)

The mode amplitudes ak are scaled such that |ak |2 represents the optical energy
in mode k. The m×p matrix KT describes the coupling from the p input signals
to the states. The m ×m matrix M consists of two parts:

M = jΩ−Γc , (3.40)

The matrix Ω incorporates the resonance frequencies of the uncoupled modes
on the diagonal, while the off-diagonal elements represent (lossless) optical
coupling between these modes (of which the strenght is determined by the
overlap integrals between the modes). The matrix Γc represents the energy loss
due to coupling to the output ports. Both Ω and Γc are Hermitian, and the real
part of the eigenvalues of the matrix M satisfies ℜ{λM} ≤ 0 (if one of the eigen-
values is equal to zero, this implies that one of the modes does not couple to the
output ports). For instance, for a unimodal PhC cavity (Sec. 3.8.2.2) or, as we
will derive in Sec. 3.9.1, a unidirectional microring model with a single mode,
m = 1 and M is a scalar: M = j (ωr −ω)− 1

τ , hence, Ω= (ωr −ω) (the term −ω is
due the envelope approximation), while Γc = 1

τ .
The output of the resonator is given by:

sout = Ssi n +Da, (3.41)

where the the p ×p symmetric (reciprocity) and unitary (no loss) matrix S is the
scatter-matrix of the resonator, describing the direct optical coupling between
the ports, while the p×m matrix D describes the coupling from the states to the
output.

Since the overall system, including both the resonances and the ports, is en-
ergy conserving, the decay process described by the matrix Γc , can only origi-
nate from the coupling from the resonances to the ports. Consequently, these
matrices are related to each other. Indeed, for a lossless and reciprocal cavity
containing only standing wave modes, using time-reversal symmetry and en-
ergy conservation arguments, the following relationships can be derived [55]:

DH D = 2Γc (3.42)

D = K (3.43)

SD∗ =−D (3.44)
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For cavities containing travelling-wave modes, Eq. (3.42) is also applicable.
Similar equations to Eq. (3.43) and (3.44) can be derived using the same sym-
metry and conservation arguments, provided that for each travelling-wave
mode also its counterpropagating version is included in the system descrip-
tion [59]. Alternatively, one can of course convert the system description to a
standing wave mode eigenbase and directly apply Eq. (3.42)-(3.44).

While the previous formalism is constructed for lossless cavities, intrin-
sic losses can be easily incorporated by adding an extra loss matrix Γl to M,
corresponding to the intrinsic loss of the modes and their coupling:

M = jΩ−Γc −Γl . (3.45)

The latter does not affect the evaluation of Eq. (3.42)-(3.44).
Additionally, by adding nonlinear contributions to the resonance frequen-

cies incorporated in Ω and Γl , also nonlinear effects, such as the Kerr effect or
Two Photon Absorption (TPA) can be incorporated. For instance, the conserva-
tive part of nonlinear effects that changes the resonance frequency can be inter-
preted as a result of a change in refractive index, which is often easy to analyse
using phenomenological reasoning and can be transferred back to the value of
the resonance frequency using δωnl

ωr
=−δnnl

ng
.

In principle, the format of the CMT equations can be justified by deriving
them directly from Maxwell’s equations [53, 56–58], by expanding the fields in
terms of the eigenmodes of the access waveguides and cavity modes. The result-
ing overlap integrals can be used to calculate the coupling between the cavity
modes or between the cavity modes and the access waveguides. Even the non-
linear extensions of the CMT equations can be derived starting from the original
Maxwell equations, resulting in the proper propertionality terms for each type
of nonlinearity [39, 60, 61].

As the previous overlap integrals are rather tedious to calculate, we will use
another approach to clarify the format of the equations. In the next subsection,
we will use the example of a microring to illustrate how the temporal CMT for-
malism can be derived starting from the transmission derived in Sec. 3.7.2.1. In
fact, the derivation in Sec. 3.7.2.1 can be seen as an application of ’spatial’ cou-
pled mode theory. Relationships between the parameters of these two coupled
mode theory versions are presented in [52]. An advantage of deriving the tem-
poral coupled mode theory equations based on the spatial version of coupled
mode theory is that we naturally obtain these intuitive relationships, making it
possible to transfer parameters of one model to the other.

3.9.1 Derivation of CMT equations for a microring resonator

In this subsection we will derive the CMT equations for the microring discussed
in Sec. 3.7.2, illustrating the approximations that are made when modeling an



PHENOMENOLOGICAL MODELING OF PHOTONIC INTEGRATED CIRCUITS 85

optical resonator with a CMT model. These equations will be the basis of the
equations used in chapter 4 to describe a microring. We start from the field
at port 3 as calculated in Eq. (3.21). First, we assume the losses in the ring
waveguide to be low, such that A = e−αL ≈ 1−αL. Second, we assume the cou-
pling between the access waveguide and the ring waveguide to be low, such that
τ=

p
1−κ2 ≈ 1− κ2

2 . Those two conditions result in high-Q rings and are satis-
fied in the ring described in chapter 4.

As the losses are low, the power level in the ring waveguide does not change
much. Hence, we will describe the dynamics of the optical field in the ring,
using a complex amplitude a representing the phase and energy of the light
in the ring. By convention we choose the phase of this variable equal to the
phase of the light at port 3 in Fig. 3.4. Futhermore, during one roundtrip pe-

riod TR = ng L
c , all the energy stored in the ring has to pass through port 3, hence

|sout ,3|2 = |a|2
TR

. Consequently, based on Eq. (3.21), we can derive the depen-
dence of a on sext ,MC ,0:

a =
√

TR ( jκ)si n,0
1

1−aτ
. (3.46)

In CMT one investigates the dynamics of the resonator for frequencies ω
near one of the resonance frequencies. Hence, to begin this derivation, we cal-
culate the output of the ring for a steady-state monochromatic input signal with
frequency ω, near a resonance frequency ωr . Furthermore, we approximate
α= Ae− jφ as A(1− j∆φ), with ∆φ= (ω−ωr )TR . Additionally, it will prove to be
benificial to temporarily work with unmodulated fields â = ae jωt and ŝ = se jωt .
Substituting all aforementioned approximations and conventions in Eq. (3.46),
results in:

â =
p

TR ( jκ)

j (ω−ωr )TR +αL+ κ2

2

ŝi n,0. (3.47)

We now define an intrinsic loss term 1
τl

= αL
TR

, a coupling loss term 1
τc

= κ2

2TR

and a new coupling term κ̃ = j κp
TR

= j
√

2
τc

. We can use these definitions to
reorganize Eq. (3.47) to:

jωâ =
(

jωr − 1

τl
− 1

τc

)
â + κ̃ŝi n,0. (3.48)

This expression is derived for a monochromatic input signal with frequency ω
and can be interpreted as an equation in Fourier space. Hence, we can inverse
Fourier transform this to the time-domain:

d â

d t
=

(
jωr − 1

τl
− 1

τc

)
â + κ̃ŝi n,0. (3.49)
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Using the slowly-varying envelope approximation, the differential equation be-
comes:

d a

d t
=

(
j (ωr −ω)− 1

τl
− 1

τc

)
a + κ̃si n,0. (3.50)

Based on the definition of the directional coupler, and the complex roundtrip
amplitude α of the cavity we can now calculate si n,MC ,1:

si n,MC ,1 =τsext ,MC ,0 + jκα
ap
TR

(3.51)

≈sext ,MC ,0 + j κ̃a (3.52)

In steady-state, d a
d t = 0 and hence:

si n,MC ,1 =
(

j (ωr −ω)−
(

1
τl
− 1

τc

))
(

j (ωr −ω)−
(

1
τl
+ 1

τc

)) sext ,MC ,0 (3.53)

Consequently, the transmission TP (ω) = si n,MC ,1
sext ,MC ,0

at the pass port of the ring is:

TP (ω) =

(
(ω−ωr )2 +

(
1
τl
− 1

τc

)2
)

(
(ω−ωr )2 −

(
1
τl
+ 1

τc

)2
) (3.54)

This is the frequency dependent version of the Lorentzian approximation of a
resonance given in Eq. (3.28), implying that the CMT-model of the ring is a
dynamic extension of the Lorentzian approximation of a ring resonance. If we
define the photon lifetime τph of the cavity to be 1

τph
= 1

τl
+ 1

τc
, the Q-factor

can easily be seen to be
ωτph

2 . One would obtain the same expression for the

Q-factor if one would introduce the approximation A = 1−αL and τ = 1− κ2

2
directly into Eq. (3.30). Furthermore, due to Eq. (3.50), the optical energy |a|2
of the cavity decays with 2

τph
. Consequently, the Q-factor is not only a spectral

feature, but also has a physical meaning, as it is equal to 2π times the number
of oscillations made by the light in the ring, before the optical energy decays to
1/e of its initial state. Similarly, the finesse F of a ring is 2π times the number of
roundtrips light in the ring makes, before the optical energy decays to 1/e of its
initial state.

3.10 Extending the framework to CMT-models

Many optical resonators can be described using a CMT-like format for the equa-
tions concerning the optical field. For instance, the models that we will use
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to describe the dynamics of a passive nonlinear microring (chapter 4) or a mi-
crodisk laser (chapter 5), are CMT-based. In this section we will point out how
the framework presented in Sec. 3.5-3.8 can be adapted to CMT-style models,
and how this adaptation can in some cases result in an additional increase in
simulation speed. For instance, the large circuit simulations done in [2] could
take advantage of this speed up. Additionally, it will allow for frequency-domain
simulations in the case of circuits that contain linear CMT components. Indeed,
as a CMT component is a MC component, the optical resonances, being repre-
sented by differential equations, would not appear in the transmission charac-
teristic if one would use the approach described in Sec. 3.7.2 for this purpose.

3.10.1 Reshaping the system equation towards CMT

By calculating the generalized connection matrix Ci n,ex , we model the linear
and instantaneous transmission of the waves that originate from a generalized
’external’ sources vector and travel through the components of the circuit. This
connection matrix speeds up the time-domain simulations when the inputs of
all the MC components need to be calculated for a given sext (t ). This happens
not only because the ML can be eliminated from the circuit, but also because we
can use one single sparse matrix product si n(t ) = Ci n,ex sext (t ) to efficiently ex-
ecute this calculation simultaneously for all the nodes. As this improvement in
speed is clearly due to the linearity of the signal transfer encoded in the scatter-
matrix, we will now investigate how additional linear behaviour in the MC node
can be exploited to make the framework even more efficient.

As we saw in Sec. 3.9, in CMT models, the light coupling between the optical
modes of the cavity and the access waveguides is also linear. Typically, the CMT
equations of a nonlinear resonator i are given by:

dai

d t
= Mi ai +KT

i si ,i n +Ni (a, t , ...) (3.55)

The function Ni describes the nonlinear contribution, e.g., due to changes in
absorption or refractive index by the Kerr nonlinearity. If the cavity model con-
tains additional dynamic variables, such as the number of free carriers, or the
temperature, these extra equations can as well be shoehorned in the previous
matrix format, by extending KT

i in the appropriate places with zeros and Mi with
linear contributions of the corresponding ODE, while the remaining nonlinear
terms can be incorporated in Ni (a, t , ...). More generally, every MC component
can be trivially transferred into this format, by extending the original ODE sys-
tem with additional Mi , KT

i and Di matrices equal to zero. As we will use sparse
matrix representations, these additional zeros will have no significant influence
on the simulation speed.
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Even if the resonator is nonlinear, the coupling of the modes and input sig-
nals to the output stays linear:

si ,out = Si si ,i n +Di a, (3.56)

We now define the linear coupling matrices M, KT and D for the circuit as
a whole. These matrices are block matrices, constructed from the submatrices
Mi , KT

i and Di for all the MC nodes i ∈ {0, ..., N −1}. Using the same syntax as
before, M linearly couples the states to the states, KT couples the input to the
states, while D couples the states to the output. If we suppose the system has s
states, then M is s × s dimensional, while D and K are both p × s dimensional.
Using those matrices, we can rewrite Eq. (3.34) as:

da

d t
= Ma+KT si n,MC +N(a, t , ...) (3.57)

As derived in Sec. 3.7, si n,MC = Ci n,ex sext . However, the generalized source term
can be split into two parts: a linear part, related to the linear coupling by Di of
the resonators in the circuit, and an external source term s′ext (t ) of which the
linear coupling terms are substracted (e.g., containing the input signals of the
sources in the circuit, or the outputs of waveguides with delay or SOAs):

si n,MC = Ci n,ex
(
D·a+s′ext

)
. (3.58)

Interestingly, by doing this we have created a framework that is already a bit
more powerful than before. Indeed, whereas M is originally considered to be a
block-diagonal matrix, coupling only states within a node, we can in principle
also extend it to couple states between different nodes. This was not possi-
ble in the previous formalism, as only optical coupling through the ports was
allowed. However, the current formalism, e.g., allows for a more generic way
of implementing optical coupling between cavity modes, using the theory de-
veloped in [52]. Also the implementation of thermal coupling between nearby
resonators is conceptually simplified by this extension.

3.10.2 Calculation of the linear transmission

Suppose our circuit contains only ML nodes, CMT-modeled resonators, sources
and detectors. To gain a first insight into the potential dynamics in such a circuit
it is often valuable to look at the linear transmission of the system. Using the
equations defined in the previous subsection it becomes possible to calculate
this. Combining the equations from the previous subsection into one master
equation for the ODE system yields:

da

d t
= (

M+KTCi n,ex D
)

a+KTCi n,ex s′ext +N(a, t , ...) (3.59)
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As N(a, t , ...) is the nonlinear part, we will ignore this in the remainder of the
derivation in this subsection. Starting from da

d t = 0, we can calculate ass :

ass =−(
M+KT Ci n,ex D

)−1
KT Ci n,ex s′ext . (3.60)

Using Eq. (3.56) the inputs to all components can be calculated:

si n = Ci n,ex

[
I− (

M+KT Ci n,ex D
)−1

KT Ci n,ex

]
s′ext . (3.61)

Given the similarity in physical meaning between the previous equation and Eq.
(3.18), we can define a new version of the generalized connection matrix CC MT

i n,ex :

CC MT
i n,ex = Ci n,ex

[
I− (

M+KT Ci n,ex D
)−1

KT Ci n,ex

]
. (3.62)

This new matrix models the linear steady-state transmission through the cir-
cuit, taking the resonances due to the ODEs of the optical modes into account.

As the circuit only consists out of sources and detectors, s′ext will only be dif-
ferent from zero at the port positions corresponding to the sources, while si n ,
only needs to be known at the port positions of the detectors. Consequently,
often only a subset of this matrix needs to be calculated. This might seem a
trivial remark, but in Sec. 3.10.3 we will see how a similar reasoning about the
equations governing the time-domain simulations in some cases can result in a
speed up in simulation time.

In principle, we could try to solve da
d t = 0, even if N(a, t , ...) is included. In-

deed, one could iteratively solve this system until it reaches steady-state, e.g.,
using Newton Rhapson techniques to solve the nonlinear equation (as done
in SPICE-simulators) combined with continuation techniques to follow both
stable and unstable steady-state solutions (as applied in [62]). However, pre-
liminary simulations show that it is difficult to scale these techniques to larger
circuits.

3.10.3 Increasing sparseness

In this subsection, we will use the knowledge of the positions of resonators, de-
tectors and sources in a circuit to make the matrices in the system equations
sparser, resulting in a speed improvement of the calculation time.

If a circuit contains cavities with a CMT model (in the remainder of this sec-
tion we will always consider a cavity to be modeled by a CMT model), then we
know that s′ext will be equal to zero at those port positions. Similarly, port posi-
tions of detectors in the circuit will also correspond to additional zeros in s′ext .
We will now introduce a diagonal p ×p matrix IM

ex , that contains a zero on the
diagonal for each port that corresponds to a resonator or a detector. Using this
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matrix and Eq. (3.58), assuming that the rows of D are only nonzero at the port
positions of resonators we can rewrite Eq. (3.16) to:

si n,MC = Ci n,ex
[(

I− IM
ex

)
Da+ IM

ex s′ext

]
. (3.63)

The presence of IM
ex in the previous equation generates additional zeros in the

matrix products, making them sparser and hence potentially speeding up the
calculations. Hence, IM

ex can be considered to be some kind of ’mask’ matrix.
Additionally, when doing a time-domain simulation, it is not necessary to

calculate si n,MC at the port positions that contain sources (assuming that these
sources are not influenced by reflected signals from the circuit, as is the case in
most simulations). We will now introduce a second diagonal p ×p mask matrix
IM

i n , that contains a zero on the diagonal for each port that corresponds to a
resonator or a source. By defining s′i n,MC = IM

i n si n,MC as the vector that monitors
the inputs of all the ML nodes, except for the sources and the resonators, we can
rewrite si n,MC to:

si n,MC = s′i n,MC + (
I− IM

i n

)
si n,MC . (3.64)

Assuming that only the columns of KT corresponding to the resonators are dif-
ferent from zero, KTs′i n,MC = 0 and introduction of Eq. (3.64) in Eq. (3.57) results
in:

da

d t
= Ma+KT (

I− IM
i n

)
si n,MC +N(a, t , ...). (3.65)

Substitution of Eq. (3.63) gives:

da

d t
= [

M+KT (
I− IM

i n

)
Ci n,ex

(
I− IM

ex

)
D

]
a

+ [
KT (

I− IM
i n

)
Ci n,ex IM

ex

]
s′ext +N(a, t , ...), (3.66)

while s′i n,MC can be calculated to be:

s′i n,MC = [
IM

i n Ci n,ex
(
I− IM

ex

)
D

]
a+ [

IM
i n Ci n,ex IM

ex

]
s′ext . (3.67)

In the previous two equations, we encounter four new matrices:[
M+KT (

I− IM
i n

)
Ci n,ex

(
I− IM

ex

)
D

]
, (3.68)[

KT (
I− IM

i n

)
Ci n,ex IM

ex

]
, (3.69)[

IM
i n Ci n,ex

(
I− IM

ex

)
D

]
, (3.70)[

IM
i n Ci n,ex IM

ex

]
. (3.71)

Dependent on the connection topology of the circuit, the first matrix can be
dense, but the last three will generally be rather sparse. These matrices can
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be calculated in advance. Hence, in a time-domain simulation, integration of
Eq. (3.66) can be done by updating only s′ext instead of sext . Advantageously,
s′ext will be sparser, and additionally, the output signals at the resonators do
not need to be tracked anymore, as their influence on the inputs of other non-
resonator MC components is incorporated by the matrix product with a in Eq.
(3.67). Similarly, in circuits with a lot of resonators and sources, s′i n,MC is a lot
sparser than si n,MC .

3.10.4 Applicability of the extended framework

It is important to note that the previous derivation considers general circuits,
that can contain other components than sources, detectors and resonators.
Hence, components such as waveguides with delay or SOAs can still be part of
the circuit, making this extended framework very flexible.

Interestingly, the replacement of Ci n,ex in Eq. (3.18) with its equivalent in
Eq. (3.71) already offers a speed improvement in circuits without resonators,
but with a significant number of detectors and sources. In this case, the ma-
trices in Eq. (3.68)-(3.70) are dimensionless (i.e., the number of rows and/or
columns is equal to zero), so their appearance in the equations does not slow
down the calculation.

(a) (b)

Figure 3.12: (left) In a long chain of inline PhC cavities, incorporation of the

CMT formalism improves the simulation speed. In this simulation

we used an equally long input signal as in Fig. 3.10(a). (right) A

similar improvement can be seen in a simulation of a nanophotonic

reservoir of inline PhC cavities in the topology of Fig. 3.9(a). In the

latter simulation we used the same input signals as in Fig. 3.9(b), and

this time the signals travel in two directions through the connections.
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However, if we now consider circuits with a significant number of res-
onators, it depends on the circuit details how much the extended framework
improves the simulation speed. In Fig. 3.12 we illustrate this using two exam-
ples. In Fig. 3.12(a) we simulate a chain of the inline PhC cavities discussed
in Sec. 3.8.2.2. For large chains, using the extended framework results in a
25%-reduction in the number of non-zero elements in the matrix products. As
a large part of the simulation time is spent in the calculation of these matrix
products, this results in an almost equally large decrease of the total simulation
time. In Fig. 3.12(b) we repeat the simulation of Fig. 3.9(b) for a nanophotonic
reservoir of PhC cavities instead of SOAs. In this case, the relative reduction in
calculation time is even stronger than for the cavity chain simulation. This is
mainly due to the large number of sources and detectors in the nanophotonic
reservoir, which brings along a lot of unnecessary calculations per time step
in the original framework (e.g., propagating nonexistent output signals of the
detectors to the sources).

3.11 Example: frequency simulation of a Coupled

Resonator Optical Waveguide circuit

In the previous sections we have developed a framework that is suitable to do
both time and frequency-domain simulations. In the subsequent chapters we
will use this framework to do time-domain simulations and study the dynamics
of nonlinear coupled systems. In this section we illustrate the other use-case
of the framework with an example of a frequency-domain simulation. We will
elucidate an approach to design a CROW (Fig. 3.7) with a flat pass-band filter
of about 1nm wide at 1.545µm. Although we have shown in Fig. 3.7 that large
circuits can be simulated, we will restrict the demonstration of the tool to only
four rings. Standard optimization algorithms implemented in the scientific li-
braries in Python can be applied to optimize this circuit.

The transmission characteristic of a CROW is heavily dependent on the cou-
pling strengths κi , i ∈ [1,5], of the different coupling sections. Hence, these pa-
rameters can be adapted to retrieve the desired filter shape. Our filter should
be centered around 1.545µm. The resonance wavelength of the rings is de-
termined by their roundtrip length, which we will keep fixed for all the rings.
To optimize the κi -values we use the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), a powerful evolutionary algorithm [63]. Due to the Python
front-end of Caphe, we have easy access to a Python optimization library that
implements this algorithm. During the optimization, we keep κ1 = κ5 and κ2 =
κ4. The cost function that we feed to the algorithm is the integrated mean
square error between the version of the filter for the current set of κi and the
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target filter. We applied CMA-ES with 33 generations and a population size of
14. As each simulation takes about 200ms, this whole procedure takes a few
minutes on a desktop computer. Figure 3.13 shows that the algorithm returns a
solution that closely mimics the desired function. The optimized coupling val-
ues are κ = [0.285, 0.017, 0.009, 0.017, 0.285].

Additional optimization generations would only result in small improve-
ments, that will in practice not result in better performance. Indeed, during
fabrication statistical variations in the device geometry appear, changing the κ
values and effective indices of the waveguides. Hence, the fabricated and the
designed filter will differ. Unfortunately, these variations have an important
influence on the performance of the filter. In the simulation in Fig. 3.13(b),
a random variation on the resonance wavelength of 0.5nm of the original de-
signed circuit on the simulated filter output decreases the filter performance
enormously .

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
0

0.2

0.4
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Target
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10 iterations

20 iterations

(a) Optimizing the filter

Target

variation 1

variation 2

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
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0.6

0.8

1.0

(b) Process variations

Figure 3.13: (left) The the κi of a Coupled Ring Optical Waveguide (CROW)

can be optimized to match a desired filter characteristic. (right) If

realistic process variations are added to the original design specifi-

cations, performance deteriorates.

The process variations can be compensated by using heaters on top of the
rings. Indeed, these heaters change the refractive index locally. In SOI the reso-
nance wavelength of rings due to process variations varies over ∼ 1nm [64]. The
refractive index change required to compensate this is approximately 0.0022.
As dne f f /dT ' 1.86 ·10−4 [65], the heater needs to change the temperature by
12◦C. Well designed heaters can achieve this using less than 1mW [66, 67]. As-
suming a uniform distribution of the resonance variations, approximately 6◦C
thermal tuning per ring is needed. Consequently, each heater will consume on
average ∼ 0.5mW.
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3.12 Future work

As discussed in Sec. 3.2.1, the future use of Caphe will not only depend on its
intrinsic capabilities (i.e., speed, user-friendliness, general applicability, ...), but
also on its integration with other simulation and design tools. Nonetheless,
some improvements of the proposed framework still need to be made, to make
the software package even more attractive to the end-user. The most important
challenges are discussed briefly in the following subsections.

3.12.1 Multiwavelength simulations

We have developed the whole framework using an envelope approximation with
one common carrier for the whole circuit. Nonetheless, as discussed in Sec.
3.3.2, the choice of multiple carrier frequencies is compatible to our frame-
work. Indeed, in principle, one could extend the S-matrix of a component to
a larger multiwavelength scatter-matrix. This matrix would be a block diagonal
matrix, in which each block would correspond to the different carrier frequen-
cies. The derivation of the generalized connection matrix could then be done,
starting from this extended scatter-matrix. The CMT-based matrices defined in
Sec. 3.10.3, can be extended in a similar way, assuming that the optical modes
in the resonators are also subdivided in frequency bands that correspond to the
envelope frequencies.

3.12.2 Time-domain model of dispersion

In time-domain simulations, if the bandwidth of an input signal becomes very
large, dispersion effects might appear for some components. Indeed, if the
phase change over this bandwidth becomes significant, different frequency
bands of the signal will have different delays. We have discussed this maximal
bandwidth issue in Sec. 3.7.2.2 for a microring, and in Sec. 3.9.1 we have shown
how a CMT model of a ring can take such effects into account near a given
resonance frequency.

When simulating long waveguides, used as, e.g., delay lines, we can model
such a waveguide using the cyclic buffers incorporated in our framework (they
can be accessed in the calculation of the general source term in Sec. 3.6). As
long as the dispersion is linear, it is sufficient to take the group index of the
material into account when calculating the delay of such a waveguide given its
length. However, in the SOI-platform, higher-order dispersive terms need to
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be taken into account. The implementation using a digital filter approach is a
memory-consuming one, and will slow down simulations of large circuits. That
is why we believe other techniques, such as vector fitting can form a valuable
alternative (see Sec 3.6 and [43]).

3.12.3 Co-simulation of electronic and photonic circuits

In Sec. 3.3.1 we have discussed how a travelling-wave representation of the sig-
nals in the equations is an optimal choice from the physics point-of-view, re-
sulting in simplifications of the calculations. Another choice is the one chosen
in [19], where the variables are still expressed as travelling-waves, but the equa-
tions are mapped onto SPICE-circuits. When simulating circuits with both pho-
tonic and electronic components, the latter approach has the advantage that
the simulations of the electronic components can be done using the default
SPICE libraries for electronic circuits.

In the previous sections we did not yet mention that electronic circuits can
also be represented in our framework. Using the link between the scatter-matrix
formalism and bond-graph theory, as presented in [68], we can model electronic
circuits in a bond-graph formalism, and map this into our scatter-matrix for-
malism, with the potential to reuse all the optimizations for the electronic cir-
cuit simulations. Currently, we did not yet benchmark this approach with native
electronic circuit solvers. However, if speed limitations due to this mapping ap-
proach would appear, we could still opt for a simulation in which our framework
interfaces with a default SPICE simulator.

3.12.4 Noise modeling

Thus far, we did not discuss how noise can be included in the simulations. In
this dissertation we will not include noise terms, but literature shows that there
are many reasons to investigate its implementation in future work. Noise can
have many different origins. It occurs both in experimental electronic and pho-
tonic systems. Hence, in some cases it is a significant term in the rate equations
of an optical component as it can severely influence the dynamics. For instance,
when modeling lasers or optical amplifiers, often a noise term, the Langevin
force, related to amplified spontaneous emission, is necessary to model the dy-
namics accurately [69–71]. Furthermore, in excitable optical components, re-
lated to the ones we will study in the subsequent chapters, noise induces many
interesting effects such as coherence or stochastic resonance [72–74]. In sum-
mary, including noise in the framework will make the gap between simulations
and experiments even smaller.

In principle, white noise can be simulated with the current framework, when
using a fixed stepsize. One could consider the noise term to be an external
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source and fill one of the cyclic buffers at every timestep with a data point sam-
pled from, e.g., a Gaussian distribution. However, in future work, it might be
better to include a native random number generation in the core of the frame-
work, to allow for an implementation that is compatible with the faster adaptive
stepsize integration algorithms, using the algorithms used in, e.g., [75, 76].

3.12.5 Variability and yield analysis

Deviations due to process variations between experimental integrated compo-
nents and the corresponding design target, influence the performance of larger
circuits. Hence, it is important to analyse the robustness of circuit dynamics to
such variations of component parameters in order to optimize the fabrication
yield of the circuits [29]. Similar to Sec. 3.11, one can use Monte Carlo sweeps,
in which the parameters of the components are varied within a realistic range
by sampling a probablistic distribution. This implies that one has to resimulate
the circuit many times, for all the different parameter values. At the end of
such a Monte Carlo sweep, statistics are done on the performance of the circuit.
More advanced techniques have been proposed for variability analysis of on-
chip (electronic) interconnects [77]. As these techniques are computationally
more efficient and given the similarity between electronic interconnects and
photonic integrated systems it is worthwhile to study the applicability of these
techniques to photonic circuit simulations. Preliminary algebraic calculations
show that these technique seem indeed compatible to our framework.

3.13 Conclusion

The framework proposed in this chapter allows for the modeling of optical cir-
cuits both in the time-domain and in the frequency-domain. In the frequency-
domain, it can be used to calculate the (linear) steady-state characteristics of
very large circuits. In the time-domain it enables the efficient simulation of
highly nonlinear systems by eliminating those components that can be fully de-
scribed using only a scatter-matrix. The elimination of this type of components
reduces the effective size of the circuit, and consequently speeds up the time-
domain simulations. Due to a very flexible definition of the properties of the
basic building block of the framework, we believe it can be used for other dy-
namical systems such as electrical systems and neural networks.

As the optical components in the subsequent chapters are modeled using
CMT, we have introduced the concepts of this formalism, and have shown how
our framework can be extended with a CMT-compatible matrix formalism.

While the software framework was originally developed for time-domain
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simulations of nonlinear dynamics in nanophotonic integrated circuits, it is al-
ready frequently being used for other applications in photonics, such as in op-
tical filter design. The software framework Caphe is therefore a very promising
tool, as it is very fast, flexible, and can be combined with other scientific libraries
which are readily available in Python.
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4
Cascadable excitability in microrings

To emulate a spiking neuron, a photonic component needs to be excitable.
In this chapter, we theoretically simulate and experimentally demonstrate
cascadable excitability near a self-pulsation regime in high-Q-factor silicon-
on-insulator microrings. For the theoretical study we use Coupled Mode
Theory (CMT). We show that if we neglect the fast energy and phase dynamics
of the cavity light, we can still preserve the most important microring dynam-
ics by only keeping the temperature difference with the surroundings and the
concentration of free carriers as dynamical variables of the system. As a result
we can analyse the microring dynamics in a 2D phase portrait. For some wave-
lengths, when changing the input power, the microring undergoes a subcritical
Andronov-Hopf (AH) bifurcation at the self-pulsation onset. As a consequence
the system shows Class 2 excitability. Experimental single-ring excitability and
self-pulsation behaviour follows the theoretic predictions. Moreover, simula-
tions and experiments show that this excitation mechanism is cascadable.

The rest of this chapter is structured as follows. We first give some addi-
tonal background on the link between slow-fast dynamics in optical systems
with thermo-electrical nonlinearities and excitability in Sec. 4.1. In Sec. 4.2, we
write down the CMT-equations for a microring, as this formalism allows to in-
corporate the contributions of all the relevant physical effects in a very intuitive
way. In Sec. 4.3 we use standard nonlinear dynamical phase-planes and bifur-
cation diagrams to analyse those rate equations. In this section, we not only
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demonstrate how we can simplify the CMT-equations while still preserving the
relevant physics of the problem, but also identify the exact bifurcation type at
the oscillation onset. Subsequently, in Sec. 4.4, we analyse some time-traces
to illustrate how the microring can be excited. In addition, we demonstrate
that this excitability is cascadable. In Sec. 4.5, we confirm with some experi-
mental results the predictions from the simulations. All the time-traces in this
chapter are simulated with Caphe, the nonlinear component circuit simulator
introduced in chapter 3, while PyDSTool [1] is used to continue the limit cycles
during the bifurcation analysis.

The results have been published in two articles in peer-reviewed journals
[2, 3].

4.1 Excitability in thermo-electrical nonlinear pho-

tonic components

A high Q/V -ratio enhances light-matter interaction in a microcavity and ac-
cordingly reduces the required input power for nonlinear behaviour. Con-
sequently, in a passive microcavity with a high Q/V -ratio, if the resonance
wavelength of light with sufficiently high input power is detuned close to the
resonance wavelength of the cavity, both self-pulsation and excitability can be
observed [4–8].

In Silicon-On-Insulator (SOI) cavities, Two Photon Absorption (TPA) gener-
ates both free carriers and heat. Other heating mechanisms are Surface State
Absorption (SSA) and Free Carrier Absorption (FCA). The presence of the free
carriers induces a blueshift of the resonance wavelength, known as Free Car-
rier Dispersion (FCD), while the heating of the cavity induces a red-shift due
to the thermo-optic effect. The difference between the timescales of the fast
free carrier dynamics and the slow heating effects results in self-pulsation in
whispering gallery mode cavities such as microdisks and microrings [4–6]. In
Indium Phosphide (InP)-based 2D Photonic Crystal (PhC) resonators or PhC
nanocavities a similar type of self-pulsation is visible [7, 8], even though the
main heating and free carrier generation mechanism in this material system is
Single Photon Absorption (SPA) instead of TPA. Moreover, excitability is per-
ceived in InP PhC cavities, close to the self-pulsation region, mainly at the blue
side of the resonance [7, 8].

In this chapter, we focus on a simple SOI microring. Similar to [7, 8], we will
demonstrate in this chapter how this self-pulsation is linked with excitability.
In literature the mechanism behind this self-pulsation (or excitability) in mi-
crorings, microdisks and similar passive cavities is often explained using CMT.
Time-domain simulations in this formalism show a good correspondence with
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experiments [5, 6, 9]. Moreover, the steady state equations are still analytically
tractable, both for varying power and wavelength of the input light. For SOI
microdisks no hysteresis in the threshold of the input wavelength for the onset
of oscillations is found, which indicates a supercritical AH bifurcation [6]. As we
explained in Sec. 2.3.1.2, in such a supercritical AH, a stable Fixed Point (FP) bi-
furcates to an unstable FP together with a stable Limit Cycle (LC), as opposed to
a subcritical AH, where an unstable FP bifurcates into a stable FP together with
a stable LC (with an unstable LC in-between) [10]. Both subtypes correspond to
Class 2 excitability in which the order of magnitude of the nearby self-pulsation
period will be relatively insensitive to the power or wavelength of the pump
signal.

Additionally, the CMT-equations can be rewritten into the mean-field model
used in [7, 8]. Using the steady state curves and corresponding 2D projections
of nullclines of this model, the Class 2 excitability of a 2D InP PhC can be ex-
plained [8]. There as well, a sweep of the input wavelength indicates an AH
bifurcation, but the exact subtype is not specified. Similar behaviour appears in
PhC nanocavities [7].

Besides the theoretical work that has been done to explain the dynamics
in the aforementioned integrated nonlinear cavities using CMT-like models, it
is worthwhile to mention the research related to excitability and self-pulsation
due to the interaction between free carriers and heating in Semiconductor Op-
tical Amplifiers (SOAs) [11]. The slow-fast dynamics due to thermo-electrical
nonlinearities are equivalent to the dynamics observed in the integrated devices
mentioned above. In contrast to the cavity-based devices, there is no resonance
mechanism in a SOA. However, by changing the input power strength or the
electrical injection, this component can be put in similar dynamic regimes. As
described in Sec. 2.4.2, the excitability mechanism in this component was ex-
plained using the analogy with the well-known forced Van der Pol oscillator [11].
This is a special case of the Fitzhugh-Nagumo equations, a two-dimensional dif-
ferential equation system that is often used to explain the dynamical behaviour
in biological neurons [10]. In this case, excitability is proven to appear by the
presence of a supercritical Hopf-bifurcation, accompagnied by a nearby canard
explosion, just as in the default Van der Pol system [12]. In this canard explo-
sion, the small amplitude oscillations of the stable LC near the AH-bifurcation
are blown up to large amplitude oscillations within a tiny control parameter
range, as a consequence of the slow-fast dynamics of the system. This results in
nice large pulses when the system is excited from an equilibrium position near
the self-pulsation onset.

As the computational properties of the microring used as a spiking neuron
are linked to the relevant bifurcation types [10], we will focus on the bifurca-
tion type at the onset of self-pulsation, for varying input power and fixed input
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wavelength. This takes into account that, on a photonic chip, information is
encoded in the amplitude and phase of the light, while the wavelength rather
corresponds to the choice of channel the information is transferred in. Classi-
fying this bifurcation allows us to predict how the microring can be excited by
input signals [10]. This helps to understand how it could process information
in a (photonic) spiking neural network. Furthermore, we focus on the cascad-
ability of these optical spiking neuron units, as this is a crucial feature when
building networks.

4.2 Silicon-on-insulator microring resonator

Figure 4.1: The transmission of an all-pass ring is minimal at the resonance

wavelength, while the energy in the cavity is maximal. For high input

powers, this implies that nonlinear interactions will be enhanced in

the ring for wavelengths near the resonance wavelength.

To enhance the nonlinear interactions in SOI-waveguides, we use a micro-
ring as resonant structure. Using one or two directional couplers we couple
light in and out of a waveguide loop. For wavelengths that fit exactly an integer
number of times in the optical roundtrip length of the ring, the resonance con-
dition is fullfilled, i.e., after one roundtrip light interferes constructively with
itself [13]. Hence, if the waveguide and coupling losses in the ring are low and
the input wavelength is near this resonance condition, light can make multiple
roundtrips before it couples out of the ring, is absorbed or is scattered away.
This results in an increase of the optical field in the ring waveguide with respect
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to, e.g., the access waveguides, intensifying the nonlinear interactions between
light and the silicon core of the ring waveguide. Figure 4.1 schematically de-
picts the spectral behaviour of an all-pass ring near resonance: the energy in
the cavity is maximal at resonance, while the transmission is minimal. Here, we
have used the linear CMT-model of a microring derived in the previous chapter
in Sec. 3.9.1.

In this section we will introduce the model for this nonlinear SOI microring,
together with the numerical parameters that we use during the simulations.

4.2.1 CMT-equations of a nonlinear microring

In previous research in our group, optical bistability and self-pulsation in a SOI-
microring has experimentally been demonstrated [4]. Hence, we need a model
that is sufficiently rich to explain this behaviour. For this purpose, we use the
CMT-description of a microring, in which we can include several physical ef-
fects in a limited number of rate equations.

A first important effect in bulk silicon is TPA, which generates free carri-
ers. These free carriers are then able to absorb light by FCA. In addition, the
presence of free carriers causes a blueshift in the wavelength by FCD. In SOI
microrings also (linear) SSA at the silicon-silica interface is present, and at the
same time some light is lost due to surface scattering and radiation loss [4].
The absorbed optical energy is mainly lost by thermalization, which generates
heating. Due to the thermo-optic effect this heat results in a redshift in the
resonance wavelength. The free carriers typically relax at least one order of
magnitude faster than the temperature.

When the backscattering in the microring is neglected, the dynamics of the
ring can be described in CMT with one complex variable (the mode ampli-
tude a = |a|e jφ, with |a|2 the energy in the cavity and φ the phase), and two
real variables (the mode-averaged temperature difference with the surround-
ings ∆T and the concentration of free carriers N ). In this chapter, we study
an All-Pass (AP) filter with one input: a single ring coupled with only one bus
waveguide. The CMT-equations are then [5, 6, 9, 14]:

da

dt
=

[
j (ωr +δωnl −ω)− γloss

2

]
a +κsi n , (4.1)

d∆T

dt
=−∆T

τth
+ Γthγabs |a|2
ρSi cp,Si Vth

, (4.2)

dN

dt
=− N

τ f c
+ ΓFC AβSi c2|a|4

2ħωV 2
FC An2

g
, (4.3)
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sout = e jφc si n +κa, (4.4)

with si n the amplitude of the input light (input power Pi n = |si n |2), sout the am-
plitude of the output light (output power Pout = |sout |2), φc the phase propaga-
tion in the bus waveguide, κ the coupling from waveguide to ring, ωr = 2πc

λr
the

resonance frequency of the cavity and ω= 2πc
λ the frequency of the input light.

τth and τ f c are the relaxation times for resp. the temperature and the free carri-
ers. βSi is the constant governing TPA, cp,Si the thermal capacity, ρSi the density
of silicon and ng is the group index. We neglect dispersion and take ng = nSi ,
with nSi the refractive index of bulk silicon. We also use the effective volumes
Vα and confinements Γα corresponding to a physical effect α defined in [6]. In
Eqs. (4.1) and (4.2) γl oss and γabs are resp. the total loss and absorption loss in
the cavity, with:

γl oss = γcoup +γr ad +γabs , (4.5)

where we have introduced the coupling loss into the waveguide γcoup (with κ=
j
√
γcoup e jφc ) and the radiation loss γr ad . In the ring we have absorption by

linear surface absorption, TPA and FCA :

γabs = γabs,l i n +ΓT PA
βSi c2|a|2
n2

g VT PA
+ΓFC A

σSi c

ng
N , (4.6)

σSi is the absorption cross section of FCA andγabs,l i n the linear absorption con-
stant. In SOI ηl i n = γabs,l i n

γabs,l i n+γr ad
≈ 0.4 [4, 14], so we use this value throughout the

chapter. The thermo-optic effect and FCD both cause a relevant shift in the res-
onance frequency ωr , while the shift caused by the Kerr-effect is negligible. In
first order perturbation theory, this gives:

δωnl

ωr
=− 1

ng

(
dnSi

dT
∆T + dnSi

dN
N

)
. (4.7)

4.2.2 Numerical details of the simulations

In high-Q rings (Q > 2− 3× 104) TPA generates enough free carriers to make
FCD prominent for sufficiently high input powers. We will illustrate the con-
cepts of this chapter with simulations for such a high-Q SOI microring with a
geometry that is inspired by the one measured in [4]. Our ring prototype has
a 4µm-radius with 540nm×220nm cross section waveguides. This ring has a
resonance width λ3dB = 25pm at the resonance wavelength λr = 1552.770nm.
We consider a critically coupled ring with γcoup = γabs,l i n +γr ad .

The effective volumes and confinements are calculated using Meep FDTD
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[15], while the other material parameter values are based on [4, 6, 14]. This re-
sults in the parameter values in Table 4.1. In most of the simulations in this
chapter we will assume an AP filter that is critically coupled. If we simulate the
dynamics for an Add-Drop (AD) filter, the two coupling sections both have the
same τcoup as the coupling section in the AP filter.

Parameter Value Magnitude

βSi 8.4×10−12 m ·W −1

dnSi
dT 1.86×10−4 K −1

dnSi
d N −1.73×10−27 m3

σSi 10−21 m2

ρSi 2.33 g · cm−3

cp,Si 0.7 J · g−1 ·K −1

ng = nSi 3.476

ηl i n 0.4

λr 1552.770 nm

AP ring: λ3dB 25 pm

AD ring: λ3dB 37.5 pm

τabs,l i n = 2
γabs,l i n

205
ηl i n

ps

τcoup = 2
γcoup

205 ps

τth 65 ns

τ f c 5.3 ns

Γth 0.9355

ΓT PA 0.9964

ΓFC A 0.9996

Vth 3.19 µm3

VT PA 2.59 µm3

VFC A 2.36 µm3

Table 4.1: Parameter values used in the simulations.

4.3 Nonlinear dynamical analysis of bistability and

self-pulsation

In this section we show how, for sufficiently high input power and an input
wavelength sufficiently close to the resonance wavelength of the ring, the CMT-
model predicts bistability and self-pulsation regions.

Before diving into the mathematical details and simulations, we use the
spectral picture of Fig. 4.1 to explain how bistability (Sec. 4.3.1) and self-
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pulsation (Sec. 4.3.2) originate in a microring. In Sec. 4.3.3, we will identify
hysteresis behaviour of the output power as a function of the input power dur-
ing an input power sweep with fixed input wavelength. Additionally, we show
how unstability of some FPs corresponds to self-pulsation. In Sec. 4.3.4, we
explain how this behaviour can be analysed using an intuitive phase-plane por-
trait. In sec. 4.3.5 we will introduce an adiabatic elimination of the fast light
dynamics (loading and unloading of the ring resonator). This simplifies the
model and will extensively be used at the end of this chapter in Sec. 4.6. We
end this section with a bifurcation analysis of the bistability and self-pulsation
onset in Sec. 4.3.6. The bifurcation classification of the self-pulsation onset will
provide us with a tool to identify the regions where we can expect excitability.
This will be studied more in-depth in the next section.

We include the calculation details that support our findings in appendices
of the previous subsections. As these technicalities are not necessary to under-
stand the general messages in the next subsections, they can be easily omitted
during a first reading.

4.3.1 Physical origin of bistability in a ring

λr

Wavelength

Tr
an

sm
is
si
on

Figure 4.2: The transmission of an all-pass ring with (λr,e f f −λr ) ∝ ∆T ∝
|a|2 gets skewed to the right for higher input powers. This results in

bistability (blue points are stable FPs, while red points are unstable).
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Figure 4.1 showed the linear transmission of an all-pass microring. This
transmission spectrum can be experimentally obtained using a tunable laser,
by doing a wavelength sweep for fixed input power. However, for higher input
powers, the absorption of the light in the ring waveguide will generate heat, and
an increase in temperature will induce a shift in effective resonance wavelength,
proportional to the temperature difference. In Fig. 4.2 we assume ∆T ∝ |a|2,
and hence (λr,e f f −λr ) ∝ |a|2. Importantly, at the dip of the resonance, the
amount of optical energy in the ring cavity is largest, resulting in the largest
∆T increase and thus largest shift in λr,e f f , while the ∆T -induced shift is less
strong for detunings for which less light couples into the cavity. Consequently,
the transmission dip is skewed due to these nonlinearities. For sufficiently high
input powers this can result in bistability. As dn

dT > 0, we see that the linear trans-
mission dip is tilted towards longer wavelengths.

In our actual ring model, we need to include nonlinear absorption terms
such as TPA and FCA, and the free carrier effects also need to be taken into
account. However, the main conclusion that a high input power will result in
bistability at the red side of the resonance will still hold.

4.3.2 Physical origin of self-pulsation in a ring

Free carrier
generation

Ring heats
up

Free carriers
disappear

Ring cools
down
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3

4

1
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Figure 4.3: Changes in temperature or free carrier concentration change the

effective resonance wavelength, resulting in different detuning sce-

narios with respect to an input signal at a fixed wavelength. This can

result in self-pulsation.

By tracking λr,e f f as a function of time, and by incorporating the effect of
changes in the resonance frequency due to changes in the concentration of
free carriers, it can be understood how self-pulsation can arise in a ring (Fig.
4.3). Indeed, suppose we apply an input signal with high input power, with a
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fixed input wavelength close to λr . As the ring is close to resonance, the optical
field in the ring will generate additional free carriers, resulting in a blue shift of
λr,e f f (t ), within a ∼ ns time scale. Due to this blueshift, the detuning of the in-
put wavelength with respect to λr,e f f (t ) is less strong, resulting in heating of the
ring, and consequently, on a slower timescale (∼ 12−20ns) λr,e f f (t ) is pushed
to higher wavelengths. As we will show in Sec. 4.6 the influence of the heat gen-
eration on the resonance wavelength δλr,∆T (t ) is stronger than the influence of
the free carriers δλr,N (t ). Consequently, at a certain point in time, the redshift
δλr,∆T (t ) will become sufficiently large to compensate for the blueshift δλr,N (t ),
and the increase in detuning of the input wavelength with respect to λr,e f f (t )
will decrease the amount of light that couples into the ring. As a consequence,
the additional concentration of free carriers will disappear, and δλr,N (t ) will
tend to zero. As a result λr,e f f (t ) = λr + δλr,N (t ) + δλr,∆T (t ) ≈ δλr,∆T (t ) will
increase, resulting in a stronger total redshift. As the input wavelength is now
completely out of resonance with the ring, no light will couple into the ring
and the heated ring will slowly cool down within ∼ 50 − 60ns. Finally, when
sufficiently cooled down, the input signal is again in resonance with the ring,
and the whole process will repeat.

In the actual system of this ring, FCA and TPA also need to be taken into
account, resulting in changes of the resonance width. However, this does not
result in qualitative differences in the dynamics.

4.3.3 Power sweep for fixed wavelength

Figure 4.4 shows the relation between input and output power for the full micro-
ring model (calculation in App. 4.3.3.A). We clearly see bistable behaviour. This
bistability is mainly caused by the thermo-optic effect, whereas free carrier ef-
fects influence the appearance of self-pulsation. Indeed, in agreement with the
explanation in Sec. 4.3.2, as the optical energy both heats up the cavity and
generates free carriers, and as the thermo-optic and FCD have an opposite in-
fluence on the effective resonance wavelength (and thus the amount of light
coupled into the cavity), self-pulsation arises with a mostly asymmetric pulse
shape, caused by the difference in timescale between the fast free carrier gener-
ation and absorption of optical power and the slow relaxation of the tempera-
ture in the cavity. For lower input powers, in the bistability region, there can be
two stable FPs in combination with an unstable one (Pi n = 167−191µW) or one
stable FP together with two unstable FPs and a stable LC (Pi n > 191µW, LC not
included in the figure). For higher input powers there are no stable FPs and the
ring will always self-pulsate.
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Figure 4.4: For a detuning λ − λr = 62pm, Pout (Pi n ) is bistable (left fig-

ure), for Pi n > 191µW the lower Pout -branch becomes unstable,

which is an indication of self-pulsation. For Pi n = 0.6mW and

(a,∆T, N )(t=0)=(0,0.7,0) this gives the self-pulsation time-traces on

the right.

4.3.3.A Calculation of the steady state equations

In this appendix of Sec. 4.3.3, we present the calculation details of the simula-
tion in Fig. 4.4. Setting the derivatives to zero in Eqs. (4.1)-(4.3) results in the
steady state equations. These can be solved analytically. From Eq. (4.3) N is
easy to calculate if we know |a|, which can, together with |a|, be used to calcu-
late ∆T . If we keep the input wavelength λ fixed and put da

dt = 0 in Eq. (4.1), we
can rewrite the result as:[

j (ωr +δωnl (∆T, N ))−ω)− γl oss (|a|,N )
2

]
a =−κsi n . (4.8)

If we now take the square of the modulus of both sides we get, independent of
φ: [

(ωr +δωnl (∆T, N )−ω)2 +
(
γloss (|a|,N )

2

)2
]
|a|2 = |κsi n |2. (4.9)

As Pi n = |si n |2, the right hand side of Eq. (4.9) is linear in the input power.
Given that Eq. (4.6) and (4.7) are linear in ∆T and N , the left hand side is a
quadratic function of ∆T and N and a higher order polynomial in |a|2. To ob-
tain the steady state curves we can thus simply parameterize ∆T , N and Pi n as
a function of |a|2. When we substitute those values in Eq. (4.8), we can calculate
φ.

The stability of the steady state solutions can be analysed by evaluating the
eigenvalues of the Jacobian of the real version of the system equations for a
given FP (cfr. Sec. 2.3.1). For this purpose, we split Eq. (4.1) in its real and
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imaginary part, and take the derivative of the right hand side of both equations
together with the right hand sides of Eq. (4.2) and (4.3) with respect to ℜ(a),
ℑ(a), ∆T and N . This results in a system of four differential equations of four
real variables, and, hence, this Jacobian has four eigenvalues. If all eigenval-
ues of a FP have a negative real part, it is stable. If at least one of them has a
positive real part, the FP is unstable, while a real part equal to zero indicates a
bifurcation.

4.3.4 Phase-plane analysis

Similar to [8], to gain more insight in the CMT-equations, we now construct
2D-phase portraits, which will be heavily used in the remainder of this chap-
ter. For this purpose, we project the (a,∆T ,N )-time-traces for a given in-
put power and wavelength onto the (∆T ,N )-plane. Moreover, we calculate
the d(∆T, N )/d t = 0, d(∆T, a)/d t = 0 and d(N , a)/d t = 0 nullclines (details
in App. 4.3.4.A). Where the three curves intersect we have steady state FPs.

Figure 4.5: On the phase portrait for Pi n = 0.6mW and a 62pm detuning,

the d(N , a)/d t = 0, d(∆T, a)/d t = 0 nullclines only intersect at the

three FPs (orange circles). In correspondence with Fig. 4.4 two of

those FPs are unstable (open circle), while one is stable (filled circle).

The example time-trace from Fig. 4.4 (black line) clearly follows both

the d(∆T, N )/d t directions on the d a/d t = 0-surface (grey arrows)

and the corresponding direction changes indicated by the nullclines.

Moreover, (grey) contour lines of d a/d t = 0 for |a|2 = 1fJ− 31fJ are

elliptic and do not overlap (Sec. 4.3.4.B).

d(N , a)/d t = 0 and d(∆T, a)/d t = 0 only intersect in the (∆T ,N )-plane in those
FPs (Fig. 4.5, proof given in App. 4.3.4.B).
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Moreover, both the temperature time constant (τth = 65ns) and the free
carrier relaxation time (τ f c = 5.3ns) are larger than the time constants govern-
ing the dynamics of the light (ηl i nτabs,l i n = τcoup = 2/γcoup = 205 ps, and the
detuning of the light corresponds to a time constant of the same order of mag-
nitude). After a very short transient period ≈ 100 ps d a/d t ≈ 0, the (a,∆T ,N )(t )
solutions converge to the d a/d t = 0 surface. We can thus use the projections of
the d(∆N , a)/d t = 0 and d(∆T, a)/d t = 0 nullclines on the (∆T ,N )-plane to do
standard 2D phase-plane analysis.

The time-traces follow both the d(∆T, N )/d t directions on the d a/d t = 0-
surface and the corresponding direction changes indicated by the nullclines
(Fig. 4.5). As N reacts faster than ∆T , the time-traces fastly relax towards
the d(N , a)/d t = 0 nullcline. Consequently, during the self-pulsation the ring
makes steep transitions between the upper and lower d(N , a)/d t = 0-branches.

4.3.4.A Calculation of the nullclines

For the solution of d(∆T, N )/d t = 0 we can use the same parameterization of∆T
and N as a function of |a| as for the steady state case. When solving d(N , a)/d t =
0 we use Eq. (4.3) to parameterize N as a function of |a|, substitute this in Eq.
(4.9) and solve the quadratic equation for ∆T . d(∆T, a)/d t = 0 can be obtained
by solving Eq. (4.2) for ∆T (which is then dependent both on |a| and N ), substi-
tuting this in Eq. (4.3) and solving the corresponding quadratic equation for N
(which gives us N (|a|)) and resubstituting this in the expression for ∆T (finally
only dependent on |a|). In all three cases it is thus possible to find a suitable
parameterization of both ∆T and N as a function of |a|.

4.3.4.B Proof of the bijection between (∆T ,N )-plane and d a/d t = 0-surface

That d(N , a)/d t = 0 and d(∆T, a)/d t = 0 only intersect in the (∆T ,N )-plane in
the FPs can be geometrically understood by considering the projection of the
d a/d t = 0 surface on the (∆T ,N )-plane. Eq. (4.9) is quadratic both in ∆T and
N , and defines an ellipse for each |a|-value. As the coefficients for ∆T 2, N 2 and
∆T N are all proportional to |a|2, the orientation of the principal axes is inde-
pendent of |a|. However, the center of this ellipse and the global scaling factor
of the axes are both monotonically |a|-dependent, so the size of the ellipse, e.g.,
shrinks for higher |a|2. Apparently, in Fig. 4.5, this dependence is in such a way
that ellipses corresponding to different |a|-values do not overlap. This has as a
consequence that the projection of the d a/d t = 0 surface on the (∆T ,N )-plane
is a bijection. Both d(∆T, a)/d t = 0 and d(N , a)/d t = 0 lie on the d a/d t = 0 sur-
face and only intersect in the FPs. The intersections of their projections there-
fore uniquely correspond to those FPs. From Eq. (4.9) it can be proven that this
bijection is valid for general Pi n and ω settings. Indeed, for a given (∆T ,N ) pair,
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Eq. (4.9) is a third order equation in |a|2. Applying, e.g., Descartes’ rule of signs,
on the coefficients of this third order |a|2-polynomial one can determine that,
independent of Pi n and ω, there always exists just one single real positive root,
which implies that the projection of d a/d t = 0 on the (∆T ,N )-plane is indeed a
bijection. Consequently, for general Pi n and ω settings, we can identify the FPs
only by looking at the intersections of d(N , a)/d t = 0 and d(∆T, a)/d t = 0 in the
(∆T ,N )-plane.

4.3.5 2D approximation

Figure 4.6: The phase portrait obtained by neglecting the TPA-contribution in

γl oss in Eq. (4.6), looks similar to Fig. 4.5 and still explains (approx-

imately) the dynamic behaviour of the time-trace of the 4D-system

from Fig. 4.4 (black line). Furthermore, the time-trace with a corre-

sponding initial condition in the 2D-approximation (dashed magenta

lines) follows qualitative the 4D-behaviour, both in phase-plane and

in time-domain, although the shape of the limit cycle (LC) is slightly

different. The yellow line is the separatrix of the simplified system.

In section 4.3.4 we have explained why we can do phase-plane analysis in the
(∆T ,N )-space. The same arguments can now be used to do a dimensionality
reduction, by doing an adiabatic elimination of the field variable a (a basic cen-
ter manifold projection technique [16]). To simplify the equations we neglect
the TPA-contribution in γloss in Eq. (4.6) (details included in App. 4.3.5.A). In
this system we still see self-pulsation (Fig. 4.6), so at longer timescales (above
100ps) the most relevant dynamical properties are conserved.

This 2D system can be used to calculate the separatrix of the microring, by
starting close to the unstable saddle and integrating backwards in time (Fig.
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4.6). As will be explained in Sec. 4.6, this separatrix is the boundary between
the basins of attraction of the low-energy FP and the high-energy FP or its sur-
rounding LC (in Fig. 4.6 the case of surrounding LC is depicted). It can be con-
sidered as a threshold for switching.

This reduction of the number of variables not only simplifies the phase-
plane analysis, but in addition allows a speed-up of simulations of huge circuits
containing these microrings. By eliminating the fast timescale from the system,
the integration step can increase without significant accuracy loss. In addition,
fewer variables need to be stored. Finally, this 2D-approximation is an extra
justification for our 2D phase-plane analysis. Although qualitatively similar re-
sults are obtained with this 2D-approximation, the simulations in the body of
this chapter are still done with the full 4D-system. Only at the end of this chap-
ter, in Sec. 4.6 we will use this simplification to calculate the scaling laws of the
microring dynamics.

4.3.5.A Calculation details of the 2D approximation

Most of the time d a/d t ≈ 0, and |a| is completely determined by the instanta-
neous value of ∆T and N . From Sec. 4.3.4.B we know that, for a given (∆T ,N )
pair, Eq. (4.9) has only one positive real root, such that this third order equa-
tion can be solved unambiguously for |a|. However, in this chapter we simply
neglect the TPA-contribution in γloss in Eq. (4.6), as its effect on the broaden-
ing of the resonance width is 1−2 orders of magnitude smaller than the other
relevant physical effects. This makes Eq. (4.9) linear in |a|2. If we substitute |a|
in Eq. (4.2) and (4.3) with this approximative ˆ|a|(∆T, N ), we get a 2D dynamical
system as a function of ∆T and N .

4.3.6 Bifurcation analysis of the onset of bistability and the on-
set of self-pulsation

In the previous subsections we discussed how the dynamics of a microring can
be analysed using a phase plane representation, and how this representation is
linked with the possibility to adiabatically eliminate the fast light dynamics. In
this subsection we will analyse the evolution of the number of FPs of the system.
By doing a bifurcation analysis we will investigate how these FPs depend on the
input signal, and how the system can be tuned in a regime that is suitable for
excitability.

For a given input power the microring can have one, two or three FPs (Fig.
4.4 and Fig. 4.7). The microring undergoes a Saddle-Node bifurcation (SN) if it
has two FPs. If it has three FPs, at least one (at low-|a|) is stable.When two of the
three FPs are unstable, there is a stable LC around the high-|a| FP. The middle
FP will always be unstable, and is a saddle point. It has an unstable manifold
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Fig 1 & 2:
Self-pulsation

Fig 6:
Excitability

Fig 5:
Self-pulsation,
near LC Fold

max. of LC

min. of LC

max. of LC
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Figure 4.7: At the red side of the resonance (e.g., left: δλ = 62pm) the

Andronov-Hopf (AH) bifurcation (blue dot) tends to be supercritical,

while it can be subcritical at the blue side of the resonance (e.g., right:

δλ = −16pm). FPs (black) and both maximum and minimum values

of the LCs (magenta) in a ∆T (Pi n )-bifurcation diagram, calculated

using PyDSTool [1], illustrate this. Moreover, at δλ = 62pm the ring

is bistable in-between two Saddle-Node (SN) bifurcations (red dots),

while at δλ=−16pm a stable and unstable LC annihilate in a LC Fold

bifurcation at Pi n = 2.836mW (black dots indicate the maximum and

minimum of the LC at this bifurcation). Relevant Pi n -values used in

the other figures are indicated.

which ends at the low-|a| stable FP and, if there is one, at the upper LC, or else,
at the high-|a| stable FP. A stable manifold or separatrix divides the basins of
attraction of the lower FP and the higher-|a| FP/LC. If there is only one FP and
it is unstable, then there is a stable LC around it.

For some wavelengths, the onset of oscillation shows hysteresis in the input
power, which is a sign of a subcritical AH bifurcation, in contrast to the regions
without this hysteresis which correspond to a supercritical AH bifurcation.
Given the previous ring parameters, typically a subcritical AH bifurcation ap-
pears, if the input light is detuned towards the blue, where there is no bistability.
However, if the input light is detuned towards the red, in the bistability region,
a supercritical AH bifurcation appears (this corresponds to the supercritical
AH bifurcation reported in [6]). In the case of the subcritical AH bifurcation,
a stable LC coexists with a stable FP centered in this LC. This can be proved
explicitly with time-traces for, e.g., Pi n = 2.85mW at a δλ = −16pm detuning,
where we have one stable FP and a stable LC. By choosing the initial conditions
within a subregion of the region defined by the LC on the d a/d t = 0 surface we
can end up in the central FP or in the LC (Fig. 4.8). The basin of attraction of the
stable FP is determined by an unstable LC (not included in figure) in-between
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Figure 4.8: For some input powers and wavelength settings the LC encloses

a stable FP (filled circle) in the (∆T, N ) phase-plane. This indicates a

subcritical AH bifurcation. We illustrate this here for Pi n = 2.85mW

and δλ=−16pm. Depending on the initial conditions, the trajectory

will converge to the LC (black curve (∆T, N )(t=0) = (1.5K,8e16cm−3) )

or to the FP (magenta curve (∆T, N )(t=0) = (1.2K,8e16cm−3)).

the stable LC and this FP. The stable and unstable LCs annihilate in a fold LC
bifurcation for lower input powers (e.g., at Pi n = 2.836mW for δλ = −16pm in
Fig. 4.7).

The qualitative difference between the amplitude growth of the stable LC
near the supercritical AH bifurcation and of the unstable LC near the subcritical
AH bifurcation in Fig. 4.7 plays an important role in the excitability presented
in the subsequent section. In the case of the supercritical AH bifurcation, the
oscillation amplitude grows rather smoothly, without abrupt changes. This
corresponds to the default behaviour of an AH-bifurcation, but is less useful if
the system needs to be excitable. In contrast, the oscillation amplitude of the
subcritical AH bifurcation, after an initial smooth growth, explodes at a certain
point, within a very small Pi n-range, to large amplitude oscillations. This can
be related to the canard explosions observed in excitable SOAs [12], and is a
result of the difference in timescale between τth and τ f c . The combination of
the subcritical AH-bifurcation with the amplitude growth of the unstable LC
due to slow-fast dynamics will result in excitability with well-defined pulses.
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Figure 4.9: A temporary increase from Pi n = 1.8mW to 2.9mW at δλ =
−16pm, during 2ns, triggers an excitation. Although for this input

power no LC is present, the excitation can be seen as a reminiscent

of the nearby LC from Fig. 4.8.

4.4 Excitability: single and double ring configura-

tion

In the wavelength region where the self-pulsation hysteresis is present, the
microring is excitable if the input power is below, but close to, the fold LC bi-
furcation (Fig. 4.9, with a Ttr = 2ns long power increase of Pi n from 1.8mW to
2.9mW as perturbation, modelled by making si n time-dependent in Eq. (4.1)).
For these input settings a small perturbation will kick the ring out of its rest
state, into a ’ghost’ of a LC pulse, whereafter the system will return to the ini-
tial rest state. In this power region there does not yet exist a stable LC, but
the phase-plane already incorporates similar dynamics, as we are close to the
bifurcation point. A look at the pulse-trajectory in the phase-plane clearly illus-
trates this similarity (Fig. 4.9). Being close to an AH bifurcation, similar to the
excitability reported in [7], this is Class 2 excitability (cfr. Sec. 2.3.2 or [10]).

Although the presence of this AH bifurcation can be considered sufficient
for this mechanism to be classified as Class 2 excitability, it is important to note
that the fact that this bifurcation is subcritical is in agreement with excitability
in the Hogdkin-Huxley model, as well as many other biophysical models [17].
Additionally, this subcategory of Class 2 excitability is also emulated succesfully
in a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) circuit [18].
In contrast, the Class 2 excitability due to thermo-electronic nonlinear dynam-
ics in SOAs is generated by a canard explosion near a supercritical Hopf bifur-
cation [12], resulting in slightly other dynamics. For instance, whereas in the
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latter system excitations can be triggered on a background of small-amplitude
oscillations, this is not the case for the system investigated in this chapter.
However, as can be inferred from Sec. 4.3.6, in a microring there is no canard
explosion for the wavelengths where a supercritical AH bifurcation appears.
As a consequence, for a ring that is pumped in this wavelength region by an
input signal with Pi n below the self-pulsation onset, the ring’s output does not
show threshold behaviour as a function of the input perturbation strength, in
contrast, even for strong input pulses, the amplitude of the ring’s response still
increases smoothly with the perturbation strength. This implies that excitability
does not appear in this wavelength range.

In the current section we will analyse this excitability mechanism further
using simulations, while in the subsequent section, i.e., in Sec. 4.5, we will
validate those simulations experimentally. In Sec. 4.4.1 and Sec. 4.4.2, we will
discuss two typical features of excitability: threshold behaviour and the refrac-
tory period, respectively. In Sec. 4.4.3 we will introduce the cascadability of this
excitable microring. In Sec. 4.4.4, we discuss the performance of the microring
with respect to speed and energy consumption.

4.4.1 Threshold behaviour

Figure 4.10: The excitability-threshold power Pthr eshol d is more λ than Pi n -

dependent. Trigger pulses are Ttr = 10ns long and have been sent in

the opposite direction as the pump light.

Characteristic for this kind of excitability is that the precise shape of the pertur-
bation is rather unimportant. As long as the perturbation is sufficiently strong,
the shape of the ring’s excitation is not influenced by the input-pulse shape. In
contrast to Class 1 excitability the threshold of Class 2 excitable system is theo-
retically less well-defined [17]: there is a continuum between an excitation and a
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subthreshold oscillation. Fortunately, in practice, the transition between those
two regimes happens in a very narrow input pulse strength range, such that one
effectively observes quasi-threshold behaviour. In this section we will deter-
mine this ’effective’ threshold.

For a given Ttr = 10ns we can determine the threshold Pthr eshol d in the
trigger power Ptr . Below this threshold no excitation will be triggered (and
the response to the perturbation will be trigger pulse dependent), above this
threshold the ring is excited. We simulate this by sending pulses with varying
Ptr -height, with the trigger wavelength λtr = λ, in the opposite direction of
the pump light (this simplifies the comparison of Pthr eshol d for different Pi n).
This can be easily modelled by incorporating an extra version of Eq. (4.1) for
the counterpropagating mode in the ring, and incorporate its influence on ∆T
and N [9]. We neglect backscattering in the ring. As a consequence, no inter-
ference effects due to coupling between pump light and injected trigger pulse
are possible, and the dynamics will be independent of the phase of the trigger
pulse. Additionally, the behaviour of this type of triggering is phenomenolog-
ically identical to what would happen if one would inject trigger pulses at the
other resonance wavelengths of the rings, instead of using the same resonance
wavelength as is used for the pump light.

To approximate Pthr eshol d , we calculate the peak temperature after a pulse,
i.e., h = max(∆T (t > tpul se )) (cfr. the example temperature timetrace of an ex-
citation in Fig. 4.9, right), and keep track of the Ptr -value for which dh/dPtr is
maximal. This algorithm to determine the threshold is based on the observation
that perturbations above threshold induce a remarkably stronger temperature
increase than sub-threshold perturbations. Below threshold the peak temper-
ature of the microring’s response to the input slightly increases for increasing
trigger pulses, while above threshold the peak temperature remains almost con-
stant, such that the large jump in peak temperature at the threshold results in
a maximal dh/dPtr . In the low-Pi n region there is no ’real’ excitability, as the
shape of the system’s output pulse again becomes dependent of Ptr . However,
as this transition between excitability and no excitability is rather smooth, the
used threshold-approximation algorithm can still detect a ’threshold’, which ap-
parently slightly increases. For small detunings high values of Pi n generate a
stable LC, we therefore exclude those points from the graphs.

In principle, Pthr eshol d should increase if the distance to the LC fold bifur-
cation increases. This effect is rather negligible for a fixed λ if Pi n decreases, but
is present for a fixed Pi n if λ decreases (Fig. 4.10). The more λ is detuned from
λr , the higher the input power needed to reach this bifurcation point, and thus
the higher the threshold.
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4.4.2 Refractory period

First pulse

Second pulse:

no excitation
Second pulse:

excitation

First pulse

r

r r d

r

r

Second pulse

too early

Second pulse

later than

(a)

(b)

(c)

Figure 4.11: The refractory period Tr f is the time after a pulse during which

the ring is insensitive to a second perturbation (a). It is on the

order of magnitude of τth , and is not much power dependent for

δλ = −35pm (b), while there is a clear wavelength dependency for

Pi n = 1.8mW (c). Ptr = 1.65mW for (b) and Ptr = 3.42mW for (c)

(the need for the high Ptr -value of the latter is necessary to be above

threshold for all wavelengths in the sweep range, as can be inferred

from Fig. 4.10(b)). The refractory period can be predicted by looking

at the time needed for ∆T (t ) to relax to the rest state (Tr f ,pr edi ct .).

Moreover, the width of the pulse Twi d th is proportional to the rise

time of the temperature, i.e., the time needed to reach the maximum

temperature after a pulse. In the phase portrait we indicate the tra-

jectory the ring makes during the external perturbations with cyan,

while we use black for the rest of the response.

If, after an excitation, the microring did not yet relax to the rest state, it is tem-
porarly insensitive to new excitations of the same strength (Fig. 4.11). This is a
known feature of excitable systems and corresponds to the refractory period of
the system of which there are two types:

1. the absolute refractory period: during this period a second pulse can not
initiate a perturbation, no matter its strength,

2. the relative refractory period: during this period a second excitation is
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inhibited, but not completely forbidden.

The absolute refractory period will in our system be on the order of the pulse
width Twi d th . It will also be shorter than the relative refractory period. Indeed,
an increase in the strength of the second input pulse with respect to the first one,
would decrease the time needed to trigger a second excitation, and for an ’ex-
tremely’ strong input pulse this time would converge to the absolute refractory
period. In this section we will approximately determine the relative refractory
period, and identify its power and wavelength dependence. For this purpose,
we use input pulses that are above threshold for wide wavelength and power
ranges, but still not too strong to end up in the absolute refractory regime. We
keep the strength of the second pulse equal to the strength of the first pulse,
and see from which moment on a second excitation can be triggered. So, the
refractory period Tr f corresponding to the latter definition is the time during
which the microring is insensitive to new pulses of the same strength after an
excitation, given a certain trigger pulse power. In principle, this simulation can
be refined by sweeping the height of the perturbing pulses for each setting of the
input power and wavelength to find a pulse height that is just above threshold.
However, the behaviour will qualitatively be the same as what we obtain with
the current approach.

Figure 4.11 shows a power and wavelength dependency that is comparable
to the one observed in Fig. 4.10: Tr f is rather insensitive to Pi n , but increases
with decreasing λ. As ∆T (t ) is the slowest variable of the system, we can link
the order of magnitude of Tr f to the thermal relaxation time τth : after an ex-
citation, the ring is only sensitive to new perturbations if its temperature has
sufficiently decreased, so it is sufficiently close to its rest state. Consequently,
Tr f can be more-or-less predicted by the time needed for a ring to return to the
initial rest state after a pulse (Tr f ,pr edi ct .). In Fig. 4.11(c), we have used a rather
high Ptr = 3.42mW to guarantee that the pulse is above threshold over the whole
wavelength range of the sweep. As a consequence, for detunings close to reso-
nance (i.e., δλ close to zero) Ptr is significantly more above threshold than for
detunings far from resonance. In the region with smaller detunings this results
in the simulated Tr f value to be an underestimate of the actual relative refrac-
tory period, partly explaining the strong wavelength dependence of Fig. 4.11(c)
and the larger deviation with Tr f ,pr edi ct . in this region.

Finally, Twi d th seems to be proportional to the rise time, i.e., the time the
temperature needs after an excitation to reach the maximum value (Fig. 4.11).
It is important to note that as the latency between the excitation and the per-
turbing input pulse is almost zero, this behaviour is to be expected for excitatory
input pulses for a Class 2 excitable neuron [10]. Finally, we do not see the pro-
portionality of Tr f with Twi d th , with a slope approximately equal to one, as is
measured in PhC nanocavities [7]. We assume that the input pulses in the latter
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experiment are relatively stronger, with respect to the threshold, than the input
pulses in our simulations. This brings Tr f closer to the absolute refractory time,
which should indeed scale with Twi d th .

4.4.3 Cascadability

External perturbation

Perturbation

by first ring

Figure 4.12: If a ring is excited by a trigger signal, this excitation can excite

another ring. To demonstrate this we send a CW pump signal with

Pi n = 1.8mW and δλ=−16pm through the common bus of a series

of two AD filters. By exciting the first ring via the drop port (with a

10ns trigger with Ptr = 250µW, λtr = λ) we guarantee that the ex-

ternal trigger pulse never reaches the second ring. The second pulse

in the circuit’s output, which corresponds to the second ring’s excita-

tion, is thus triggered by the first pulse, originating from the first ring.

In contrast to the perturbation of the first ring (caused by the trigger),

the second ring is initially perturbed (by the first ring) towards lower

∆T and N (right phase portrait). This causes the delay between the

two excitations to be bigger than the delay between the trigger and

the first pulse (time-trace bottom left).

Since the precise shape of the trigger pulse is less important, the output pulse
of a ring can serve as a trigger pulse of another ring. If the trigger pulse is on
the common bus waveguide, it is impossible to distinguish whether the last
ring is excited by the input trigger or by the first ring’s excitation. To distin-
guish between both situations we use a circuit with two AD filters with com-
mon bus waveguide and excite the first ring in such a way that the input pulse
never reaches the second ring. The two rings have identical settings, and the
extra coupling section has the same τcoup as in the previous simulations. In this
setup the first ring clearly excites the second one, which makes this excitabil-
ity mechanism cascadable (Fig. 4.12). Moreover, the second ring is perturbed
in a different manner than the first one: the trajectory is initially kicked towards
lower∆T and N (phase portrait Fig. 4.12). This results in a longer time-lapse be-
tween this pulse and its perturbation (the first ring’s excitation) than the time-
lapse between the first ring’s pulse and its perturbation (the external trigger).
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Other simulations (not included) indicate that for this pump signal the reso-
nance wavelength of both rings can slightly differ (∼ 0.2δλ3dB ,AD ).

4.4.4 Energy consumption and speed

Typically, biological neurons operate at a speed of ∼ 10Hz. While some elec-
tronic hardware implementations of Spiking Neural Networks (SNNs) (e.g., the
chips developed at the IBM SyNAPSE project [19] and the Neurogrid project
[20]), opt to operate at this biological timescale, the fastest electronic imple-
mentation (i.e., the chip developed by the Heidelberg University BrainScales
project [21]) accelerates the biological neuronal timescale with a factor 104. As
the refractory period of the microring is determined by the thermal timescale,
the microring neuron can process input spike trains with a spike frequency
on the order of ∼ 10MHz, which is 106× faster than a biological neuron and,
as a consequence, still 100× faster than the current fastest electronic SNN-
implementation. By combining the speed of the neuron with the ∼ 1mW power
that is required to pump the microring in the excitable regime, an energy/spike
estimation of 100pJ is obtained. At first sight this seems to be comparable
with the energy/spike-values obtained in electronic implementations, where a
record dynamic energy/spike-value of 45pJ is obtained [19], and, if the static
power is included as well, values of about 100−1000pJ are reported [20]. How-
ever, in contrast to the energy/spike-value we mention for the microring, the
numbers mentioned for those electronic implementations incorporate the en-
ergy needed to transfer the spike through the synaptic connections between
the neurons. In addition, the electronic neurons have a very large fan-in and
fan-out (at least on the order of several 100s), while the fan-in/fan-out of the
microring circuit in the previous subsection was only one, making the compar-
ison unfair. In principle, photonics is a perfect platform to perform high band-
width data transmission at low energies, but it will definitely be a non-trivial
challenge to obtain an equally large fan-in and fan-out as in the electronic
implementations. For instance, in the monochromatic photonic reservoir com-
puting circuits discussed in Sec. 2.2.1, the fan-in/fan-out was increased with
power splitters and combiners, but these components have the disadvantage
that they result in additional losses in the neuron interconnections.

4.5 Measurement of the microring neurons

In the previous sections we have analysed the dynamics of a prototype of a ring
in simulations. In this section we will verify those simulation results experimen-
tally. In Sec. 4.5.1 we explain both the ring design and fabrication and the mea-
surement set-up, in Sec. 4.5.2 we show timetraces of self-pulsation, in Sec. 4.5.3
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we demonstrate excitability in a single ring, while in Sec. 4.5.4 we demonstrate
its cascadability.

4.5.1 Fabrication, design and measurement setup

Resonance

splitting

Resonance

spacing

Figure 4.13: Schematic of the setup for a single-ring measurement. Light of

a tunable laser (TL), polarized with polarization controllers (PC) is

coupled in and out the chip via grating couplers (GC). The ring out-

put is measured with a 10GHz photodiode and visualized with a

1GHz real-time scope. In the excitability experiment a second TL is

used, mostly coupled in the opposite direction via a circulator. The

pulses are created using a signal generator (SG) and a pulse pattern

generator (PPG) and an electro-optical modulator (EOM). At the bot-

tom, spectral details of both the single-ring (left figure) and double-

ring resonances (right figure), used in this chapter, are included.

To test the previous simulation results we designed the corresponding ring
circuits on the SOI platform. The designs were fabricated at imec using deep
UV litography on a 200mm SOI wafer with a 2µm buried oxide (BOX) layer.
The waveguides of the circuits are produced in a 220nm crystalline silicon layer
on top of that BOX layer. Typically, there is a choice between an air cladding
or an oxide cladding of the waveguides. All the measurements in this PhD re-
search were performed using samples with an oxide cladding. Reported losses
for TE-modes in typical strip waveguides (i.e., with a rectangular waveguide
cross-sections of 450nm× 220nm) with an oxide cladding are below 2dB/cm
[22]. The rings in the fabricated circuits have a geometry that approximates the
geometry of the ring prototype described in Sec. 4.2.2. However, as extensively
discussed in [23], the losses in such small footprint TE-microrings, with small
radii on the order of ∼ 5µm are typically higher than the losses in straight wave-
guides, due to excess loss mechanisms. For instance, due to the sharp bend
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radius of the ring waveguide the mode is pushed outwards, making it more sen-
sitive to surface scattering at the sidewalls and, consequently, increasing the
losses. Additionally, as some part of the light will be reflected due to the sur-
face roughness, the clockwise and counterclockwise propagating mode in the
ring waveguide will couple and, as a consequence, for very high Q-factors res-
onance splitting can appear [13, 24]. In future designs this might be circum-
vented by using the TM-mode of the waveguide. Indeed, due its decreased sen-
sitivity to the sidewall roughness, the level of backreflection and corresponding
resonance splitting is drastically improved [25].

The AP ring used to experimentally demonstrate the dynamical behaviour
encountered in the single-ring simulations was nominally designed to have a
550nm×220nm cross section, a 4.5µm radius, a 250nm gap, with a bus wave-
guide bent with the same curvature as the ring, but with a default 450nm ×
220nm cross section. The broader cross section of the ring waveguide with
respect to the bus waveguide was chosen to increase the confinement in the
ring waveguide, to reduce the losses and hence improve the intrinsic Q-factor
of the ring. The gap was chosen to obtain a sufficiently high-Q, near the crit-
ical coupling regime. The resulting ring has a resonance at 1530.708nm with
δλ3dB ≈ 20pm (with resonance splitting δλps ≈ 20pm) and an 8dB extinction
ratio (Fig. 4.13, bottom left). The design specifications of the double ring circuit
used to demonstrate cascadability will be discussed in Sec. 4.5.4.

During the measurements of these ring circuits, a temperature controller,
which guarantees the chip temperature deviations to be below ±0.03K, is used
to prevent drift of the resonance wavelength (Fig. 4.13, top). Light of a tunable
laser (TL) is coupled in and out the chip via grating couplers [26]. The ring out-
put is measured with a 10GHz photodiode and visualized with a 1GHz real-time
scope, as we expect a ∼ 10MHz signal.

4.5.2 Single microring self-pulsation

Both the input power and wavelength clearly change the pulse shape and pe-
riod of the self-pulsation in a ring (Fig. 4.14). The self-pulsation period is on
the order of ∼ 50ns, which is a little bit shorter than the period in our simula-
tions. We therefore expect τth to be slightly smaller. The on-chip powers needed
for these self-pulsation traces are on the order of ∼ 0.6−1mW, as predicted by
our simulations. These input powers are hence comparable to those needed
for self-pulsation in PhC nanocavities, while this ring self-pulsates one order of
magnitude faster [7].

The experimental pulse shape differs slightly from the simulated one due
to a different ring geometry and pump setting, but adapting the simulation pa-
rameters to the experimental chip design can eliminate this difference [6, 9].
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(a) (b)

Figure 4.14: Both the input power and wavelength clearly change the pulse

shape and period of the self-pulsation in an AP ring with a 550nm×
220nm cross section, a 4.5µm radius, near the resonance wavelength

at 1530.708nm. (a) Input power sweep with pump wavelength de-

tuning δλ = λ−λr = 40pm. Power values are those at the output of

the laser. Due to the grating coupler the on-chip input power of the

ring is expected to be ∼ 6dB lower. (b) Detuning sweep of the same

ring with 5.0dBm output power at the TL laser. The self-pulsation

period is on the order of ∼ 50ns.

Furthermore, the limited range of the self-pulsation period, which is finite at
the self-pulsation onset confirms the presence of the AH-bifurcation.

4.5.3 Single microring excitability

To verify the excitability of the rings we detune the pump wavelength at the blue
side of the resonance with an input power near the self-pulsation onset. If we
are too close to this onset, excitations triggered by noise can be perceived, but
the purpose is to trigger the excitations by an external optical signal. For in-
stance, sending rectangular trigger pulses with a 15.625ns width and 250ns pe-
riod at a wavelength ’close’ to one of the resonances of the ring can excite the
ring (in this chapter we trigger at another ring resonance, as this allows to filter
out the trigger light, but triggering at the same resonance also works). To create
these trigger pulses another TL is modulated with an electro-optical modula-
tor (EOM), we generate a 16-bit signal (a single 1 and 15 0’s, unless mentioned
otherwise) with a pulse pattern generator (PPG) of which the clock is fixed by a
signal generator (SG) at 64MHz. Although the pulse width of the trigger signal is
rather big compared to the thermal timescale, experiments show that the pulse
shape is independent of this width. The on-chip pulse-energy threshold for ex-
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(a) (b)

Figure 4.15: (a) If the trigger power is sufficiently high (≥ 7dBm@TL) the ring

excites with a fixed pulse shape, while for lower trigger powers sub-

threshold oscillations are visible. The 4dBm pump light is detuned at

δλ=−4pm from theλr = 1530.708nm resonance. The trigger light is

tunedδλtr = 9pm near another ring resonance atλr ′ = 1550.671nm.

(b) The refractory period is on the order of magnitude of the self-

pulsation period. The pump settings are similar to (a), while the

trigger pulse settings are δλtr = 9pm and Ptr = 5dBm. Mentioned

power values are those at the output of the lasers, due to GCs and

EOM the on-chip input power of the ring is expected to be ∼ 6dB

lower for the pump light and ∼ 14dB lower for the trigger signal.

citability is ∼ 3pJ (Fig. 4.15(a)).
If the delay between two trigger pulses (Tdel ay ) is too small, the second pulse

does not excite the ring (Fig. 4.15(b)). Therefore we can infer the relative refrac-
tory period to be somewhere around 60ns, i.e. on the order of magnitude of
the self-pulsation period. This all confirms the initial assumption in our simu-
lations that τth is ∼ 60ns. It is difficult to measure this refractory period more
accurately with this setup, as noise makes the ring response ambiguous: e.g., at
a 62.5ns delay the second pulse can sometimes excite the ring, but sometimes
fails to do so.

In Fig. 4.15(b) an extra optical tunable filter with passband at 1530nm is
placed before the photodiode. The comparison with Fig. 4.15(a) confirms that
reflection of the trigger pulses in the circulator to the photodiode can be ne-
glected.
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(a) (b)

Figure 4.16: If the resonances of two identical AP rings with common bus

waveguide are sufficiently close to each other, they will show self-

pulsation (a) and excitability (b) for the same pump wavelength and

power. Both rings have a 5.0µm radius. The self-pulsation is mea-

sured at 10.5dBm@TL (this starts at ∼ 1529.120nm and ends around

1529.260nm in hysteresis with single-ring self-pulsation), the ex-

citability with the pump at λ = 1529.007nm and Pi n = 13.60dBm,

while Ptr = 12.00dBm. Trigger pulse and pump light are now

co-directional. On-chip powers are therefore expected to be resp.

10.00dB and 18.00dB lower, as ∼ 4dB is lost in a splitter used to com-

bine pump and trigger signals.

4.5.4 Cascadable microring excitability

To experimentally investigate the cascadability of ring excitability, we did sim-
ilar measurements of two identical AP rings with a 550nm×220nm cross sec-
tion, a 5.0µm radius, and a 225nm gap, connected to the same bus waveguide.
The spacing of the ring resonances at ∼ 1529nm is 52pm, while λ3dB ≈ 30pm
(Fig 4.13). Similar rings on this chip sometimes had a > 1nm spacing, as this
value is determined by the process variation statistics. For some pump settings
(λ = 1529.130−1529.170nm in Fig 4.16(a)) the rings self-pulsate in a synchro-
nized way, with one fixed period. Moreover, for some pump settings they are
both excitable for the same input power and wavelength (e.g., over a ∼ 90pm
λtr -region in the upper three curves in Fig 4.16(b)). Indeed, given the small
(compared to the relative refractory period) and rather fixed time-lapse between
the two pulses, comparison to the single-ring excitability experiments suggests
that the second pulse is not triggered by noise and the two pulses therefore orig-
inate from different rings. This illustrates the experimental feasability of the
simulation result from Fig. 4.12, where an AD ring circuit is used.
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However, in contrast to the AD-configuration from Fig. 4.12, in the currently
measured AP-configuration it is impossible to unambiguously trigger the first
ring without directly perturbing the second one, even if we change the wave-
length of the trigger pulse. Indeed, both rings have nominally the same radius
and thus the same free spectral range. Therefore, if the excitability regions and
regions where the ring is sensitive to trigger pulses overlap at one resonance,
they also overlap at all the other resonances. Subsequently, it is nontrivial to
identify to which rings the resonances belong and trigger them individually. A
difference in ring radius or the usage of AD rings can circumvent this problem.

The second ring thus feels both the external trigger pulse and the excitation
of the first ring. From Fig. 4.12 we know that the external trigger will result in an
initial ∆T and N increase, while the first ring’s excitation kicks the second ring’s
trajectory initially towards lower∆T and N , which results in a longer time-lapse
between the two excitations. The ∼ 15−20ns delay between the excitations in
the upper three curves from Fig. 4.16(b) indicates that the excitation of the first
ring is strong enough to sufficiently perturb the trajectory of the second ring
to induce this longer time-lapse, clearly showing the cascadable transfer of in-
formation from the excitation of the first ring to the second ring. Indeed, the
47.1µm center-to-center distance of the rings results in a 0.7ps latency between
the two rings, so if the last ring was only perturbed by the trigger pulse the two
excitations should almost coincide.

Furthermore, we can simulate a similar trigger situation by cascading two
AP rings and trigger them with a small Pi n perturbation through the common
bus (Fig. 4.17). The trigger pulse excites both rings, but the excitation of the first
ring kicks the trajectory of the second ring back to lower N . Consequently, the
excitation of the second ring is delayed and therefore does not coincide with the
first ring’s excitation.

If the trigger wavelength is in a < 10pm region around 1547.121nm (bot-
tom curve Fig. 4.16(b)), only one pulse is visible. This pulse can correspond to
a single-ring excitation (the trigger excites only one ring), or with a coincident
double ring excitation (the trigger excites both rings directly and the first ring
had no influence on the second one). Further research is needed to explain this
time-trace more thoroughly, but in all likelihood the trigger signal is detuned
too far from resonance for the excitability to be cascadable.

Measurements of similar ring pairs with a > 100pm resonance spacing re-
veal regions with synchronized self-pulsation, but no regions with coexisting
excitability. Measurements of ring pairs with a > 1nm resonance spacing even
fail to show synchronized self-pulsation.
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External perturbation

Perturbation

by first ring

Figure 4.17: In simulations, triggering two cascaded AP rings through the

common bus with a 5ns power increase from 1.8mW to 2.59mW at

δλ = −16pm results in a similar time-lapse between two pulses in

the time-trace (left) as in Fig 4.12. The phase-plane (right) clearly il-

lustrates how the excitation of the first ring delays the excitation of

the second ring, by kicking its trajectory towards lower N .

4.6 Derivation and analysis of the scaling laws of the

cavity dynamics

In Sec. 4.5 we have experimentally demonstrated the existance of the ex-
citability mechanism theoretically predicted in Sec. 4.4. So far, in our theo-
retical analysis, we have assumed a typical small-footprint SOI microring, that
can be produced with current state-of-the-art Complementary Metal Oxide
Semiconductor (CMOS) fabrication techniques. However, fabrication technol-
ogy is continuously improving, resulting in, e.g., lower loss waveguides. Conse-
quently, it is important to determine how we have to adapt our design to chips
with improved quality. Hopefully, this results in excitability in SOI microrings at
higher speed and for lower power consumption.

In this section, we analyse the dependency of the excitability mechanism
on the material constants and cavity design, by deriving some relevant scaling
laws. The semi-analytic approach used in this section, will not only result in de-
sign guidelines for future generation SOI chips, but will also be usable in other
material platforms. Furthermore, we will also be able to explain why excitability
has currently only been measured at the blue side of the resonance wavelength.
As the content of this section is rather mathematical, readers not interested in
the technical details can restrict themselves to Sec. 4.6.1, in which we explain
the motivation of our approach, and Sec. 4.6.6, in which we summarize the
main results of the derivation.

Throughout this section, we will use parameter values that are based on the
ones mentioned in Table 4.1, representing a typical critically coupled all-pass
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SOI microring with self-pulsing behaviour, unless mentioned otherwise. How-
ever, we emphasize again that the proposed approach is also usable for other
material systems and cavity types.

4.6.1 Context of the calculation method

The dynamic behaviour demonstrated in Sec. 4.5 or other related experiments
on both disks [6] and rings [5] in SOI or PhC cavities in InP [7, 8], can be de-
scribed accurately using mean field models such as the temporal CMT model
we presented in Sec. 4.2.1. However, a thorough analysis of the influence of the
cavity design and different material parameters on the oscillation and excitabil-
ity onset is still missing, as it is not straightforward to analyze this 4D-system
(consisting of one complex variable a and two real variables ∆T and N ) and the
influence of its many parameters in a systematic manner.

Therefore, several simplified models have been proposed. For instance, re-
cent publications show how in nonlinear cavities in which the (slow) thermal
heating effects are neglected, bistability, self-pulsation and even chaos can ap-
pear provided the remaining cavity nonlinearities (e.g., the free carrier effects)
have a sufficiently fast relaxation time compared to the photon lifetime [27–29].
Of course, due the absence of heating effects, this self-pulsation is caused by
other physical mechanisms than the one discussed in this chapter. Importantly,
bifurcation diagrams of the onset of bistability and self-pulsation can be calcu-
lated for the reduced models of those cavities.

In this section, we show how a similar calculation method can be applied
on a simplified model that, besides the free carrier nonlinearities, does incor-
porate the thermal heating effects. For this purpose, we start from the equa-
tions of motion proposed in Sec. 4.2.1 and, based on the argumentation in Sec.
4.3.5, adiabatically eliminate the fast light dynamics (build up time of the cavity
light), so that we end up with a 2D system. The remaining dynamic variables
represent ∆T and N , respectively. This dimensionality reduction allows for a
semi-analytic calculation of bifurcation diagrams of the simplified system. We
use this calculation, e.g., to explain why excitability has until now been observed
mainly at the blue side of the resonance.

4.6.2 Dimensionless version of simplified rate equations

In this subsection, we derive the equations of motion of the cavity. First, we
rescale both ∆T and N to a dimensionless variable:

Θ= 2Q dn
dT

ng
∆T , n = 2Q| dn

d N |
ng

N . (4.10)
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Here, dn/dT > 0 is the thermal index change, dn/d N < 0 is the free carrier in-
dex change and ng is the group index. As δ= (ω−ωr )τph is the (normalized) de-
tuning of the input light to the resonance frequency ωr of a cavity with photon
lifetime τph (and thus Q =ωrτph/2),Θ and n can be interpreted as the absolute
value of the (normalized) induced detuning shift caused by ∆T and N , respec-
tively.

As explained in Sec. 4.3.5.A, in SOI, the influence of TPA is at least one or two
orders of magnitude smaller than the other nonlinear effects. If we neglect this
influence, both on the broadening of the resonance width and the heating of the
cavity, the simplified and rescaled version of Eqs. (4.1), (4.2) and (4.3), describ-
ing the time evolution of the optical field a in the cavity and these nonlinear
detuningsΘ and n become:

da

dt
= 1

τph

[
j (−δ−Θ+n)− (1+ f n)

]
a

+ j

√
2

1+k

Pi n

τph
e jα, (4.11)

dΘ

dt
= 1

τth

[
−Θ+ |a|2

P th
0 τph

(
1+e f n

)]
, (4.12)

dn

dt
= 1

τ f c

[
−n + |a|4(

P el
0 τph

)2

]
, (4.13)

where we introduced the thermal and electric characteristic intrinsic power of
the cavity [30]:

P th
0 = ρSi cp,Si

4
dn
dT
ng
τthηl i nΓth

Vth

Qi

(
1+k

k

)2

, (4.14)

P el
0 =

√√√√√ ħω3
r

4
| dn

d N |
ng

τ f cΓFC AβSi v2
g

VFC A

Q3/2
i

(
1+k

k

)3/2

. (4.15)

Here, Qi = ωr τl
2 is the intrinsic Q-factor of this cavity. Similar to [14], k = τc

τl
is

the ratio of ’good’ loading (lifetime τc ) to the parasitic and intrinsic loss chan-
nels (lifetime τl ) of the resonator. The loaded Q-factor of the cavity is then
Q =Qi k/(1+k). For a critically coupled cavity k = 1, for an undercoupled cavity
k > 1 and for an overcoupled cavity k < 1. In Eq. (4.11), α is the phase of the
input light. In Eq. (4.11) and Eq. (4.12),

f =
σSi c
ng

2ωr
ng

dn
d N

(4.16)
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is the ratio of the broadening of the resonance width due to FCA (σSi is the ab-
sorption cross section of FCA) to the shift of the resonance peak due to FCD.
Finally, e = 1+k

kηl i n
, while e f represents the additional heating due to FCA.

By putting da
dt = 0 in Eq. 4.11, the steady state value of the optical energy in the

cavity, normalized to
√

P th
0 τph (a′ = a/

√
P th

0 τph), can be calculated:

|a′
ss |2 =

p

(1+ f n)2 + (δ+Θ−n)2 , (4.17)

where p = Pi n/(P th
0

1+k
2 ) is the normalized version of the input power. As τph is

considerably smaller than τ f c and τth , we do an adiabatic elimination of the op-
tical field, i.e., for a given Θ(t ) and n(t ), we approximate |a′|2(t ) with its ’steady
state’ value |a′

ss |2. Expressing time τ in units τth (τ = t/τth), the equations of
motion of (Θ,n) are then:

dΘ

dτ
=−Θ+ p(1+e f n)

(1+ f n)2 + (δ+Θ−n)2 , (4.18)

dn

dτ
= 1

ε

[
−n +

(
pq

(1+ f n)2 + (δ+Θ−n)2

)2]
. (4.19)

In those equations, ε = τ f c /τth , while q = P th
0

P el
0

determines the relative impor-

tance of the thermo-optic effect versus FCD. If FCD is absent, q = 0 (as P el
0 =∞),

while if the thermo-optic effect is absent q =∞ (as P th
0 =∞). Therefore, a rel-

atively strong FCD corresponds to a large q-value. For the convenience of the
reader, we summarize the previous model parameters, together with their for-
mulas and a short description of their meaning in Table 4.2.

These simplified equations still incorporate both self-pulsation (Fig 4.18,
top) and excitability (Fig 4.18, bottom). In the remainder of this section, unless
mentioned otherwise, we use q = 0.397, ε = 0.0815, f = 0.0714, e = 5 as ring
parameters. Pout is calculated based on Eq. (4.17) and power is normalized to
(P th

0
1+k

2 ).
Eq. (4.18) and (4.19) are independent of the optical phase α of the input

light, which can be in principle time-dependent. Consequently, the dynamics
ofΘ and n are independent of temporal changes in the global phase of its input
signal, due to, e.g., interference between the pump light and a co-directional
trigger pulse with a certain phase offset, but is only sensitive to the effective
change in input power due to such interference effects. This is a crucial differ-
ence with the microdisk system that we will present in chapter 5, in which even
pure phase pulses might result in excitable behaviour.

Similar to Sec. 4.3.4, a phase-plane analysis of the time-traces is useful to
explain the dynamics of the system (Fig. 4.19). The time-traces from Fig. 4.18
follow the direction changes indicated by the the nullclines (dΘ/dτ=0,dn/dτ=0).
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Name Description Formula Value

p normalized input power Pi n/(P th
0

1+k
2 )

δ normalized detuning of the input light (ω−ωr )τph

q ratio thermo-optic shift (due to SSA-

induced heating) to FCD

P th
0

P el
0

0.397

ε timescale ratio of the thermal effects to

the free carrier effects

τ f c

τth
0.0815

e related to FCA-induced heating 1+k
kηl i n

5

f ratio FCA to FCD Eq. (4.16) 0.0714

k fraction of ’good’ loading to losses τc
τl

1

P th
0 thermal characteristic intrinsic power

(related to SSA)

Eq. (4.14) 320µW

P el
0 free carrier characteristic intrinsic

power (related to FCD)

Eq. (4.15) 804µW

Q loaded quality factor
ωr τph

2 =Qi
k

1+k 6.25×104

τph photon lifetime (τ−1
l +τ−1

c )−1 103ps

τth thermal relaxation time 65ns

τ f c free carrier relaxation time 5.3ns

Table 4.2: Description and formula of the model parameters and, if appropri-

ate, their default value.

Moreover, the rectangular-like pulse shape of both the self-pulsation and ex-
citation pulses is caused by fast relaxations (∼ τ f c ) of the trajectory towards
the dn/dτ=0 nullcline, alternated with a period in which the trajectory slowly
(∼ τth) follows this nullcline.



140 CHAPTER 4

�✁✂✄☎✂✆✝✄✞✟✠

✡☛☞✞✄✝✄✞✟✠

Figure 4.18: At δ = −3 and p = 18.676 the microring self-pulsates, while at

δ = 0.5 and p = 23.345 the ring is excitable: a sufficiently strong

perturbation can trigger a pulse. Ring parameters are q = 0.397,

ε= 0.0815, f = 0.0714 and e = 5. Simulations are done with Caphe.

4.6.3 Influence of cavity design on nonlinearity enhancement

The cavity design enhances the input power for the different physical effects
with different scaling laws of the design parameters of the cavity (Qi , V , k, ...).
In other words, for a given Pi n , a good choice of (Qi , V , k, ...) can optimize p
(SSA-induced heating), ep (FCA-induced heating) and/or qp (free carrier gen-
eration).

Therefore, in this subsection, we study how the cavity design can affect the
values of the model parameters p, q and e (Table 4.2 summarizes some relevant
definitions).

4.6.3.1 Influence of Qi and k on p, ep and qp

From Eq. (4.14) we obtain P th
0 ∝ 1

ηl i n

V
Qi

(
1+k

k

)2
, and thus p ∝

(
2ηl i n

k2

(1+k)3

)
Qi
V Pi n .

This proportionality expresses how the cavity enhances the thermal nonlinear-
ity for a given input power Pi n . Given the cavity losses, the optimization of
the light coupling into the cavity (i.e., k) can enhance the nonlinearities. In-
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Figure 4.19: In phase plane, the signal makes, both for the self-pulsation

time-trace (δ = −3 and p = 18.676, top) and the excitability time-

trace (δ= 0.5 and p = 23.345, bottom) from Fig 4.18, a fast transition

between the upper and lower branch of the dn/dτ=0 nullcline, while

in between these transitions it slowly follows those branches.

deed, if the cavity is drastically overcoupled (k << 1) or undercoupled (k >> 1),
the cavity-enhancement of the light is rather small and high input powers will
be needed to reach thermal nonlinearity. However, near critical coupling the
cavity-enhancement is optimal. Similarly, as FCA-induced heating depends on

ep ∝
(
2 k

(1+k)2

)
Qi
V Pi n and FCD depends on qp ∝

(
2 k3/2

(1+k)5/2

)
Q3/2

i
V Pi n , the cavity-

enhancement is also optimal for the free carrier effects near critical coupling.

4.6.3.2 Influence of V on p, ep and qp

Additionally, we study the influence of the volume V of the cavity. The necessary
scaling laws as a function of V are already derived in Sec. 4.6.3.1. However, the
cavity in our chapter is a microring, such that V is proportional to the roundtrip
length L of this microring. Therefore, we rephrase the previous scaling laws as a
function of L.

In a microring with average waveguide lossαdB/m (with bend loss included)
and L not too large (<< 1/αdB/m), Qi = 2πng

αdB/mλr

10
ln10 is independent of L. How-
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ever, a coupling section with power coupling K has Qc = ωr τc
2 = 2πng L

Kλr
, such

that1 k ∝ L. Furthermore, V ∝ L. Hence, for a given αdB/m and power cou-
pling K , the cavity-enhancement for both the thermal and free carrier effects
(cfr. p, qp and ep) reaches an optimum at a value of L close to the one needed
for critical coupling (i.e., Lcr i t . = K

αdB/m

10
ln10 ). However, if we optimize K for a

given αdB/m and L, the optimal choice for K will result in an optimal value for
k that is independent of the precise value of L. Hence, the scaling factors that
depend on k are effectively independent of L. Consequently, the 1/V ∝ 1/L
dependence in the previous scaling laws for p, qp and ep results in an improve-
ment of the nonlinearity enhancement for smaller L (provided the bend losses
stay negligible). The critical coupling condition for rings with small L results in
small K , which physically corresponds to larger gaps. This is an advantage, as
these small rings are a better alternative than racetrack resonators (with corre-
sponding losses on the interface between rounded and straight waveguides) or
the fabrication of rings with small gap features (which are difficult to process).

4.6.3.3 Influence of Qi and k on q and e

Finally, given the scaling laws calculated in subsection 4.6.3.1, we can also an-
alyze how a changing cavity-enhancement changes the relative importance of
the corresponding different physical effects. This is reflected in the scaling laws
of q and e. Indeed, as discussed in Sec. 4.6.2, q expresses the relative impor-
tance of free carrier generation versus heat generation by SSA.

Given q ∝ 1
ηl i n

Q1/2
i

(
1+k

k

)1/2
, free carrier effects will dominate in low-loss

(high-Qi ) cavities. Also, if k << 1, the light only stays in the cavity for a very
short time, and in this limit the free carrier effects dominate the heating due to
linear absorption. Moreover, q decreases monotonically for increasing k and
reaches a global minimum for k →∞.

As e ∝ (1+k)
k , similar conclusions are valid for the k-dependence of e, repre-

senting the relative importance of the heating induced by FCA versus the heat-
ing induced by SSA.

4.6.4 Linear stability analysis

We now explain how the bistability, self-pulsation and excitability regions can
be calculated for the model presented in Sec. 4.6.2. The bistability and self-
pulsation region boundaries can be calculated analytically, while the excitabil-
ity domain can be determined using numerical continuation techniques. In
the next subsection we will then analyze how the different model parameters

1A change in roundtrip length L can of course imply a change in the curvature at the coupling
section (reflected in a change in K ), but this is an indirect dependence which is not important for
the current reasoning
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change the size of these regions.
The steady state curves of Θ and N can be analytically calculated. Indeed,

from Eq. (4.18)-(4.19) it can be seen thatΘss =
p

nss
q (1+e f nss ). Hence, at steady

state:

p =
p

nss

q

[(
1+e f nss

)2 +
(
δ+

p
nss

q
(1+e f nss )−nss

)2
]

. (4.20)

p(nss ) is a 7th-order polynomial in
p

nss , while Θss (nss ) is a 3rd order polyno-
mial. As e f > 0, Θss is a monotonically increasing function of nss . Moreover,
this steady state is independent of ε, i.e., the ratio between the free carrier and
the thermal timescales.

We now substitute Θ(t ) = Θss +δΘ(t ) and n(t ) = nss +δn(t ) in Eq. (4.18)-
(4.19) and only retain the terms linear in (δΘ(t ),δn(t )). This results in a 2× 2
Jacobian Jss , with a quadratic characteristic equation:

λ2 + tr (Jss )λ+det (Jss ) = 0. (4.21)

This equation has two roots λ1,λ2. If det (Jss ) = 0 and tr (Jss ) 6= 0 one of the
roots will be 0 (a sign of a saddle-node bifurcation, resulting in bistability), if
additionally tr (Jss ) = 0 both roots are 0. If det (Jss ) > 0 and tr (Jss ) = 0, both
roots are purely imaginary, with λ2 = λ∗

1 (a sign of a Hopf-bifurcation). By
substituting both p(nss ) and Θ(nss ) into det (Jss ) and tr (Jss ), det (Jss ) = 0 and
tr (Jss ) = 0 result in two 6th order polynomial equations as a function of

p
nss .

Hence, the corresponding 6 roots can be numerically tracked. Of course, only
the real, positive roots have a physical meaning.

From Eq. (4.18)-(4.19) it can be inferred that the only ε-dependence of
det (Jss ) is a global 1

ε scaling factor. Hence, as can be expected from Eq. (4.20),
the solutions of det (Jss ) = 0 are ε-independent. This implies that the saddle-
node bifurcation, i.e., the bistability onset, is also ε-independent. However, the
roots of tr (Jss ) = 0, are ε-dependent. This implies that the Hopf-bifurcation
does depend on ε, and a good ε-setting is therefore crucial in obtaining self-
pulsation.

Using PyDSTool as numerical continuation software [1], starting from the
Hopf-bifurcations, we perform a limit cycle continuation. That is, we track
the change in limit cycle shape caused by sweeping a certain parameter. Fig-
ure 4.20 illustrates for both δ = 0.5 and δ = −3 how the previously mentioned
mathematical and numerical tools not only allow the calculation of the steady
state response of nss for fixed δ and changing p, but also help to indicate the
stability regions and to calculate the extreme values of nss corresponding to
the branch of limit cycles, originating from the Hopf bifurcation. While for
δ = −3, the curve is bistable, in the δ = 0.5 case it is not. Moreover, for δ = 0.5
the Hopf bifurcation is subcritical (i.e., nearby, a stable fixed point coexists with
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Figure 4.20: The steady state response at δ = −3 is, in between two saddle-

node (SN) bifurcations, bistable and has also a supercritical Hopf-

bifurcation. At δ= 0.5 no bistability is present, but an unstable limit

cycle branch (LC) originates from a subcritical Hopf-bifurcation and

annihilates with a stable limit cycle branch in a limit cycle fold (LC

Fold). To visualize the limit cycles, both the minimum and maximum

values of the cycles are plotted. Stable and unstable Fixed Points (FP)

or limit cycles are indicated with resp. solid or dashed lines.

a surrounding unstable limit cycle), while for δ = −3 the Hopf bifurcation is
supercritical (i.e., nearby, an unstable fixed point coexists with a surrounding
stable limit cycle).

As discussed in Sec. 4.4, the subcritical Hopf bifurcation at δ = 0.5 implies
that, for lower input powers, the ring is excitable (Fig. 4.18, right). For a given
cavity, the only free variables are the detuning δ and the input power p. In the
(δ,p)-plane (Fig. 4.21), the bistability (BI) onset disappears in a Cusp bifurca-
tion, while the Hopf bifurcation transits at a Generalized Hopf (GH) bifurca-
tion from supercritical (δ < δG H ) to subcritical (δ > δG H ). Hence, a fold bifur-
cation of limit cycles curve starts from a Generalized Hopf bifurcation (δG H =
−1.077, pG H = 4.317), towards δ > δG H . Subsequently, for δ > δG H and p suf-
ficiently large, but still smaller than the limit cycle fold curve, the microring is
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Figure 4.21: By tracking both the saddle-node bifurcations (BI onset) and

Hopf bifurcation (SP onset) in the (δ,p)-plane we can determine resp.

the bistability (BI) and self-pulsation (SP) region, which partly over-

lap (BI&SP). A limit cycle fold (LC Fold) originates from a Generalized

Hopf bifurcation on the self-pulsation onset, for higher δ excitability

is present, if p is below, but sufficiently close, to this limit cycle fold.

In between the self-pulsation onset and limit cycle fold a stable fixed

point coexists with an unstable limit cycle, surrounded by a stable

one (Stable FP&LC).

excitable. The subcritical region of the Hopf bifurcation is mainly centered at
the blue side (δ > 0) of the resonance. This explains why excitability has until
now only been measured in this wavelength region [2, 7, 8], instead of at the
red side (δ< 0) of the resonance. Furthermore, the steep power dependency of
the LC fold bifurcation as a function of wavelength at the blue side of the res-
onance also explains the threshold behavior observed in Fig. 4.10. Indeed, an
input pulse corresponds to a kick in power. Hence, the threshold depends on
the vertical distance of the equilibrium state to the LC Fold bifurcation. Conse-
quently, Fig. 4.21 geometrically explains why a small change in wavelength can
have a drastic influence on the excitability threshold, while a small change in
input power has a rather negligible influence.



146 CHAPTER 4

4.6.5 Influence of model parameters on bistability, self-pulsation
and excitability

In Sec. 4.6.3, we analyzed how optimizing the volume, the loss and coupling of
a cavity can reduce the required input power needed for nonlinear behaviour
and additionally changes the relative importance of the different physical ef-
fects (e.g., by changing q). In this subsection, using the techniques presented in
Sec. 4.6.4, we will investigate the influence of a change in q , ε, τ f c and f on the
cavity dynamics in the (δ,p)-plane or the (δ,n)-plane.

4.6.5.1 Influence of q: FCD versus SSA

Whereas the bistability region only shifts slightly for changing q = P th
0

P el
0

(as the

bistability is mainly caused by the thermal nonlinearity and, consequently, is
rather insensitive to moderate changes in P el

0 ), it should not be surprising that
the self-pulsation region (and corresponding excitability onset) is heavily de-
pendent on q (as they are caused by the interplay between thermal and free
carrier nonlinearities). We verify this in Fig. 4.22, for different q-values, all with
a predominant thermal nonlinearity (i.e., q < 1). A higher q-value implies a
shift of the self-pulsation region towards higher δ, such that the excitability re-
gion stops coinciding with the bistability region. As discussed in Sec. 4.6.3, q
can be changed by changing the cavity design. In principle, for q = 0.5q0 (with
q0 = 0.397) we expect excitability at the red side of the resonance. However, the
region is rather small and coincides with the bistability region. Hence, it will
not be trivial to detect this experimentally. For q = 0, both the self-pulsation
and excitability regions disappear, as in this case only the thermal nonlinearity
is present.

4.6.5.2 Influence of timescale ratio ε

Slightly adapting the analysis method proposed in [27, 28] to Eq. (4.18) and
(4.19), the influence of ε on the self-pulsation (SP) and bistability (BI) region
can be analyzed. We illustrate the calculation method together with some rele-
vant definitions for δ=−3 (where a Generalized Hopf bifurcation appears) and
δ = 0.5 (in which case the Hopf bifurcation is always subcritical) in Fig. 4.23,
and summarize the most interesting results in (ε,δ)-plane in Fig. 4.24.

We start by calculating the ’on’ and the ’off’ free carrier detuning for self-
pulsation (nH ,− and nH ,+, resp.) and bistability (nb,− and nb,+, resp.). Note that
nH ,−/+ can be found by solving tr (Jss (p = p(n))) = 0, while nb,−/+ can be found
by solving det (Jss (p = p(n))) = 0 (Sec. 4.6.4).

Furthermore, for a given δ, self-pulsation is only possible below a critical
value εsp . The curve (εsp ,δsp ) can be calculated by tracking the fold bifurcation
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Figure 4.22: While the bistability region is only slightly dependent on the

exact q-value, the self-pulsation region and the corresponding ex-

citability region shifts clearly to higher δ for increasing q . Calcula-

tion done for q = 0.5q0 (dotted line), q = q0 (solid line) and q = 1.5q0

(dashed line), with q0 = 0.397, i.e., the value from Fig. 4.18. For ref-

erence we also included the bistability curve for q = 0 (dash-dotted

line), i.e., without any free carrier effects.

of tr (Jss (p = p(n))) = 0 (using PyDSTool). Similarly (εb ,δb) encloses the region
with bistability (B I 6= ;). In this case, δb is ε-independent and thus needs to
be calculated only once (using PyDSTool). Finally, the curve p(nH ,−) = p(nb,−)
divides the region where B I 6= ; into a domain where B I ∩SP = ;, where self-
pulsation sets in only for powers above the bistable knee for up-switching, and a
domain where B I ∩SP 6= ;, where self-pulsation is present at the upper branch
of the bistability curve. p(nH ,−) = p(nb,−) can be parameterized, for a given δ,
by first solving det (Jss (p = p(n))) = 0 for nb,−, subsequently solving p(nH ,−) =
p(nb,−) for nH ,− (both calculations are ε independent, see Sec. 4.6.4), and finally
solving tr (Jss (n = nH ,−)) = 0 for ε (a linear equation in ε).

The timescale ratio ε has no influence on the bistability region, but severely
influences the self-pulsation region (Fig. 4.23 and 4.24). If ε → 0, this region
becomes larger. This illustrates how the difference in timescale between ther-
mal and free carrier relaxation is necessary for self-pulsation to occur. However,
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Figure 4.23: While the bistability region is independent of ε (with q = 0.397

fixed), the self-pulsation region becomes larger for smaller ε. For

δ = −3 a Generalized Hopf bifurcation is present, while this is not

the case for δ = 0.5, as the Hopf bifurcation is then always subcrit-

ical. Self-pulsation appears in between nH ,−/+ (SP onset, blue (or

dark gray) lines), while bistability appears in between nb,−/+ (BI on-

set, red (or middle gray) lines). For a given δ, self-pulsation is only

possible below a critical value εsp . As before, a limit cycle fold curve

(LC Fold, black line) reveals the excitability regions.

the presence of self-pulsation at ε= 0 might seem unusual as self-pulsation can
only occur in a system which is at least two-dimensional [10]. Indeed, if ε = 0,
one expects the system to be one-dimensional, as n changes its value instan-
taneously for a given Θ(t ), such that dn

dτ = 0 is satisfied. Nevertheless, the null-
clines ( dn

dτ = 0, dΘ
dτ = 0) are independent of ε and dn

dτ = 0 results in a bistable re-
lationship of n as a function of Θ(t ) (Fig. 4.19), consequently even at ε = 0 the
system still needs to be considered as two-dimensional. For ε→ 0, the transi-
tions between the upper and lower branch of dn

dτ = 0 will go infinitely fast, and
Θ will stay fixed during these transitions. The dynamics at this limit thus devi-
ate from the corresponding limit in nanocavities with a non-instantaneous Kerr
effect [27].

In this chapter, besides the self-pulsation onset, we are also interested in the
excitability threshold (as opposed to [27, 28], where the analysis only focused on
the onsets of self-pulsation and bistability of a cavity without thermal heating
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Figure 4.24: Summary of the regions with self-pulsation (SP) and bistability

(BI) in the (ε,δ)-plane. The color levels represent the ’on’ free car-

rier detuning nH ,− and the ’off’ free carrier detuning nH ,+ (with

q = 0.397 fixed, definitions illustrated in Fig. 4.23). (εsp ,δsp ) en-

closes the region where some input powers result in self-pulsation

(solid line), similarly (εb ,δb ) encloses the region with bistability (dot-

ted line). Furthermore, the curve p(nH ,−) = p(nb,−) (dashed line)

divides the region with bistability into a domain where B I ∩SP = ;
where self-pulsation sets in only for powers above the bistable knee

for up-switching, and a domain where B I ∩ SP 6= ;, where self-

pulsation is present at the upper branch of the bistability curve. Fi-

nally, the Generalized Hopf bifurcation location (εG H ,δG H ) on the

nH ,−/+-surfaces is tracked (orange (or light gray) line), indicating ex-

citability is mainly present at the blue side of the resonance.

effects). Therefore, we track the Generalized Hopf bifurcation on the nH ,−/+-
surfaces as this encloses the region where excitability will appear (Fig. 4.24, or-
ange lines). Above δ≈−10.44 the (εG H ,δG H )-curve makes a transition from the
nH ,+-surface to the nH ,−-surface and the presence of this curve on the nH ,−-
surface encloses the excitability region. If, for a given ε, δ is bigger than δG H (ε),
the (lower) onset of the self-pulsation region is a subcritical Hopf-bifurcation,
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which implies that for input powers slightly lower than the self-pulsation onset
the cavity will be excitable. From Fig. 4.24 it can be inferred that the subcritical
Hopf-bifurcation region on the nH ,−-surface is mainly centered at the blue side
(i.e., δ> 0) of the resonance, which confirms that excitability will mainly appear
at the blue side of the resonance.

4.6.5.3 Influence of free carrier lifetime τ f c

The most straightforward manner to change ε = τ f c

τth
is by tweaking τ f c . In a

microring, this can, e.g., be done by reverse biasing a p-i-n diode over the wave-
guides [31] or by ion implantation [32]. However, as q ∝ p

τ f c , reducing τ f c

also reduces the strength of the free carrier nonlinearities. We analyze this for
two typical detuning cases (δ=−3 and δ= 0.5) in Fig. 4.25 and summarize the
results in the (ε,δ)-plane in Fig. 4.26. In contrast to Fig. 4.23 and Fig. 4.24, due
to q ∝p

τ f c and ε∝ τ f c , q is not fixed anymore, but proportional to
p
ε. More-

over, we do not explicitly include (εsp ,δsp ) and p(nH ,−) = p(nb,−) in Fig. 4.26 as
the calculation is severely complicated by the q(ε∝ τ f c )-dependence.

As can be expected from Fig. 4.22, if τ f c → 0, the self-pulsation region dis-
appears. We remark that in this τ f c → 0 limit, as soon as τ f c . τph , the fast light
dynamics can not be neglected anymore, and the model without approxima-
tion should be used. Additionally, not only the bistability region corresponding
to the one shown in Fig. 4.24 is now dependent on τ f c (and thus on ε), but
also, due to stronger FCD, an additional bistability region appears for ε > 1.4
near δ ≈ 2.4. The bistability onset nb,+ of the latter region intersects with the
self-pulsation onset nH ,− in a Bogdanov-Takens bifurcation (BT, red (or middle
gray) line in Fig. 4.26). Such a Bogdanov-Takens bifurcation will change the
nearby cavity dynamics, as it, e.g., often indicates a transition from ’resonator’
(Class 2) excitability to ’integrator’ (Class 1) excitability [10]. Finally, similar to
Fig. 4.24, above the (εG H ,δG H )-curve on the nH ,−-surface (orange (or light gray)
line in Fig. 4.26) the self-pulsation onset is a subcritical Hopf-bifurcation, which
implies the presence of excitability for well-chosen input powers.

Another manner of changing ε, one we will not discuss in this chapter, is to
drastically change the ambient temperature of the chip, which will change both
τ f c and τth . Indeed, cryogenic experiments of SOI ring resonators show that
the timescales of the thermal and free carrier effect change in opposite direc-
tions with decreasing temperature [33].

4.6.5.4 Influence of f : FCA versus FCD

Although we already incorporated FCA in the previous calculations ( f 6= 0 and
e 6= 0), we did not yet discuss in detail its influence as we used a fixed f value.
As can be seen from Eq. (4.16), this value is mainly determined by the choice of
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Figure 4.25: If ε= τ f c
τth

is changed by tweaking τ f c , q ∝p
ε due to q ∝ √

τ f c .

Consequently, the decreasing q for ε → 0 causes the self-pulsation

region to disappear (e.g., δ=−3 and δ= 0.5).

material system. In SOI, the high q-value, in combination with a high e f -value
makes it impossible to neglect FCA in our microring. If we were to neglect FCA
( f = 0), or more precisely neglecting the extra heating induced by FCA (e = 0),
this would drastically change the steady state solutions and the corresponding
stability regions. Indeed, it can be calculated that both the self-pulsation region
and the bistability region are then mainly centered at the blue side of the reso-
nance (which can be partly understood from an analogue situation in Fig. 4.26,
where a high ε-value, and thus, by the

p
ε-proportionality, a higher q-value en-

hances FCD and results indeed in an extra bistability region at the blue side of
the resonance). The ring is still excitable, but in different (δ,p)-regions. More-
over, as the self-pulsation region now overlaps with the bistability region, simi-
larly to the high ε-region in Fig. 4.26, new bifurcations appear, such as a saddle-
node on an invariant circle, which change the nearby dynamics.

Consequently, if f 6= 0 and e 6= 0, it is mainly the FCA-induced heating that
causes the bistability region to be less dependent on the presence of free carriers
(Fig. 4.22). Indeed, due to this additional heating the blueshift by FCD is partly
compensated by a thermal redshift by the FCA-induced heating. Other theoret-
ical studies confirm the importance of FCA [28, 29] in SOI cavities. Given this
significant influence of FCA in SOI, it might be interesting to analyze the non-
linear dynamics in material systems with a different FCA strength.
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� ✁✂✄☎✆✝✞✟

✠ ✡☛☞✌✍✎✏✑

Figure 4.26: If q = q0

√
ε
ε0

(q0, ε0 are the values used in Fig. 4.18), this changes

the color levels of the ’on’ free carrier detuning nH ,− and the ’off’

free carrier detuning nH ,+ with respect to Fig. 4.24, such that the

self-pulsation region now disappears for ε→ 0. For lower δ the self-

pulsation region comes closer towards ε= 0, e.g., at δ=−15 the self-

pulsation region disappears at ε ≈ 1.5× 10−3. Moreover, δb is now

slightly ε-dependent (dotted line). Additionally, a second bistability

region appears for ε > 1.4 near δ ≈ 2.4, which results in Bogdanov-

Takens (BT) bifurcations (red (or middle gray) line) when nb,+ inter-

sects with nH ,−.

4.6.6 Summary of the derivation: towards design guidelines

A microcavity with both thermal and free carrier nonlinearities self-pulsates or
is excitable for certain power and wavelength settings of the input light. The
required input power of the cavity decreases if the cavity is near critical cou-
pling. If the fast light dynamics (build up time of the cavity light) are neglected,
the approximate boundaries of the regions in which this dynamic behaviour
is present can be calculated analytically. For instance, in agreement with ex-
periments, excitability is predicted to appear mainly at the blue side of the
resonance wavelength.

Improvements in fabrication technology will reduce the linear losses of the
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waveguides. We predict that free carrier effects become more important if the
linear loss of the cavity decreases. Indeed, a decrease in linear losses corre-
sponds to an increase in the intrinsic Q-factor Qi . A higher Qi increases the

ratio of the characteristic nonlinear powers q = P th
0

P el
0

, which results in a shift of

both the self-pulsation region and the excitability region towards higher detun-
ings (i.e., towards the blue side of the resonance). High-Qi cavities are therefore
needed to obtain this kind of dynamic behaviour for low input powers.

Additionally, in the case of microrings, we predict an optimal cavity-enhance-
ment of the nonlinearities for low loss rings with a small roundtrip length (but
still not suffering from additional bend loss). Moreover, the self-pulsation re-
gion heavily depends on the timescale ratio ε = τ f c

τth
, as the size of this region

increases if ε→ 0. However, in a realistic cavity a decrease in ε, e.g, by a decrease
in the free carrier lifetime τ f c , implies a corresponding decrease in q . Indeed,
q ∝p

τ f c . Consequently, if τ f c → 0, the self-pulsation region disappears. Given
this trade-off, to enhance excitability and self-pulsation, τ f c needs to be small
compared to the thermal lifetime τth , but non-zero.

4.7 Future work

The work in the previous sections can be extended in many different directions.
In this section, we will discuss three of them.

First, we need to extend the theoretical knowledge of the excitability mech-
anism. For instance, in Fig. 4.10 we have numerically determined a thresh-
old as a function of the input pulse strength. However, using numerical tech-
niques similar to the ones presented in [34] to calculate the slow manifold for
the forced Van der Pol oscillator, in principle, we could calculate the separatrix
in the (∆T ,N )-plane that distinguishes excitatory pulses from subthreshold os-
cillations. Having a geometrical representation of this separatrix would give us
more insight on the difference in latency between upward and downward per-
turbations on the CW pump signal.

Second, whereas our model gives a good indication that we have measured
cascadable excitability, the current measurement reads out the output of both
rings using the same grating coupler. In future work, we would like to have un-
ambiguous access to the output of each individual ring. One approach is to use
AD-rings instead of AP-rings and by reading out the output of the grating cou-
plers of all those rings simultaneously using, e.g., a fiber-array [35]. Another
approach is to use excitable rings with slightly different radii and consequently
a different Free Spectral Range (FSR). Those radii have to be chosen such that
they coincide at one resonance, while the resonances do not overlap at other
wavelengths. This allows to trigger a ring on a resonance that does not coin-
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cide with a subsequent ring, while pumping it at a coinciding resonance, such
that the excitation can be transferred to the subsequent ring. This is also an ap-
proach to control the connectivity in a larger network of excitable rings. Indeed,
in a large network one can use input signals that have different wavelengths,
each wavelength being matched to a different set of microrings. Rings on the
same waveguide will only communicate with each other if they have a common
resonance wavelength. As one ring is able to react to input signals at different
resonance wavelengths, this type of wavelength demultiplexing helps to effec-
tively increase the fan-in/fan-out of the neuron (cfr. Sec. 4.4.4), without the
need to use lossy power splitters and combiners (cfr. Sec. 2.2.1).

Third, in the former experiments we did not control the resonance wave-
lengths of the rings. Although we theoretically know that this can be done us-
ing heaters or pn junctions, we still need to prove that the excitability mecha-
nism exists in such tuned rings. Recently, a first demonstration of tunability of
the self-pulsation in a SOI-microring using a pn junction has been demonstra-
ted [36]. This is a first indication that the thermo-electrical nonlinear dynam-
ics in passive SOI-rings can indeed cope with the incorporation of such tuning
mechanisms.

4.8 Conclusion

A high-Q microring self-pulsates for certain input power and wavelength set-
tings, which can be described with CMT using three variables: the complex
mode amplitude a of the light in the cavity, the temperature difference with
the surroundings ∆T and the concentration of free carriers N . Neglecting the
fast energy and phase dynamics of the light allows a 2D phase-plane analysis.
Furthermore, this dimensionality reduction provides a manner to construct two
new equations of motion for ∆T and N , which still capture the most important
dynamics.

For some wavelengths, when changing the input power, the microring un-
dergoes a subcritical AH bifurcation at the self-pulsation onset. As a conse-
quence the system shows Class 2 excitability. This thorough understanding of
the excitability mechanism will allow for a correct characterization of the com-
putational properties of a microring, used as a photonic spiking neuron.

Simulations show that this excitation mechanism is cascadable. Experimen-
tal single-ring excitability and self-pulsation behaviour follows the theoretic
predictions. Moreover, two identical rings can be excitable or self-pulsate for
the same pump power and wavelength, if only their resonance spacing is suf-
ficiently small (< 100pm). Ring pair circuits are proposed in which the trigger
pulse can address only one ring directly, without perturbing the other one.

Furthermore, we have theoretically determined the influence of the cav-
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ity design and the material constants on the excitability region. A ring should
preferably be close to critical coupling, and have a free carrier lifetime that is
smaller than the thermal lifetime, but non-zero. We have also theoretically con-
firmed the experimental observation that excitability is mainly observed at the
blue side of the resonance.
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cles. Physical Review Letters, 92(7):073901, February 2004.

[13] W. Bogaerts, , P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Sel-
varaja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets.
Silicon microring resonators. Laser & Photonics Reviews, 6(1):47–73, 2012.

[14] P. Barclay, K. Srinivasan, and O. Painter. Nonlinear response of silicon pho-
tonic crystal microresonators excited via an integrated waveguide and fiber
taper. Optics Express, 13(3):801–820, 2005.

[15] Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J. D.
Joannopoulos, and Steven G. Johnson. MEEP: A flexible free-software
package for electromagnetic simulations by the FDTD method. Computer
Physics Communications, 181:687–702, January 2010.

[16] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields. Applied mathematical sciences.
Springer-Verlag, New York, 1983.

[17] Eugene M Izhikevich. Neural Excitability , Spiking and Bursting. Interna-
tional Journal of bifurcation and chaos, 10(6):1171–1266, 2000.

[18] Takashi Kohno and Kazuyuki Aihara. A MOSFET-Based Model of a Class 2.
16(3):754–773, 2005.

[19] Paul Merolla, John Arthur, Filipp Akopyan, Nabil Imam, Rajit Manohar, and
Dharmendra S Modha. A digital neurosynaptic core using embedded cross-
bar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits
Conference (CICC), 2011 IEEE, pages 1–4. IEEE, 2011.

[20] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choud-
hary, Anand R. Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza,
John V. Arthur, Paul a. Merolla, and Kwabena Boahen. Neurogrid: A Mixed-
Analog-Digital Multichip System for Large-Scale Neural Simulations. Pro-
ceedings of the IEEE, 102(5):699–716, May 2014.



CASCADABLE EXCITABILITY IN MICRORINGS 157

[21] Johannes Schemmel and D Bruderle. A wafer-scale neuromorphic hard-
ware system for large-scale neural modeling. Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pages 1947–1950,
2010.

[22] Shankar Kumar Selvaraja, Patrick Jaenen, Wim Bogaerts, Dries Van-
Thourhout, Pieter Dumon, and Roel Baets. Fabrication of Photonic Wire
and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithog-
raphy. J. Lightwave Technol., 27(18):4076–4083, Sep 2009.

[23] Peter De Heyn. Receivers Based on Silicon Ring Resonators for Multi-
Wavelength Optical Interconnects. PhD thesis, UGent-imec, 2014.

[24] B E Little, J P Laine, and S T Chu. Surface-roughness-induced contradirec-
tional coupling in ring and disk resonators. Optics letters, 22(1):4–6, Jan-
uary 1997.

[25] P. De Heyn, B. Kuyken, D. Vermeulen, W. Bogaerts, and D. Van Thourhout.
High-performance low-loss silicon-on-insulator microring resonators using
TM-polarized light. Optical Fiber Conference, pages 20–22, 2011.

[26] Dirk Taillaert, Frederik Van Laere, Melanie Ayre, Wim Bogaerts, Dries Van
Thourhout, Peter Bienstman, and Roel Baets. Grating Couplers for Cou-
pling between Optical Fibers and Nanophotonic Waveguides. Japanese
Journal of Applied Physics, 45(8A):6071–6077, August 2006.

[27] Andrea Armaroli, Stefania Malaguti, Gaetano Bellanca, Stefano Trillo, Al-
fredo de Rossi, and Sylvain Combrié. Oscillatory dynamics in nanocavities
with noninstantaneous Kerr response. Phys. Rev. A, 84:053816, Nov 2011.

[28] Stefania Malaguti, Gaetano Bellanca, Alfredo de Rossi, Sylvain Combrié,
and Stefano Trillo. Self-pulsing driven by two-photon absorption in semi-
conductor nanocavities. Phys. Rev. A, 83:051802, May 2011.

[29] Shaowu Chen, Libin Zhang, Yonghao Fei, and Tongtong Cao. Bistabil-
ity and self-pulsation phenomena in silicon microring resonators based on
nonlinear optical effects. Opt. Express , 20(7):7454, mar 2012.
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5
Cascadable excitability

in microdisk lasers

In chapter 4, cascadable Class 2 excitability was presented in a Silicon-On-
Insulator (SOI) microring. However, from an application point-of-view the use
of this mechanism is currently still peculiar, as most of the algorithms to train a
Spiking Neural Network (SNN) assume Leaky-Integrate and Fire (LIF) neurons
as basic units of the network, corresponding to Class 1 excitability instead of
Class 2 excitability.

In this chapter, using simulations, we illustrate that it is possible as well to
emulate Class 1 excitability on the (hybrid) silicon photonics platform, using
optically-injected microdisk lasers. Furthermore, we propose a scalable opti-
cal spiking neuron design that results in output pulses that are comparable in
strength to the input pulses. This neuron has a clear threshold and an integrat-
ing behaviour, leading to an output rate-input rate dependency for subthres-
hold pulses that is similar to the characteristic of sigmoidal artificial neurons.
We also show that the optical phase of the input pulses has influence on the
neuron response, and can be used to create inhibitory, as well as excitatory per-
turbations.

Additionally, we propose a connection scheme that allows the disks to react
to excitations from other disks. Phase tuning of the intermediate connections
allows to control the disk response. Furthermore, we investigate the sensitivity
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of the disk circuit to deviations in driving current and locking signal wavelength
detuning.

The rest of this chapter is structured as follows. First, we motivate in Sec. 5.1
the need to introduce a new optical excitability mechanism, by analysing the
drawbacks of current state-of-the-art solutions. The model used for the micro-
disk laser is then introduced in Sec. 5.2. Subsequently, the effect of optical in-
jection on the laser dynamics is presented in Sec. 5.3. This optical injection
study is interpreted to predict Class 1 excitability. A possible neuron geometry
is introduced in Sec. 5.4 and the threshold behaviour, phase dependency and
the response to one or more equidistant pulse trains are then investigated.

Next, the step towards cascadability is made. Using the proposed ‘neuron’
circuit, and by connecting two of these neurons in the topology defined in Sec.
5.5, we will demonstrate in Sec. 5.6 cascadability of the excitation mechanism,
as this topology allows one disk to trigger an excitation in another disk. In Sec.
5.7, the sensitivity of this cascade of two disks to variations in laser frequencies
and current deviations, respectively, will be discussed. In Sec. 5.8, we give a
roadmap for future work. Simulations are done using Caphe, the nonlinear cir-
cuit simulator described in chapter 3.

This work has been carried out in the framework of the master thesis of ir. K.
Alexander. His dissertation [1] has been used as a starting point for writing this
chapter, in which we present the main results published in [2, 3].

5.1 Excitability in integrated semiconductor lasers

The lack of theory dealing with Class 2 excitable neurons in SNN literature,
makes it worthwhile to search an optical excitability mechanism in an inte-
grated component that exhibits Class 1 excitability. For this purpose, we will
shift to a lasing device in this chapter. In fact, excitability has already been
experimentally demonstrated in lasers in 1997 [4, 5], six years before the first
demonstration in semiconductor optical amplifiers of the thermo-electronic
excitability mechanism that we used in passive microrings in the previous
chapters. Indeed, Giudici et al. demonstrated excitability in a semiconduc-
tor laser with optical feedback [4], while almost simultaneously Plaza et al. [5]
demonstrated excitability in a CO2 laser with a saturable absorber. Due to the
fast time scales and miniaturization capabilities of semiconductors, excitability
in semiconductor lasers received a lot of attention during the past decade and,
consequently, currently, there is a whole zoo of mechanisms known to cause
excitability in semiconductor laser types [6–12]. In this section, we repeat the
most important laser-related excitability mechanisms introduced in Sec. 2.2.2
and Sec. 2.4. We will first discuss three types of state-of-the-art solutions to
induce excitability in an integrated laser and their limitations (Sec. 5.1.1, 5.1.2
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and 5.1.3), before we give a first glimpse of the advantages of our approach (Sec.
5.1.4).

5.1.1 Excitability due to optical injection in single-mode semi-
conductors

As discussed in Sec. 2.4.1, a suitable excitability mechanism is found in optically-
injected single-mode semiconductor lasers [7, 8, 12], as they are, near the bifur-
cation corresponding to the threshold for injection locking, Class 1 excitable,
phenomenologically resembling the well-known Leaky Integrate-and-Fire (LIF)
model of a spiking neuron [13]. The locking signal is chosen such that a small
perturbation can excite the system across this bifurcation, causing the laser to
lose the phase locking for at least a 2π-excursion of the phase of the optical
mode, creating pulses in the laser output, relatively invariant of the exact exci-
tation shape. Mathematically, this excitability takes place due to the presence
of a nearby Saddle-Node on Invariant Circle (SNIC) bifurcation, a bifurcation
mechanism that is also known to cause Class 1 excitability in biological neu-
rons [13]. A possible disadvantage that limits the application of current optical
injected lasers, is the fact that the excited output pulse is rather a small ripple
compared to the default DC output of the laser in equilibrium [8, 12, 14]. This
strong DC output would result in too strong coupling of the lasers in optical
SNNs based on this technology, to be practically usable.

5.1.2 Excitability near the onset of passive Q-switching

In the experiment of Plaza et al. excitability is below the threshold for passive
Q-switch-like pulsing in lasers with an intra-cavity Saturable Absorber (SA) [5].
In this case, no coherent light injection or holding beam is necessary and ex-
citability arises as a competition between gain and saturable absorption. This
phenomenon can also be induced in semiconductor lasers, such as the Vertical
Cavity Surface-Emitting Laser (VCSEL) with an intra-cavity SA discussed in [9].
However, as the bifurcation mechanism that causes this excitability is a homo-
clinic bifurcation instead of the aforementioned SNIC-bifurcation, there are
some differences with the excitability observed in biological neurons [15]. As
we mentioned in Sec. 2.4, for this type of excitability, the size of the output pulse
depends on the energy of the input pulse, whereas for a SNIC bifurcation, the
output pulse strength is more-or-less independent on the input pulse strength,
as long it is above threshold.

Current research focuses on the use of similar-behaving optical components
in an integrated circuit. Recently, Nahmias et al. [14] proposed in simulation a
promissing platform based on the aforementioned VCSEL, but with a SA with
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reduced electron lifetime and a gain section that is pumped rather close to
threshold, to increase the similarity with the default LIF behaviour. The current
disadvantage of this approach based on a VCSEL with adapted SA is that the
interconnection of the different optical neurons probably needs to be done off-
chip. An approach more amenable to integration is proposed in [16], in which
an RF connection between a photodetector and a hybrid laser allows for both
inhibitory and excitatory inputs.

The main advantage of the mechanism based on passive Q-switching is that
the device is not lasing in its equilibrium state, resulting in a very high Extinction
Ratio (ER) of the output pulses. However, a first experimental demonstration, in
which the electron lifetime of the SA is adapted to the settings described in [16],
still has to be done. Based on previous results on passive-mode locking with
intra-cavity absorbers using hybrid evanescent lasers bonded on the silicon
platform [17–19], this design seems feasible with current fabrication technol-
ogy.

5.1.3 Excitability in asymmetric Semiconductor Ring Lasers

A fully integrated all-optical alternative is demonstrated both numerically and
experimentally for Semiconductor Ring Lasers (SRLs) by Gelens, Coomans et
al. [6, 11, 20, 21]. SRLs support two counterpropagating modes, which are both
linearly and non-linearly coupled to each other by intermodal coupling and
cross-gain saturation, respectively. For a restricted phase range of the inter-
modal coupling coefficient, alternate oscillations will appear, i.e., the optical
energy in the laser will oscillate between the two counterpropagating modes. If
the laser is operated in the unidirectional regime with two stable states, near the
onset of this alternate oscillations regime, theoretically, excitability is expected,
but as a drawback of the symmetry of the system, the attraction basins of both
stable states are equal in size and, consequently, there will be a competition
between mode-hopping events between both stable states and excitable ex-
cursions [20]. This drawback can be solved by inducing an asymmetry in the
intermodal coupling [6, 11, 21]. This causes the basin of one of these equilibria
to shrink drastically, making the state metastable. For very specific phases of
the intermodal coupling coefficients, the basin of the remaining state will have
a spiralling appearance, allowing for a more reliable type of excitability. How-
ever, this mechanism still has a couple of disadvantages. For instance, strong
input perturbations can cause a multipulse excitation [11], with the number of
pulses increasing with the input perturbation strength, and the device acts as a
resonator neuron, which is both not compatible with the more traditional LIF
behaviour [13]. Moreover, the fact that the phase of the linear intermodal cou-
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pling is of such critical influence, raises questions about the controllability of
this method, as this phase is dependent on process variations due to fabrication
imperfections.

5.1.4 Excitability due to optical injection in microdisk lasers

Microdisk lasers behave phenomenologically identically to SRLs [11, 22]. As
a consequence, inducing a reflection asymmetry also reveals the excitability
mechanism found in SRLs. However, in this chapter, to obtain Class 1 excitabil-
ity in these microdisk lasers we induce asymmetry in the system equations in
a different way, i.e., by optical injection in one of the two counterpropagating
modes, giving rise to the same excitability mechanism as discussed in Sec. 5.1.1.
An advantage of the circular cavity sytem is that we can use the signal of the sup-
pressed mode as output of the system, resulting in a well-behaved input-output
behaviour. As is the case for optically-injected single-mode standing-wave
semiconductor lasers, the excitability is related to a SNIC bifurcation and the
microdisks act as integrating neurons, similar to LIF neurons [13]. Moreover,
we show that by using the optical phase, pulse trains can be created that have
excitatory or inhibitory effects on the excitability mechanism.

Hence, the microdisk laser forms a promising building block for large pho-
tonic SNNs. Indeed, these microdisk lasers are fabricated using hybrid III-V on
silicon technology [23, 24], which makes the neurons highly scalable through
techniques as wafer bonding [16, 25, 26]. Furthermore, they have a smaller
footprint and lower power consumption than many other integrated lasers and
operate at higher speed [27]. Being active components in a hybrid platform,
these lasers have the advantage of being able to compensate for losses, for ex-
ample in a hybrid neural network with passive excitable components, such as
microring resonators [28], paving the way for integrated ultrafast, all-optical
neural networks. This type of network could be useful for a growing number of
applications that require lower latencies outside the abilities of the fastest elec-
tronic circuits, including processing of the RF spectrum or ultrafast control [16].

5.2 The microdisk laser

The microdisk lasers simulated and discussed in this chapter consist of a disk-
shaped InP laser cavity, with an InAsP quantum well gain section, bonded on
top of a SOI substrate [23, 24]. The single-mode disk supports two counter-
propagating whispering gallery modes, which are evanescently coupled to a
silicon waveguide buried in a SiO2-layer. The inset in Fig. 5.1 phenomeno-
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logically depicts the optical coupling between the microdisk laser and the bus
waveguide. The lasers are electrically pumped and can be optically injected
from both sides through the coupling waveguide.

We will continue this section with a description of the rate equations of this
component, followed by a bifurcation analysis in which the influence of the
current on the dynamics is explained.

5.2.1 Rate equation model of a single microdisk laser

One can describe the dynamic behaviour of a microdisk laser using a set of
coupled rate equations, in the slowly-varying envelope approximation, repre-
senting the evolution of the complex mode amplitudes, E+ and E− (|E±|2 is the
number of photons in the mode, while the optical field oscillates with an ad-
ditional e− jωi n t -dependency1), and the number of free carriers, N , in the cav-
ity [22, 24, 29]:
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(|E±|2 +2 |E∓|2) (5.4)

In Eqs. (5.1) and (5.2), α is the line broadening factor, τp the photon life-
time in the cavity, τ is the roundtrip time of the cavity, ∆ω = ωi n −ω0 the de-
tuning between the input light ωi n and the free-running cavity frequency ω0,
C is the complex intermodal coupling coefficient. This linear coupling can be
due to inhomogeneities in absorption and refractive index along the disk, such
as surface roughness, or due to external reflections on grating couplers or fiber
facets [24, 27]. κ is the coupling with the waveguide. Ei n, 1, 2 are the complex am-
plitudes of the optical inputs (|Ei n, 1, 2|2 is the power in the waveguide). Equa-
tion (5.3) describes the evolution of the number of free carriers. I is the injected
current, q the elementary charge of an electron, η a current efficiency factor,
and τc the carrier lifetime. G± are the gain coefficients of the modes, gN is
the differential gain, N0 the transparency threshold of free carriers and Γ the
confinement factor. The denominator in Eq. (5.3) includes cross- and self-gain
modulation, εN L is called the nonlinear gain suppression coefficient. The total

1In previous chapters we used a e+ jωi n t phase-convention, we use this new convention in agree-
ment with literature on microdisk lasers, but this choice has no fundamental consequences.
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output amplitude of the disk depends both on the amplitude of the modes and
the input amplitudes. The number of photons that couples from the modes into
the output mode per roundtrip time τ can be written as |τκE±|2. Consequently,

the output power from the modes is ħω0κ
2τ2

τ |E±|2 and the total output power
becomes:

Eout ,1 = Ei n,2 − jκ
√ħω0τE− (5.5)

Eout ,2 = Ei n,1 − jκ
√ħω0τE+ (5.6)

5.2.2 Bifurcation diagram for increasing current

Figure 5.1: The bifurcation diagram of the microdisk laser for increasing cur-

rent reveals three lasing regimes. Just above the laser threshold the

output is bidirectional (II), at high injection currents it is unidirec-

tional (IV), while in between those two regimes an oscillatory regime

appears (III). For both output powers Pout , i = |Eout , i |2, the extrema

are plotted. If the output is constant, maximum and minimum power

are equal and the markers overlap. If the output power oscillates, two

markers are plotted per current, per mode. Inset: geometry of the

microdisk laser.

The bifurcation diagram in Fig. 5.1 shows the different operating regimes of
the laser, as a function of the current I . Regime I is below lasing threshold. In
the bidirectional regime (II), the energy in both modes is equal, due to the linear
intermodal coupling. At very large currents, the cross-gain modulation over-
rules the linear intermodal coupling and consequently induces a purely unidi-
rectional regime (IV), where one mode carries more power than the other. If
the phase φC of the intermodal coupling is close to π

2 , in between those two
regimes, the combination of cross-gain modulation and intermodal coupling
results in a current regime with alternate oscillations (III) [20, 29]. In the unidi-
rectional regime, an increase in current improves the contrast between strong
and suppressed mode.
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Although a detailed inventarisation of C -values and a corresponding exper-
imental characterization of the oscillatory regime still needs to be done, the fre-
quency of the oscillations is known to be in the GHz range [24] and depends on
the magnitude of C . The rate equation model was developed and thoroughly
validated in the case of SRLs [29, 30]. In this chapter, we use the model param-
eters for a typical microdisk proposed in [22, 31] (table 5.1), to have qualitative
correspondence, on the right order of magnitude, between the numerically ob-
tained diagrams and experimental data obtained in, e.g., [24] or [27].

Parameter Symbol Value Unit Ref.

Resonance wavelength λ0 = 2πc
ω0

1.55 µm

Line broadening factor α 3 [31]

Photon lifetime τp 4.17 ps [31]

Radius microdisk R 5 µm [22]

Cavity roundtrip time τ 350 fs [22]

Intermodal coupling C 0.449 + 2.82 j GHz [22]

Amplitude coupling to the waveguide κ 171.4 GHz [22]

Current efficiency η 0.5 [22]

Group velocity of the mode vg 8.82 ·107 m
s [22]

Carrier lifetime τc 600 ps [31]

‘Effective’ differential gain ΓgN 982.3 kHz [31]

‘Effective’ nonlinear gain suppression ΓεN L 1.96 ·10−6 [31]

Transparency carrier amount N0 763500 [31]

Table 5.1: Model parameters used in this chapter are based on the values and

definitions proposed in [31] and [22]. Comparable values can be found

in [24].

5.3 Optical injection

This chapter treats excitability in microdisk lasers that are locked using external
optical injection, i.e., for sufficiently high input power the disk will lase at the
same frequency of the input signal. In the unidirectional regime (at I = 2.3 mA),
we investigated the effect of optical injection in E+, as a function of the injection
amplitude Ei n = Ei n, 1 (Ei n, 2 = 0), and the detuning ∆ω. This configuration for
optical injection is identical to the one studied for SRLs in [32]. Consequently, as
those SRLs are governed by the same physics, the same locking regimes appear.
Indeed, the bifurcation diagram in Fig. 5.2 shows three stable locking regimes,
in which the power does not oscillate between the two modes: U1, U2 and Bi .
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U1 and U2 stem from the positive and the negative unidirectional regime. Since
power is mainly injected in the positive mode, U1 is most prominent. The locked
regime Bi originates from one of the bidirectional solutions, which is not stable
in the absence of optical injection at these currents. The size of this regime is
controlled byφc , and increases for values close to π

2 (in this chapter,φc = 0.45π).
The regimes lose stability when their surrounding bifurcations are crossed,

Hopf-bifurcations are denoted by red lines, saddle-node and other limit points
by blue lines. Upon crossing these bifurcations, the laser states can converge to
Limit Cycles (LCs), or more complex (chaotic) attractors. In Fig. 5.2, for simplic-
ity, we omitted the bifurcations corresponding to unstable structures or chaotic
regions, as they are already thorougly discussed in [32] and not important for
the remainder of this chapter.

( )

(
)

Figure 5.2: (left) The bifurcation lines form the boundaries of the differ-

ent locking regions. Here, I = 2.3 mA, red lines represent Hopf-

bifurcations, while blue lines correspond to Saddle-Node on an In-

variant Circle (SNIC) bifurcations. We will use the SNIC bifurcation

to induce excitability. (right) When crossing the SN1 bifurcation at

∆ω=−15 ns−1, |Ei n | = 2.77
√
µW the oscillatory unlocked behaviour

becomes steady-state. At t = 10 ns the locking amplitude is raised

from 2.65 to 2.76
√
µW, at t = 20 ns, the bifurcation is crossed by again

increasing |Ei n | to 2.78
√
µW.

In this chapter, the laser is used in the positive unidirectional regime U1,
close to the saddle-node bifurcation SN1. This injection regime behaves iden-
tically to the one found in single-mode semiconductor lasers, which has been
extensively studied [33]. In the time trace in Fig. 5.2, this bifurcation line is
crossed by increasing the optical injection power. There is a transition from a
LC (the pulsing state) to an equilibrium (the locked state). This SN1 transition
is a Saddle-Node on Invariant Circle (SNIC) bifurcation. This type of bifurcation
is known to induce excitability in biological neurons [13].
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Figure 5.3: (left) When increasing the injection strength |Ei n | from zero to the

locking strength, the self-pulsation frequency decreases to zero. This

is a consequence of the SNIC bifurcation. (right) In addition, the am-

plitude of the of the self-pulsation in the mode energy grows from

zero to a finite size for increasing |Ei n |. Both simulations are done

at ∆ω=−15 ns−1.

When increasing the optical-injection strength |Ei n | from zero to the lock-
ing threshold, the self-pulsation frequency decreases to zero (Fig. 5.3, left). The
convergence to zero at the locking threshold corresponds to the frequency de-
pendence of class 1 neural excitability discussed in Sec. 2.3.2. The self-pulsation
frequency for |Ei n | ≈ 0, is given by the difference in frequency between the
injection wavelength and the lasing wavelength without optical-injection for
I = 2.3 mA (As can be inferred from Fig. 5.2 this lasing frequency is slightly blue
shifted with respect to the original resonance wavelength of the cavity without
current injection). Additionally, for increasing |Ei n |, the amplitude of the self-
pulsation grows from zero to a finite value (Fig. 5.3, right). Importantly, for |Ei n |-
values close to threshold, there is a significant exchange in energy between the
two counterpropagating modes.

5.4 Excitability

As explained in chapter 2, Excitability is typically defined in the context of a
small perturbation at the input of a system in a stable equilibrium. When the
perturbation is below a certain threshold, the system responds weakly, and
fairly linearly with the perturbation strength. However, when the perturba-
tion is above threshold, the system responds strongly, often with one or more
output pulses, and the response above threshold stays nearly constant. As ex-
plained in Sec. 2.4.1, at a SNIC-bifurcation, such as SN1 in Fig. 5.2, one can
find Class 1 excitability. This implies that, as a response to a superthreshold
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Figure 5.4: In the proposed ‘neuron’ topology a constant locking signal (CW )

locks the microdisk just above the SN1-bifurcation. Sufficiently strong

pulses at the other input of the splitter, perturb the microdisk, and can

cause an excitation. The excitation results in a power peak in the E−
mode that can be collected as the actual output of the system.

step input, pulse trains are generated for which the pulse amplitude is close to
invariant, whereas the pulse frequency can be made arbitrary low by choosing
step heights arbitrary close to the threshold. Due to the similarity with a LIF
neuron, this type of neuron behaviour is very interesting from an application’s
point-of-view [13, 14, 34]. Additionally, whereas the excitation mechanism pro-
posed in [20, 32] is heavily dependent on the precise phaseφc of the intermodal
coupling, while φc is not straightforward to control during fabrication, the cur-
rently proposed excitation mechanism is less sensitive to this value, as φc has
less influence on the threshold for optical injection than on the onset of alter-
nate oscillations.

5.4.1 Neuron circuit

Figure 5.4 shows a topology in which the input port of a splitter (used as a com-
biner) is connected to the bus waveguide of the microdisk laser. We use the
splitter to inject the input pulses and the external locking signal at the same
side of the disk. This circuit can be used to exploit the aforementioned ex-
citation mechanism. The CW input provides a constant signal that locks the
microdisk just above the SN1-bifurcation. Pulses at the other input of the split-
ter, cause perturbations on the locking signal. When the disk gets excited, the
pulse in the suppressed mode of the laser will be visible as an upward pulse
at the same port. The ability to retrieve an output signal proportional to the
suppressed mode is a clear advantage with respect to the situation for a single-
mode semiconductor laser as in [33], as it can enhance the ER and results in
a cleaner pulse shape. To obtain excitability, the amplitude of the locking sig-
nal |ECW | = 4.10

√
µW is chosen so that |Ei n | = 2.90

√
µW, while ∆ω for both
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locking signal and input pulse is −15 ns−1. The saddle-node bifurcation for this
detuning lies at |Ei n | = 2.77

√
µW.

Unfortunately, the advantage to be able to collect the output signal of the
suppressed mode comes also with some restrictive disadvantages. As the pulses
due to the excitations on the suppressed mode are small compared to those of
the strong mode, this choice is, in a sense, less power efficient. In addition, the
splitter attenuates the power of the pulses by 50%, resulting in a decrease of
the output pulse-input pulse power ratio with a factor 4. In theory, this can be
avoided by using two bus waveguides for each microdisk instead of one, one for
the optical injection signal and one for the optical pulse trains. However, due to
the diffulty to control both coupling sections this type of design is not so often
used in current fabricated designs. Therefore, we stick to the single bus wave-
guide design. A final disadvantage is that output and input pulse propagate in
opposite directions through the same waveguide. As state-of-the-art integrated
isolators are still too lossy to be useful in this type of photonic circuits [35, 36],
a disk that excites another disk, will be in turn perturbed by the induced exci-
tation pulse of the other disk. Later on in this chapter, a promising strategy to
connect different excitable disks will be proposed, that allows to avoid the back-
propagation of excitation. In Sec. 5.4.2, using an example, we will discuss the
pros and cons of the neuron topology more in detail.

In this Phd research, we do not investigate how the locking signal can be
generated on-chip. However, as this is an important issue for future applica-
tions, we will shortly address this topic at the end of this chapter, in Sec. 5.8.

5.4.2 Reaction of the system to a typical trigger pulse

As the external locking power is slightly above the SNIC bifurcation, we have
to lower the effective locking power Ei n(t ) during a perturbation, to be able to
excite the disk. This can be done by sending input pulses to the disk that are
completely out of phase with the external locking signal. Indeed, the resulting
signal of the interference of the locking signal with a pulse with a π phase shift
compared to this locking signal, results in a signal with the same phase as the
locking signal, but diminished amplitude. Consequently, in initial experiments
on excitability in a single optically-injected disk, one could as well trigger an ex-
citation by using amplitude modulation of the external locking signal.

We illustrate this for a typical excitation in Fig. 5.5. One can clearly see the
effective amplitude modulation of |Ei n(t )| and the resulting excitation both in
the output at the left of the splitter (red line), and the output at the right of the
disk (orange line).

Figure 5.5 also shows the advantages of using the circuit proposed in the
previous subsection as neuron topology. Indeed, the bias level of the forward
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backward
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forward
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forward
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Figure 5.5: The response of the microdisk to a 0.2 ns pulse of 1.0 µW, with a

π phase shift with the locking signal, shows that the backward output

pulse corresponding to the suppressed mode has the cleanest pulse

shape.

output at the right side of the disk is stronger compared to the output that cor-
responds to the suppressed mode. Consequently, using the forward output of
the system would result in increased coupling with other disks in the network.
As we will discuss in Sec. 5.6.1, even the relatively low bias output of the sup-
pressed mode can already induce undesired coupling. Hence, the output of the
strong mode would cause even more trouble. Furthermore, the output strength
of the suppressed mode output is comparable with the output strength of the
input pulse, which is good condition to allow cascadability. Of course, the fact
that this advantage is not present for the right output could be circumvented
by using an attenuator or by dividing the output of this disk over several other
receiving disks. But even if one sends only a fraction of the output of the strong
mode to another disk, one has to be careful when using this output port. In-
deed, for this specific detuning and injection locking scenario the ER of those
two outputs is comparable, but for other locking settings the ER of the output
at the right of the disk can strongly diminish, while the ER for the output at the
left in our system stays relatively fixed. So, using the output of the suppressed
mode results in more robustness in ER with respect to the optical and electrical
injection settings of the disks.

Additionally, whereas the output at the right side of the disk contains a rip-
ple that corresponds to the input pulse, this is not the case for the output of the
suppressed mode. This explains why we choose to inject the trigger pulse in
the strong mode, instead of the suppressed mode, even though the latter choice
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would avoid the need to use a splitter, as the trigger pulse then enters at the op-
posite site of the disk as the locking signal.

The pulse shape in Fig. 5.5 is very similar to the pulse shape in the LC that
can be seen in Fig. 5.2. This is to be expected, as the physical mechanism
that generates this pulse is the same. A special feature of the excitation in this
particular system, is the interplay between excitability due to optical injection
and the coupling between the two modes. As can be seen in Fig. 5.2, during a
pulse, the strong mode delivers temporarily a fraction of its photons to the sup-
pressed mode. This coupling can only happen due to the intermodal coupling
C and, consequently, the timescale of this excitability mechanism is related to
the timescale that corresponds to this intermodal coupling. Further theoretical
analysis of the rate equations is necessary to pinpoint the exact influence of C
on this excitability mechanism.

Finally, from the width of the excitation in Fig. 5.5, it can be inferred that
the excitability mechanism is capable to process ∼ GHz spike trains, making it
potentially 100× faster than the microring neuron discussed in chapter 4. Ad-
ditionally, the largest power consumption of the microdisk is the current injec-
tion. Indeed, while the optical-injection signals are on the order of a few µW, a
typical driving voltage of the disk is on the order of 1V [37] and, given I = 2.3mA,
this results in a ∼ mW power consumption. If the optical-injection signal would
be generated as well by a microdisk laser, the total power consumption of the
combination of the driving disk and the neuron disk would still be in the mW-
range. Following the same reasoning as in Sec. 4.4.4, this implies that the micro-
disk neuron will consume∼ 1pJ energy/spike, being 100×more energy-efficient
than the microring neuron. Improvement of the ratio of optical output power
and electrical input power can optimize this number even further.

5.4.3 Threshold behaviour as a function of input pulse power

The traces in Fig. 5.6(a) show the responses to square input pulses of duration
0.2 ns, having a π phase shift compared to the locking signal, with input pulse
power varying from 0.6µW to 2.2µW. The output peak power (Fig. 5.6(b)) shows
strong threshold behaviour as function of the input pulse power. Above thres-
hold, the output pulses become in an abrupt way significantly stronger. This
is a key-requirement for excitability. The decrease of pulse peak power above
threshold deviates from what is usually observed in most biological neurons,
where the output pulse power typically increases slightly for further increase
of the input power [13]. This decrease in pulse peak power is a reminiscent of
the dependence of the amplitude of the self-sustained oscillations of the CCW
mode in the unlocked regime on the optical-injection strength. In Fig. 5.3, a
decreasing optical-injection strength results in a decreasing extinction ratio of
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the oscillation amplitude. Similarly, in the excitable regime, a stronger input
pulse power results in a (temporarily) lower effective |Ei n(t )|, resulting in less
pronounced output pulses.

Furthermore, the output pulse latency (the time between perturbation and
excitation) decreases for increasingly stronger input pulses above threshold
(Fig. 5.6(c)). This is a known feature for SNIC bifurcations. Indeed, after the
perturbation kicked the laser out of its rest state, beyond the threshold mani-
fold, it will quickly relax to the invariant circle corresponding to this bifurcation,
and will start a roundtrip on this invariant circle to finally relax back in the rest
state (Fig. 5.7 illustrates this using the Adler model). A stronger perturbation
will reduce the distance the system has to travel in phase-space, and hence will
also reduce the latency of the optical output pulse of the excitation.

a) b) c)

d) e) f)

Figure 5.6: The optically-injected microdisk shows clear threshold behaviour

as a function of the amplitude and phase of the input pulse. a)-c) Re-

sponse to pulses of fixed length (0.2 ns), for different pulse powers, out

of phase with the locking signal. a: Time traces. b: Output peak power

as a function of input peak power. c: Pulse latency as a function of

input peak power. d)-f) Response to pulses of fixed peak power and

length (1.4 µW, 0.24 ns), but varying phase. d: Time traces. e: Output

peak power as a function of phase. f: Pulse latency as a function of

input pulse phase.

Based on Fig. 5.6 we could estimate the minimum energy of perturbation of
the system to be on the order of ∼ 0.2fJ. However, additional simulations reveal
that this value increases by a factor of 2 for a 10× increase of the pulse width,
and is as such ill-defined. This can be understood from the rate equations, as
the time derivatives of the laser states are linear in the amplitude of the input
pulse, and not in its power. Hence, it is the product of the amplitude and the
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duration of the pulse that stays rougly constant. Consequently, an increase in
pulse duration ∆t will lower the power threshold, approximately with a 1

∆t 2 de-
pendency.

strong

Threshold

weak

Figure 5.7: The Adler model can help to understand why stronger supertresh-

old pulses result in less latency of the output pulse: a stronger pulse

reduces the roundtrip distance in phase-space the system has to make

before it can return to the rest state, and this will in the amplitude do-

main correspond to a reduced latency of the output pulse of the disk.

5.4.4 Threshold behaviour as a function of input pulse phase

In the simulations of the previous subsections, the input pulses had a π phase
shift, relative to the CW input. The traces in Fig. 5.6(d) clarify the influence of
the phase. The disk is excitable only for a limited interval aroundπ. At the edges
of this interval, clear threshold behaviour is obtained. The sudden increase of
output pulse latency, close to these edges, corresponds to the latency increase
near threshold for the input pulse power sweep. Clearly, pulses with the same
power profile can cause very divergent responses, depending on their phase.
Figures 5.6(e) and 5.6(f) show these trends in more detail. For completely ran-
domized phases, only about 25% of all input pulses would result in excitation.
Fortunately, the phase difference between the input pulse and the locking signal
can be deliberately controlled externally. In contrast, the excitability mecha-
nism in asymmetric SRLs without optical injection is sensitive to the phase
difference between the input pulse and the laser state, which is uncontrollable
in a practical setup [11].

The dependence of excitability on the phase of the trigger pulse in our
simulations can be further clarified by comparing this behaviour with recent
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Figure 5.8: The microdisk laser reacts as well to a phase-modulated locking

signal, in which the phase of the locking signal experiences a block

pulse of fixed length (0.2 ns) and size n π
4 (n ∈ {0, ...,7}) at 10ns.

experimental results in a single-mode semiconductor laser under optical injec-
tion, in which excitations were triggered using only phase pulses [12]. When
phase pulses are added to the locking signal (Fig. 5.8), the microdisk laser reacts
with clear excitations for some phases of those pulses (e.g., π

2 ), while for other
phases it is difficult to identify a clear pulse (e.g., π

4 ). This sensitivity to phase
jumps in the locking signal implies that the threshold behaviour in Fig. 5.6
is not only a consequence of the changing amplitude of the effective locking
signal due to the interference of the CW-input and the phase-shifted pulse, but
also a reaction to the kick in phase of this effective locking signal. This ’abso-
lute’ phase sensitivity is related to the locking mechanism that we use to induce
excitability in a microdisk. In contrast, for the excitation mechanism in a pas-
sive microring, similar phase jumps without additional amplitude modulation
would not result in an excitation.

The ability of the neuron to react to the phase of the input pulses, makes
larger microdisk networks sensitive to phase errors. Consequently, even though
an integrated platform intrinsically limits the variable phase noise, one still
needs a reliable, power efficient way to compensate for fixed phase offsets in
large microdisk network.
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5.4.5 Integrating behaviour

Figure 5.9: If two subthreshold input pulses (in this case, 0.6 µW, 0.2 ns, out

of phase with the locking signal) arrive sufficiently close to each other

to the microdisk, they can excite the microdisk.

If an input pulse excites the disk it is entitled superthreshold, whereas it is
entitled subthreshold, if otherwise. To be superthreshold, the amplitude, dura-
tion and phase of the pulse should be chosen in such a way that the resulting
perturbation of the locking signal is sufficiently strong. However, several sub-
threshold pulses can combine to form a superthreshold excitation, as long as
they arrive sufficiently close to each other (Fig. 5.9). This is a characteristic
of an integrating neuron [13]. Not all excitation mechanisms show this be-
haviour. When a subthreshold excitation causes oscillations, as is the case for
Hopf bifurcations (Class 2 excitability, which appears, e.g., in the passive silicon
microrings mentioned in chapter 4) the neuron will act as a resonator: multiple
subthreshold excitations can only excite the system if their delay is close to an
integer multiple of the natural oscillation period of the oscillations of the sys-
tem. The excitation mechanism presented by Gelens, Coomans et al. [20, 21, 32]
also incorporates resonator instead of integrating behaviour.

Figure 5.10(a) shows the output-versus-input rate, for a series of subthres-
hold pulses, Figs. 5.10(b) and 5.10(c) show time traces of input and output
pulses for two input pulse rates, respectively. The output-versus-input rate
curve resembles the typical sigmoidal neuron activity level versus input signal
characteristics of classical artificial neurons [34, 38]. As explained in Sec. 2.1.2,
this similarity is a general feature of a spiking neuron and intuitively explains
why spiking neural networks can have theoretically at least the same compu-
tational power as these classical sigmoidal networks. Even more, it has been
proven that the computational power of a spiking neural network, due to the
more intricate dynamics, can even be higher than that of these sigmoidal net-
works [34].
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a) b)

c)

Figure 5.10: The output pulse rate of a microdisk excited with subthreshold

pulse-trains is sublinearly dependent on the input-pulse rate and

therefore shows similarities with the typical sigmoidal input power

versus output power characteristics of classical artificial neurons.

a) Input rate-output rate characteristic of the neuron, when the

input-pulse train consists of subthreshold pulses (|Ei n |2 = 1µW peak

power, 1 ns length). b)-c) time-traces, for input rates 1 GHz (a), and

4 GHz (b).

5.4.6 Refractory period

Figure 5.11: The microdisk has a refractory period: after a perturbation, the

disk is temporarily less sensitive to new input perturbations. (left)

Response to a sequence of two equally high superthreshold pulses

(1 µW, 0.2 ns, out of phase with the locking signal). (right) The sec-

ond pulse has a slightly higher power (1.5µW).

In the previous subsection we saw how two closely-spaced subthreshold
pulses can result in an excitation. When considering the response of the ex-
citable disk on two closely-spaced superthreshold input pulses, interesting be-
haviour emerges as well. In figure 5.11, the first pulse (which is the same for
each pulse sequence) excites the system. The second input pulse will only re-
sult in an excitation when the delay is sufficiently large, a clear evidence of the
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existence of the refractory cycle, a common feature of a neuron [13]. If the sec-
ond perturbation arrives during the downward stroke of the output pulse, its
effect is negligible, whereas a second perturbation during the upward stroke of
this pulse decreases the amplitude of the pulse. This is similar to the decrease
in output pulse amplitude for stronger single-pulse input perturbations in Fig.
5.6(b). The second graphs shows the reaction of the disk if the second perturba-
tion is a bit stronger. Comparison of both graphs shows the difference between
an absolute and relative refractory period (see the discussion in Sec. 4.4.2). If
the second pulse has a delay of 1 ns (the blue traces), it falls within this relative
period, the system is excitable, but a stronger second input perturbation is re-
quired.

Figure 5.12: The relative refractory period of the microdisk is clearly depen-

dent on the power of the second trigger pulse. For high powers of

this second pulse it converges to the absolute refractory time, which

corresponds with the moment the disk is having its first excitation.

Input pulses are 0.2 ns wide, out of phase with the locking signal and

the power of the first input pulse is 1µW.

To characterize the absolute refractory period more quantitatively, the tim-
ing of the maximum of the output pulses as a reaction to two closely-spaced su-
perthreshold input pulses is tracked as a function of the spacing between those
two input pulses (Fig. 5.12). By doing this for increasing strengths of the second
input pulse, it can be inferred that the absolute refractory time is ∼ 0.66ns. As
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the maximum of the first excitation appears at ∼ 0.70ns, the absolute refractory
time corresponds to the moment the disk is having its first excitation. Strangely,
the disk can be forced to excite for a second time, even before it reached the
maximum of its first pulse. As a consequence, in the case the second input pulse
is very strong, and the timing between the input pulses is only slightly above the
absolute refactory period, the input pulse that triggers the second output pulse
can also distort the first output pulse and lower its output amplitude (simu-
lation not shown). This effect is in agreement with the bottom time traces in
Fig. 5.12, where the arrival of the input pulse during the upwards stroke of the
first excitation indeed decreases the output pulse strength. Finally, if the sec-
ond input pulse arrives before the absolute refractory time, the latency of the
first excitation is slightly lowered.

5.4.7 Complex addition of two input pulse streams
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Figure 5.13: The output pulse rate as response to the superposition of two in-

put pulse streams depends on the optical phase difference between

the two input pulse trains. One stream is constant (6 GHz, 1µW peak

power and 0.1 ns duration) and purely excitatory (relative phase with

respect to the CW is π), while the other pulse stream has a varying

rate r2, the horizontal axis represents its phase. Peak power and du-

ration are the same as for the first stream. The error bars give the 80%

certainty interval for the inverse interpulse delays.

From Fig. 5.6(d)-(f) can be deduced that pulse trains with a phase difference
with the locking signal more-or-less between π

2 and 3π
2 are excitatory, as they

tend to excite the system by pushing the system’s state towards or even across
the bifurcation. In contrast, pulses with an optical phase between −π

2 and π
2

are inhibitory, as they push the system’s state away from the bifurcation. The
output pulse rate as a response to a superposition of two input pulse streams,
depends on the excitatory or inhibitory character of those pulse streams. This
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is validated in Fig. 5.13, in which we observe the output pulse rate as a reaction
to a combination of a constant, purely excitatory input pulse train and an input
pulse train with varying rate and phase with respect to the locking signal. Every
curve on the graph corresponds to a specific rate of the second pulse stream
r2, while the phase is shown on the horizontal axis. The constant pulse train by
itself would result in an output pulse rate of about 1.12 GHz (see Fig. 5.10(a)). A
second input pulse train can clearly influence this output pulse rate. Inhibitory
pulses reduce the rate, excitatory pulses increase it. The higher the pulse rate,
and the closer the phase of the second pulse train to π (purely excitatory) or 0
(purely inhibitory), the stronger the effect. This phase dependency allows a disk
to perform a complex-weighted nonlinear ‘addition’ of input pulse rates.

This effect provides a potential synaptic tuning mechanism in optical neu-
ral networks, since phase delays can play the role of synaptic weights. For
photonic hardware implementations of neural networks consisting of analog
neurons, such as Semiconductor Optical Amplifiers (SOAs) or photonic cyrstal
cavities, it is proven that doing signal processing in the optical domain, in which
signals are complex-valued instead of real-valued, increases the performance of
the network [38–40]. Consequently, the fact that the optical microdisk neuron
allows ’addition’ of pulse rates with complex, instead of real-valued weights,
indicates that optical SNNs potentially can benefit from similar computational
advantages. Phase control of the optical links in a disk network can be achieved
using, e.g., heaters [41].

5.5 Towards cascadability

In the previous sections we proposed microdisk lasers as a basic building block
for an integrated photonic SNN platform. In the remainder of this chapter we
elucidate the pulse transfer mechanism between disks. One clear characteris-
tic of the microdisk excitability is that every downward pulse in the dominant
mode is accompanied by an upward pulse in the suppressed mode, of approxi-
mately the same absolute strength. It is the upwards pulse we will use to excite
another disk. The transfer of an excitation between excitable lasers on an inte-
grated platform is currently only theoretically demonstrated in the case of two
coupled SRLs with an asymmetric intermodal coupling [11] and the spiking VC-
SEL network proposed by Nahmias et al. [14]. In the case of the coupled SRLs,
due to the asymmetry of the system, each neuron has a different function, and
is not straightforward to scale up the dynamics in this system to larger networks
of coupled SRLs. For the approach of Nahmias et al., larger networks were con-
sidered, but the details of a practically feasible integrated interconnections are
still missing.
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In this section, we will propose an easily scalable topology for pulse transfer
between two disks and the necessary rate equations to simulate this system. In
the next section we will demonstrate how this topology allows excitation trans-
fer between the disks.

5.5.1 Connection of the disk neurons

(a)
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Figure 5.14: (a) The output of a microdisk neuron can be connected by a

waveguide to the input of another microdisk neuron. The connec-

tion between both lasers corresponds to a phase difference ∆φ. (b)

Input and output power of the first disk when the second disk is

‘turned off’ (current as well as locking signal are absent). The bot-

tom graph shows the phase difference between the output pulse and

the locking signal. This phase can be used to choose an optimal ∆φ

to allow the first disk to excite the second one.

Figure 5.14(a) depicts the topology of two connected microdisk lasers that
is considered throughout the remainder of this chapter. These microdisk lasers
are locked in the unidirectional regime, close to the SNIC bifurcation along
which excitability was demonstrated in Sec. 5.4. Both lasers are assumed to be
identical, unless mentioned otherwise. All splitters in the circuit have a 50/50
splitting ratio. Consequently, the effective locking signals for the lasers carry a
quarter of the CW1-power (PCW1 ) and half of the CW2-power (PCW2 ), for disks
1 and 2, respectively. Similarly, the input pulse power is attenuated by a factor
of four, before it arrives at disk 1. If the first disk gets excited, its output pulse
will travel through the waveguide connection to the second disk such that this
pulse’s power will get attenuated as well by a factor of four. Despite this power
loss, due to the strong coupling between the disks and their bus waveguide,
the coupling between the two different disks is still 1.8× stronger than the in-
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termodal coupling. To increase the possibility that the output from the first
disk excites the second one, the detuning of the locking signal is slightly differ-
ent in the subsequent sections compared to the value mentioned in Sec. 5.4
(∆ω=ωi n −ωdi sk 1,2 =−20 ns−1 instead of −15 ns−1). The current is still 2.3 mA.
For these parameters, the SNIC bifurcation lies at |Ei n | = 3.63

√
µW. Additional

details about the simulation model and its parameters are summarized in Sec.
5.5.2.

From the simulations in Sec. 5.4, it is clear that the input pulse is preferably
out of phase with the CW locking signal to excite a disk. Therefore, the phase
delay∆φ, and the relative phase of both locking signals, have a crucial influence
on whether or not the first disk will be able to excite the second one. The possi-
bility to use phase tuning to control excitation transfer is a distinctive advantage
of an optical implementation of a spiking neuron. This feature is not present in
electronic spiking neuron implementations. However, the phase of the output
pulse of the first disk is not constant as a function of time. To allow for the first
pulse to excite the second one, the phase delay∆φ needs to be chosen such that
the pulse is out of phase with the CW2 input, for a significantly long amount
of time. We first assume that the two locking signals, CW1 and CW2, arrive at
the disks with the same phase. Figure 5.14(b) shows a power and phase trace of
the output pulse of first disk (locked with a 3.7

√
µW locking signal), while the

second disk is turned off. Although the phase of the mode traverses the whole
2π-interval, it stays nearly constant during the whole downward stroke of the
pulse (around −1.9π). This pulse should be out of phase with the locking signal
at the second disk. This leads to (2n + 1)π = −1.9 π+∆φ, n ∈ Z, for n = −1:
∆φ= 1.9π−π≈ 2.8 rad.

Although the rule of thumb we present here to calculate the optimal ∆φ
for excitation transfer results in the expected behaviour in the subsequent sec-
tions, it should be used carefully. Indeed, in the remainder of this chapter the
second disk is turned on. When both disks are lasing, the bias output of the
suppressed mode of one disk will couple through the waveguide to the other
disk and interfere with the external locking signal, changing the effective power
and phase the other disk receives, and consequently also changing the optical
output of this laser. So, by finetuning ∆φ to obtain an optimal interference of
the output pulse with the locking signal of the second disk, one simultaneously
also changes the dynamics of the first disk due to the coupling between the
two lasers. Even though the bias power of the suppressed mode is rather low,
preliminary simulations show that its influence is not negligible.

Additionally, the previous calculation is based on the assumption that both
lasers are identical and have, more specifically, an equal intermodal coupling
phase φc . However, as we mentioned in Sec. 5.4, φc is difficult to control during
fabrication, and will most likely vary from disk to disk. As the phase difference
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between the CW and CCW modes is heavily dependent on φc , this implies that
on an experimental chip these deviations in φc have to be taken into account.
Whereas a shift of the average intermodal coupling phase φc = φc1+φc2

2 with
respect to the value of Table 5.1, will have no influence on the dynamics of the
system if only ∆φ is adapted to the new value, the difference in ∆φc =φc2 −φc1

can not be compensated by changing ∆φ. Indeed, if ∆φc 6= 0, the symmetry of
the system is broken and this can only be mitigated by choosing a phase dif-
ference between the two locking signals that exactly compensates ∆φc . In Sec.
5.6.2, we will discuss mechanisms to break the symmetry of the coupled laser
system intentionally in a controlled way, and show the consequences of this
asymmetry on the pulse transfer mechanism. As the dynamics for ∆φc 6= 0 is
phenomenologically the same as what happens in these controlled asymmetric
systems, we will for the remainder of the chapter assume ∆φc = 0.

In the case of excitation transfer between two SRLs with asymmetric inter-
modal coupling, not only a different excitation mechanism is used, but also
the asymmetry in the intermodal coupling is chosen such that the SRL that is
triggered by an external pulse receives the strong mode from the subsequent
SRL, while it sends out its suppressed mode to this other SRL. In contrast, in the
topology we currently propose the two disks receive each other’s suppressed
mode. Indeed, from the point-of-view of the interconnecting waveguide the
two disks lase in the symmetric outward state Sout , as defined in [42] for the
case of two SRLs, interconnected by a single bus waveguide, without optical
injection.

5.5.2 Rate equation model of two coupled microdisk lasers

In this subsection, the simulation details of the coupled system are summa-
rized. A single microdisk laser can be described in the slowly varying enve-
lope approximation using the coupled rate equations mentioned in Sec. 5.2.1.
Caphe, the circuit simulator we use throughout this thesis, converts the equa-
tions that describe the coupling of the optical modes to the bus waveguide into
the formalism described in chapter 3, which, for the circuit proposed in Fig.
5.14(a), results in the following set of coupled differential equations:
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In Eqs. (5.7)-(5.10), ∆ω = ωi n −ωi is the detuning between the input light
ωi n and the free-running cavity frequency ωi of disk i (i ∈ {1,2}, unless other-
wise mentionedω1 =ω2 =ω0); ECW, i are the complex amplitudes of the optical
inputs used for the locking of both disks, while Etr is the complex amplitude of
the input pulse (in both cases |Eα|2 is the power in the waveguide). ∆φ is the
phase difference due to the interconnecting waveguide. The factors 1p

2
are due

to the power loss in the splitters. Equation (5.11) describes the evolution of the
number of free carriers Ni . Ii is the injected current to each disk, G±

i are the
gain coefficients of the modes. The denominator in Eq. (5.11) includes cross-
and self-gain modulation. The complex amplitude due to the output of disk i ,
as felt by the other disk, has propagated through the connecting waveguide and
two splitters and can be calculated to be:
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Similar to the intermodal coupling C , this results in an intercavity coupling term
K =−κ2τ

2 e j∆φ, coupling the suppressed mode of a disk to the strong mode of the
other disk. Given |K |

|C | = 1.80 > 1, the coupling is clearly stronger than the weak
coupling regime as used so far for two coupled excitable SRLs with asymmetric
intermodal coupling [11].

5.6 Transfer of the excitation

In this section, we investigate the transfer of excitations in the proposed topol-
ogy. First, we study the purely symmetric case of two identical disks driven by
an equal locking signal, which results in a continuous transfer of the excitation
between the two disks. Next, we induce asymmetry in the system to make the
excitation transfer unidirectional.
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5.6.1 Symmetrical coupling - Oscillations
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Figure 5.15: If the first disk is excited it will in turn excite the second disk,

which will re-excite the first disk, resulting in a continuous excita-

tion transfer between the two disks. Both disks are pumped with a

2.3 mA current and ∆φ = 2.8 rad. The locking signals for both disks

are 3.8
√
µW. The input pulse is 1

√
µW strong and 0.1 ns long.

In Fig. 5.15, both disks are biased identically and a trigger pulse has been
sent to the first disk. The time trace demonstrates that an excitation of the first
disk can travel through the connecting waveguide and in turn excite the second
disk. Apart from the input waveguide for the initial perturbation, the system
is purely symmetric. The second disk will therefore in turn excite the first one,
forming a repeating cycle. This system is in a sense bistable: in addition to the
initial situation, with constant output powers, a LC of alternating excitations ex-
ists.

Given the approximate nature of determining ∆φ, in which we did not even
take the coupling between the two lasers into account, it is remarkable that our
initial prediction, without any additional corrections, indeed corresponds to
this alternating excitation regime. Additional simulations show that the desired
behaviour only occurs in a narrow ∆φ-range. In principle, one would expect
that for other ∆φ-values only the first disk is excited, while the second disk re-
mains silent. Unfortunately, the coupling between the two disks due to the bias
output of the suppressed mode partly prevents this desired behaviour. Indeed,
due to influence of ∆φ on the interference between the external locking power
and the output of the suppressed mode of the other disk, there exists a ∆φ re-
gion, in which the effective locking power is not sufficient to obtain locking, and
the lasers start to self-pulsate (sometimes with synchronous pulses, sometimes
with interleaved pulses), even without the need for an external trigger pulse to
turn on the oscillation, while, in contrast, for other ∆φ values the interference
effects raise the threshold of the first disk, such that the first disk is not excited
by the external input pulse. In principle, by optimizing the external control pa-
rameters of the lasers it should be possible to obtain a regime where the system
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is less sensitive to this coupling. For instance, in the unidirectional regime, for
increasing injection current the power of the suppressed mode decreases (Fig.
5.1), so using higher injection currents will diminish the coupling. Similarly, by
working with higher external locking signals, the influence of the interference
with the suppressed mode output will decrease. Unfortunately, those two so-
lutions intrinsically imply that the lasers need more external power injection to
be more robust in parasetric coupling effects. Both the theoretical study of ∆φ’s
influence on the dynamics and the optimization of the control parameters with
respect to the robustness-power consumption trade-off can be considered as
an important point for future work.

Interestingly, in two SRLs without optical injection (but with symmetrical
intermodal coupling), coupled through a single bus waveguide, dependent on
the phase and strength of the optical coupling, relaxation oscillations that were
not present in the individual SRLs can appear in the outward symmetric state
Sout [42]. However, although a detailed bifurcation analysis still needs to be
done, the similarity in pulse shape and duration between Fig. 5.15 and Fig.
5.14(b), combined with the choice for ∆φ needed to obtain this LC, makes it ac-
ceptable that the oscillation in the case of coupled optically-injected disks is not
just a mere consequence of the optical coupling but is also related to the SNIC
bifurcation that appears in the individual optically-injected disks. The success
of the proposals to create a unidirectional excitation transfer in the subsequent
paragraph strengthen this hypothesis.

5.6.2 Asymmetrical coupling - Unidirectional excitation trans-
fer

Often, a unidirectional pulse transfer is required, i.e., the first neuron excites
the second one, but not the other way round. To achieve this, one has to break
the symmetry in the system depicted in Fig. 5.14(a). In principle, experimental
implementations of this system will never be purely symmetrical. Parameters
of the disks (e.g., the deviations of φc discussed in Sec. 5.5.1), currents, external
reflections, the phase difference between the locking signals, etc. will induce
unintentional asymmetry. However, a deterministically induced asymmetry is
preferable. Based on the simulation in Fig. 5.15, we propose two distinct ways
of breaking the symmetry, in a controlled way. A first method is to artificially
increase the threshold of the first disk, such that the pulse from the first disk
is able to excite the second disk, whereas the (similar) pulse travelling back, is
not sufficiently strong to in turn excite the first disk. The threshold of a disk can
be externally tuned by either changing its current, or the amplitude of its lock-
ing signal. Both decreasing the current or increasing the locking amplitude, will
increase the threshold. In Fig. 5.16(a), we demonstrate this approach by induc-
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Figure 5.16: The excitation transfer between the two disks in Fig. 5.15 can

be made unidirectional by breaking the symmetry of the system. (a)

Symmetry breaking by difference in locking amplitude. The locking

signal for the first disk has an amplitude of 4
√
µW. For the second

disk, the locking amplitude is 3.9
√
µW. Both disks are pumped with

a 2.3 mA current, ∆φ = 2.8 rad. The input pulse is 3 µW strong and

0.2 ns long. (b) Symmetry breaking by difference in locking phase.

The locking signals for both disks have an amplitude of 3.55
√
µW,

while φCW2 = φCW1 + π
2 . Both disks are pumped with a 2.3 mA cur-

rent, ∆φ= 4.2 rad. The input pulse is 1µW strong and 0.1 ns long.

ing an asymmetry in the locking amplitudes, such that the threshold of disk 1
is larger than the threshold of disk 2. The output pulse of the first disk clearly
excites the second one, whereas the first disk is not excited by the returning
(green) pulse. Since the threshold of disk 1 is artificially increased, a stronger
input pulse is required to excite the first disk. In this particular example, the
energy of the external perturbation is 6 times larger than the energy of the pulse
used in Fig. 5.15. This energy related disadvantage limits the applicability of
this approach to larger circuits of interconnected microdisk lasers.

A second method to deterministically break the symmetry of the system
simulated in Fig. 5.15, is to induce a phase difference between the locking sig-
nals. For instance, we can set both locking signals in quadrature (φCW2 =φCW1+
π
2 ). As a consequence, the optimal phase delay to transfer the excitation from
disk 1 to disk 2 will then increase by π

2 , while the optimal delay for transfer of
excitation in the opposite direction decreases by π

2 . This allows to choose the
phase delay in such a way that the pulses travelling from disk 1 have an excita-
tory effect on disk 2, whereas output pulses from disk 2 have an inhibitory effect
on disk one.

In Fig. 5.16(b), the phase difference between both CW locking signals is π
2

and ∆φ = 1.9π− π
2 ≈ 4.2 rad. This brings the lasers in a regime in which a rel-

atively weak pulse can excite the first disk, the first disk in its turn excites the
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second one, but this excitation does not excite the first disk. To achieve this,
due to the change of the phase delay in the connecting waveguide, the lock-
ing amplitude has to be changed compared to the case of Fig. 5.16(a). Indeed,
the small constant signal from one disk interferes differently with the constant
locking signal of the other. An important advantage of this approach is that the
threshold of the first disk is not artificially increased.

5.7 Sensitivity to parameter variations

In this section, we investigate the sensitivity of the response of the circuit in-
troduced in Sec. 5.14(a), starting from the parameters used in Fig. 5.16(b), to
certain parameter variations. In particular, we analyze the sensitivity to current
variations and variations of the frequency detuning. Estimates of the robustness
to current variations give an indication of how easily affected the dynamics are
to experimental current fluctuations. The sensitivity to the frequency detun-
ing gives not only a rough estimate of the tolerance with respect to variations
in the lasing wavelengths between different disks, but also to the locking signal
wavelength. The precise lasing wavelength can be seen as a net result of other
parameter variations, and can be experimentally easily obtained.

We finalize this section with a demonstration of a possible approach to com-
pensate such parameter variations, illustrated for the case of deviations in de-
tuning.

5.7.1 Influence of current variations

Figure 5.17 relates the dynamics in both disks to the injection currents 2.3 mA+
∆I1 and 2.3 mA+∆I2. Black regions signify that the disk is excited only once.
In the white regions, the laser does not get excited, neither does it oscillate. In
the light grey regions the laser keeps on oscillating. In the dark grey regions, the
laser shows more complex multipulse excitability, in which the first disk excites
multiple times before it is able to excite the second disk and the system finally
decays back to the initial condition. The region for which excitability in both
disks exists is rather small, with a cross-section of about 0.1 mA. Fortunately, a
current stability of 0.1 mA can be experimentally obtained. Furthermore, this
sensitivity to current variations can be used to make rough estimates of sensi-
tivity to variations in other parameters. Taking into account that the bifurcation
locking amplitude at∆ω=−20 ns−1 changes about 1

√
µW per mA , a sensitivity

to current variations of 0.1 mA corresponds to a sensitivity to locking amplitude
variation on the order of 0.1

√
µW.

Since, above lasing threshold, the output power of a laser increases linearly
with the current, the SNIC bifurcation shifts to higher injection amplitudes
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Figure 5.17: Influence of variations of the current through disks 1 and 2, ∆I1

and ∆I2, respectively. Unperturbed, both currents are 2.3 mA, ∆φ =
4.2 rad. The locking signals for both disks are 3.55

√
µW and the in-

put pulse is 1 µW strong and 0.15 ns long. As we are interested in

an unidirectional excitation transfer, the optimal current setting ap-

pears when both disks only excite once. We represent a single exci-

tation of the respective disk using black pixels, so the cross section

of the black regions in both plots defines the domain with a unidi-

rectional excitation transfer. In the light grey regions, the disk output

is oscillating, independent of the perturbation. In the white regions,

there is neither oscillation, nor excitation. In the dark grey regions,

the disk shows more complex multipulse excitability (two pulses or

more, after which the system decays again). The white cross repre-

sents the unperturbed system (∆I1 = 0 and ∆I2 = 0).

when the current increases, i.e., the input power needed to lock the laser has to
increase with increasing driving current. This explains the general behaviour
of the two disks in Fig. 5.17. In contrast, for a single disk and at low currents,
the bifurcation lies far below the amplitude of the locking signal, and the pulses
are too weak to excite the laser. When the current is increased, the locking am-
plitude at the SNIC bifurcation approaches the current locking amplitude and
excitation becomes possible. However, when the current is further increased,
the bifurcation locking amplitude ends up above the locking amplitude, and
the mode power oscillates. In Fig. 5.17, the same principle is reflected in the
behaviour of the coupled disks: for each of the lasers, one can typically find
oscillating regimes in higher current regions, unresponsive regions at lower
currents and more complex behaviour, such as excitation, in between. In ad-
dition, as a result of the coupling between the lasers, more complex dynamic
regimes occur that are less easy to interpret. For instance, in the region in the
upper left corner, the second disk oscillates, whereas the first disk gets either
excited, or not. Indeed, the locking signal of the first disk is produced by in-
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terference between the oscillating output of the second disk and a CW locking
signal. In this regime, the excitation of the first disk depends on the timing of
the pulse within the oscillation period of the second disk.

Another consequence of the current dependence of the bifurcation lock-
ing amplitude is that Fig. 5.17 depends on the strength of the input pulses, as
the excitation threshold gradually increases when moving away towards lower
currents. Consequently, at currents for which weak pulses are not capable of ex-
citing the first disk, excitation can become possible when using stronger pulses,
possibly inducing a response of the second disk.

5.7.2 Influence of detuning variations
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Figure 5.18: Influence of variations of the frequency detunings of both disks,

∆ω1 and ∆ω2, respectively. Unperturbed, the detuning is −20 ns−1.

The locking amplitude for both disks is 3.55
√
µW. The input pulse

is 1 µW strong and 0.15 ns long. The colors represent the same be-

haviours as in Fig. 5.17.

Fabricated versions of a given disk design, will differ in the exact cavity wave-
length. Therefore, if the same wavelength is used for the locking signals of those
disks, there will be a certain deviation on the detuning with respect to these
locking signals. Figure 5.18 shows how these deviation in detuning influence the
dynamic behaviour from Fig. 5.16(b). Clearly, the structure of Fig. 5.18 is simi-
lar to Fig. 5.17, but mirrored around the center. The bifurcation diagram in Fig.
5.2 explains this similarity. For a single disk, the locking amplitude of the SNIC
bifurcation decreases when the detuning ∆ω approaches ∆ωCCW = 1.397ns−1,
i.e., the characteristic detuning offset of the unidirectional CCW solution of the
rate equations [32] (this rather small detuning offset represents a change in the
free running wavelength of the laser and is due to the influence of the field pro-
file of the unidirectional solution on N , as a change in N changes the refractive
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index). Hence, bringing ∆ω closer to ∆ωCCW has an effect similar to decreasing
current.

The unidirectional excitability transfer is very sensitive to deviations of the
detuning. It can be found in a ∼ 1 ns−1-wide region, which corresponds to a
width of ∼ 1.27 pm in wavelength. Variations larger than a picometer can al-
ready drastically change the behaviour. Unfortunately, current fabrication tech-
niques typically result in variations in microdisk laser wavelength on the order
of 0.4 nm [43]. Consequently, it is important to know how to deal with those
wavelength fabrications. For this reason, we will discuss some compensation
techniques in the next subsection.

5.7.3 Compensating for variations in detuning
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Figure 5.19: (a) If the detuning of the second laser is −40 ns−1 (e.g., due to

process variations), the dynamics of Fig. 5.16(b) can not be obtained,

even though the other parameters are identical. (b) However, for

this −40 ns−1 detuning of the second laser the desired unidirectional

pulse transfer can be obtained by increasing I2 to 1.7 mA and using

3.55
√
µW and

p
3 ·3.55

√
µW, as locking signal amplitudes for disk 1

and 2, respectively.

In this subsection we will illustrate how one can deal with the detuning vari-
ations, being one of the typical examples of process variations discussed in the
previous subsections.

The excitable behaviour, and the transfer of excitability between two disks,
as presented in section 5.6 and 5.7, is heavily influenced by process variations.
However, for the simulations presented in Sec. 5.7.1 and 5.7.2, either currents,
or detunings were swept, while all other parameters kept fixed. Nonetheless, a
deviation in wavelength can be corrected by changing other parameters. As an
example, we illustrate how a −20 ns−1 detuning mismatch of the second disk
with respect to the first disk (i.e., ∆λ2 = 51 pm instead of ∆λ1 = 25.5 pm) can
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be compensated. Figure 5.19(a) shows how, without any compensation for this
mismatch, both lasers exhibit complex self-pulsating behaviour instead of the
desired unidirectional pulse transfer. The reason for this complex behaviour is
that, for this wavelength detuning, the threshold value to obtain locking, which
is also related to the SNIC bifurcation used for the excitation process, is con-
siderably higher than the current locking amplitude for the second laser. To re-
trieve the undisturbed dynamic behaviour, either the amplitude of the locking
signal can be increased, or the locking threshold can be artificially decreased
by lowering the current. In Fig. 5.19(b), the unidirectional excitation transfer is
recovered by combining both approaches. The current through the second disk
is decreased to 1.7 mA, while its locking power is tripled.

The possibility to retreive the unidirectional excitability transfer in the pres-
ence of resonance wavelength imperfections by adapting the current and lock-
ing power, allows to relax the fabrication tolerances with one order of magnitude
to a few tens of pm. This is still insufficient with respect to state-of-the-art fabri-
cation accuracy. Additional mechanisms, such as deliberately changing the las-
ing wavelength using thermo-optic effects, should be addressed. Appropriately
designed heaters can change the lasing wavelength of microdisk lasers over a
range of about 2 nm [44].

5.8 Future work

In future work, the influence of the intermodal coupling C on the excitability
mechanism in a single disk needs to be characterized. We need to find out the
limitations on |C | to obtain a proper pulse shape of the suppressed mode. As
improved fabrication standards for future generation microdisk lasers might
result in a lower |C |-value, it is important to know whithin what range for C a
proper pulse shape can be obtained and how the pulse width of the excitation
is affected. While the influence on the pulse shape is not so trivial to predict,
we expect the pulse width to increase for decreasing |C |, as a lower |C | implies
a decrease in switching speed of the energy between the CW and CCW mode.
Consequently, to control the value of |C |, it might be necessary to add corru-
gations on the side walls. As preliminary simulations, using the parameters
mentioned in [32], show that the Class 1 excitability mechanism proposed in
this chapter is also present in a SRL, we believe that this excitability mechanism
will be present in other lasers based on whispering gallery mode resonators.
Additionally, in the simulations of these SRLs the pulses are broader, which can
indeed be linked to the smaller |C |-value of these components compared to the
|C |-value of the microdisk lasers.

Moreover, we will need to find regimes where the interconnected disks are
less dynamically coupled by the bias signal of their suppressed modes, making
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a trade-off between power consumption and robustness. A precise bifurcation
study of the alternating excitation mechanism could help to improve the un-
derstanding of the excitation transfer mechanism, and hence give indications
where optimal optical pumping or electrical injection conditions can be found.

Additionally, we did not yet discuss how we would implement the different
locking signals experimentally. Initially, in the experimental demonstration of
the excitability mechanism for a single disk, an external, off-chip commercial
tunable laser can be used. Such commercial lasers have built-in isolators and
will, due to those internal isolators, be insensitive to the dynamics of the on-
chip microdisk lasers. On the other hand, in a larger excitable microdisk circuit,
the locking sources should be integrated on the same chip, being preferably
insensitive to the output of the disks without the need to incorporate isolators
on-chip, as integrated versions of isolators are currently still very lossy. To cir-
cumvent this problem, we can choose other laser types, with less dynamical
behaviour (e.g., based on Fabry-Perot cavities with distributed Bragg reflector
gratings as mirrors), to injection-lock the microdisk lasers. Another option is to
use a microdisk laser in a regime with high output power as the source of the
locking signal. Indeed, in such a high output power regime the microdisk will
be less sensitive to external inputs. The output of this laser can be distributed
over several ’neuron’-disks by using power splitters, diminishing the possibil-
ity for a ’neuron’ disk to disturb the ’locking’ disk. Additional challenges that
still need to be solved are the optimal placement of those external sources, the
development of both a scheme that guarantees that all sources are locked, and
a low-loss routing design in which the circuit for the locking signals does not
interfere with the circuit dealing with the optical spikes.

A final interesting topic to investigate is the possibility to combine the pre-
vious excitation transfer mechanism with Wavelength Division Multiplexing
(WDM). If a non-lasing side-mode of one of the disks (i.e., one of the other
resonance wavelengths of the laser cavity) in the network overlaps with the
lasing mode of another disk, even though both lasers have a different lasing
wavelength, it could still be sensitive to the excitation of the latter. The de-
sign of networks incorporating this type of WDM is non-trivial, because of two
reasons:

1. all the disks share the same gain material, and corresponding gain spec-
trum,

2. to operate in the single-mode regime a large Free Spectral Range (FSR) is
needed, making it harder to let resonance wavelengths of the disk cavities
overlap.

However, as this excitability mechanism is based on optical injection, it might
be possible to reduce the FSR. Indeed, without optical injection a smaller FSR
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for a given gain spectrum results in multimode lasers and, consequently, the
lasing mode can then be selected by the wavelength of the locking signal. In
the case that excitations at other resonance wavelengths of the disk do not
result in modehopping, this approach potentially paves the way towards mul-
tiwavelength optical SNNs. Recently, incoherent optical triggering of excitable
pulses has been demonstrated experimentally in injection-locked semiconduc-
tor lasers [45].

5.9 Conclusion

In this chapter, we theoretically demonstrated that optically-injected micro-
disk lasers can exhibit Class 1 excitability. The excitability mechanism shows
similar properties to equivalent Class 1 excitability found in biological neurons.
Other properties, such as strong influence of optical phase, however, have no
equivalent in biological or electrical systems, though they greatly influence the
behaviour of this specific excitability mechanisms. In the presented geometry,
both output and input are signals with relatively strong power pulses on a small
background signal.

Additionally, given the similarity between the input and output pulse of
the disk, cascadability of this excitability mechanism was demonstrated. The
choice of the phase delay in the waveguide interconnection crucially deter-
mines its excitatory (inhibitory) character by forcing destructive (constructive)
interference of the output pulse of the sending disk with the locking signal of the
receiving disk. The possibility to use phase tuning to control excitation transfer
is a feature which is not present in electronic spiking neuron implementa-
tions. When simulating a perfectly symmetrical pair of coupled disks, with a
phase that corresponds to an excitatory connection, alternate excitations going
back and forth between the neurons appear. This oscillating behaviour can be
avoided by breaking the symmetry of the system, either by naively increasing
the excitation threshold of one of the disks, or by inducing a phase difference
between the locking signals of both lasers. Both methods can bring the lasers
in a regime where only unidirectional transfer of excitation occurs. The latter
behaviour roughly gets lost for current variations of 0.1 mA, and frequency vari-
ations on the order of 1 ns−1 (≈ 1.27 pm). Fortunately, one can compensate for
detuning variations by changing other, more controllable, parameters, such as
the locking amplitude or the current, making the transfer of excitation robust to
variations in lasing wavelength of several tens of pm. However, using the state-
of-the-art production techniques for microdisk lasers, the standard deviation of
the lasing wavelength is still about one order of magnitude too large. Additional
compensation techniques, e.g., wavelength tuning by heating, will need to be
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considered.
The most important challenges for future work are a characterization of the

influence of the intermodal coupling on the excitation mechanism, a reduction
of the coupling of different disks by the bias signal of their suppressed modes
and a scalable on-chip incorporation of the locking signal sources.
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Thourhout, and G. Roelkens. Ultra-thin DVS-BCB adhesive bonding of III-V
wafers, dies and multiple dies to a patterned silicon-on-insulator substrate.
Optical Materials Express, 3(1):35, December 2012.
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6
Conclusions and perspectives

In this PhD research, we have investigated the potential of two types of non-
linear photonic devices to function as spiking neurons that are integrated on a
silicon photonics chip. More specifically, we have characterized the excitability
mechanism in Silicon-On-Insulator (SOI) microrings and in optically-injected
hybrid III-V on silicon microdisk lasers. Even though both components have an
intrinsically different excitability mechanism, we have demonstrated that the
optical output pulse due to an excitation in one component is able to trigger an
excitation in another component. This corresponds to all-optical cascadability
of the excitable components, allowing for pulse-encoded communication be-
tween such integrated optical neurons.

Additionally, to simulate the excitable behaviour in circuits containing those
integrated devices, we developed a framework that can be used to simulate large
circuits of nonlinear components in the time domain, using a phenomenologic
lumped-element representation of the components.

In this final chapter, we summarize the main conclusions of this work, and
elucidate promising roads for future research.
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6.1 High-level simulations of nonlinear photonic in-

tegrated circuits

To study the dynamics in circuits of excitable optical components, the time-
domain behaviour of those circuits needs to be simulated. Therefore, in chap-
ter 3, we introduced Caphe, an in-house software framework that we have de-
veloped to simulate this type of circuits of nonlinear dynamical components.
Scalable simulation tools for nonlinear photonic circuits will be crucial during
the design of future large-scale optical Spiking Neural Networks (SNNs).

The framework proposed in chapter 3 allows for the modeling of optical cir-
cuits both in the time domain and the frequency domain. In the frequency do-
main, it can be used to calculate the (linear) steady-state characteristics of very
large circuits. In the time domain it enables the efficient simulation of highly
nonlinear systems by eliminating those components that can be described us-
ing only a scatter-matrix. The elimination of this type of components reduces
the effective size of the circuit, and consequently speeds up the time-domain
simulations. Because of a very flexible definition of the properties of the basic
building block of the framework, we believe it can be used for other dynamical
systems such as electrical systems and neural networks.

While the software framework was originally developed for time-domain
simulations of nonlinear dynamics in nanophotonic integrated circuits, it is al-
ready being used frequently for other applications in photonics, such as in op-
tical filter design. The software framework Caphe is therefore a very promising
tool, as it is very fast, flexible, and can be combined with other scientific libraries
which are readily available in Python.

In future work, this framework will be extended with different features, such
as an efficient implementation of noise (e.g., to simulate the influence of am-
plified spontaneous emission in lasers), multiwavelength simulations (e.g., to
simulate four-wave mixing experiments) and the possibility to simulate elec-
tronic circuits (e.g., to simulate electro-optic modulation of a Mach Zehnder
interferometer).

6.2 Cascadable excitability

The potential to transfer an excitation from one neuron to another is indis-
pensable when building SNNs. Therefore, in this dissertation we have focused
on two components that allow for an all-optical excitation transfer: a passive
microring and a microdisk laser. In the subsequent subsections we discuss the
results for both types of optical spiking neurons and elucidate their individual
advantages and challenges. We conclude this section by enlightening how the
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continuation of this research will result in the demonstration of large-scale op-
tical SNNs.

6.2.1 A microring as a spiking neuron

In chapter 4, we have discussed how the interplay between thermal and free-
carrier nonlinearities in a passive high-Q microring resonator can be exploited
to obtain excitable pulses. In correspondence with theoretic predictions, this
excitability is mainly observed at the blue side of the resonance. Moreover, a
ring should preferably be close to critical coupling.

This excitability mechanism is related to the presence of a nearby subcritical
Andronov-Hopf (AH) bifurcation at the self-pulsation onset. As a consequence
the system shows Class 2 excitability. This thorough understanding of the
excitability mechanism is necessary for a correct characterization of the com-
putational properties of a microring, used as a photonic spiking neuron.

Importantly, the output pulses are sufficiently strong to excite other mi-
crorings, provided that the rings are both in their excitable regime due to a
sufficiently small resonance spacing (< 100pm). Using such a microring circuit,
we have offered the world’s first experimental proof of excitable pulse transfer
in an integrated optics circuit. However, as we have used two all-pass rings
connected by a single bus waveguide, the input perturbation disturbed both
rings simultaneously and the output signal of the circuit contained the outputs
of both rings. In future work, ring pair circuits should be designed in which the
trigger pulse can address only one ring directly, without perturbing the other
one, and in which we have access to the output of the individual rings.

6.2.2 A microdisk as a spiking neuron

In chapter 5, using simulations, we have demonstrated Class 1 excitability in
optically injected microdisk lasers. From an application point-of-view, this ex-
citability mechanism is easier to deal with than the Class 2 excitability mech-
anism in a microring, as currently more training algorithms are available for
neurons with integrate-and-fire behaviour [1].

Class 1 excitability in optically injected semiconductor lasers is known to
show similar properties to equivalent Class 1 excitability found in biological
neurons. However, in regular semiconductor lasers with only one lasing mode,
the output pulses during an excitation are often only a small ripple on a rel-
atively high bias level of the output [2]. Advantageously, a microdisk laser has
two counterpropagating lasing modes, of which one is stronger compared to the
other due to the optical injection. Interestingly, due to the coupling between the
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strong and suppressed lasing mode in the microdisk cavity, the excitation of the
disk by a perturbation of the strong mode, results in a pulse of the suppressed
mode. This pulse is comparable in strength and size to the input pulse and has
only a small background signal due to the low output signal of the suppressed
mode in the rest state.

This excitability mechanism shows conceptual similarities with excitability
in Semiconductor Ring Lasers (SRLs) with asymmetric intermodal coupling. In-
deed, in a microdisk laser without optical injection, and a SRL with symmetric
intermodal coupling, external pulses in the unidirectional lasing regime would
result in switching between the CW and CCW mode [3]. Inducing asymmetry
in this system, using optical injection or an asymmetric intermodal coupling
guarantees that after a large amplitude trajectory due to the perturbation, the
laser returns to its initial rest state. However, the different underlying physics of
the symmetry breaking results in different excitability types: using intermodal
coupling asymmetry results in resonator neuron behaviour (Class 2), while op-
tical injection results in integrating neuron behaviour (Class 1). Additionally, we
have not only found threshold behaviour as a function of the amplitude of the
input pulse, but also as a function of the phase of this input pulse. This corre-
sponds to recent experimental results in regular optical injected semiconductor
lasers [2].

Due to the similarity between input pulse and output pulse, the output pulse
of the disk is able to excite other disks, again giving rise to cascadable excitabil-
ity. The choice of the phase delay in the waveguide interconnection crucially de-
termines its excitatory (inhibitory) character by forcing destructive (construc-
tive) interference of the output pulse of the sending disk with the locking signal
of the receiving disk. This additional degree of freedom offers a potential advan-
tage compared to traditional SNN implementations. Indeed, in analog hard-
ware implementations of neural networks, interference effects of optical sig-
nals due to their phase result in an enhancement of the computational power of
such a network [4, 5]. Consequently, we believe that future optical SNNs would
encounter similar advantages compared to more traditional electronic imple-
mentations due to the sensitivity of the microdisk laser to the phase of the input
pulse, and to the phase of the interconnection waveguide between disks.

Apart from the experimental verification of the previous theoretical results,
the most important challenges for future work are a characterization of the in-
fluence of the intermodal coupling on the excitation mechanism, a reduction of
the coupling of different disks by the bias signal of their suppressed modes and
a scalable on-chip incorporation of the locking signal sources.
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6.2.3 Towards large-scale optical Spiking Neural Networks

The logical continuation of this PhD research is to experimentally demonstrate,
for the first time ever, an on-chip trainable all-optical SNN of non-trivial size in
silicon photonics. This would push the limits of current research, which mainly
focuses on the dynamics in one or two optical neurons, to fully functional net-
works that can be reconfigured and trained.

To achieve this, dedicated training algorithms should be designed of which
the calculations can be efficiently locally implemented on the photonic chip us-
ing an additional electronic circuit. This is something which is not seen in cur-
rent work, but this is a key ingredient, necessary to allow the use of optical SNNs
in real-life applications. Additionally, efficient ways to delay the optical spikes
between the neurons should be proposed. Indeed, to be able to process time-
coded signals, a network needs memory. Intuitively one can understand that
a delay in the interconnections of the neurons would allow for such memory.
To be usable, this delay needs to be on the order of magnitude of the internal
time scale of the neuron. However, due to the small footprints we aim for, the
delay induced by the time-of-flight through the waveguides between the neu-
rons is orders of magnitude too small. We believe that cascading several optical
excitable components will result in a latency accumulation that might offer a
natural mechanism to delay optical spikes.

Building fully-operational SNNs that are trainable would be an important
breakthrough in hardware design for computational purposes. Indeed, choos-
ing for integrated photonics implies that the neurons will operate at least a mil-
lion times faster than their biological counterparts, with an outlook to becom-
ing faster than current state-of-the-art electronic implementations, while the
neuromorphic approach guarantees a very efficient processing of many time-
varying signals in an energy-efficient way. While initial attempts will probably
deal with networks of only 10-20 components, the large-scale integration of-
fered by silicon photonics will allow to scale this up considerably.

The performance of optical SNNs should be validated, both in simulation
and in experiment, for standard benchmark tasks, such as the pulse-timing en-
coded XOR problem or classification of the iris-dataset [6]. However, the final
aim should be to go beyond that and identify real-world applications that can
benefit from the advantages of this platform. Special emphasis should be placed
on applications in which the input data is already in the optical domain, e.g.,
signal monitoring in optical networks or header recognition. Here, preliminary
work has already been undertaken in our group on a non-spiking system [7].
Also, analysis of medical optical imaging (e.g., OCT) or LIDAR data [8] can be
considered.
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