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5.7 Simulation results for quasi-phase-matched second harmonic
generation using an MoS2-covered SiN-waveguide, see figure
5.6. a Phase matching period for a fundamental wavelength
of 1550 nm, as a function of waveguide thickness h and width
w. b Calculated nonlinear coupling κ (using equation (5.6)),
as a function of waveguide thickness h and width w, for
χ(2) = 5 · 10−21 m2/V. The dotted lines on figures a and b
represent the approximate parameters of the currently avail-
able waveguides, the diamonds represent the point with op-

timal κ. c Calculated nonlinear conversion PSH(L)
Pf (0)2 , for the

values in line with what was measured (κ = 0.1 m−1 W−
1
2 ,

propagation losses of 12.5 dB/cm for both fundamental and
second harmonic) and for more optimistic values (κ = 0.17

m−1W−
1
2 , propagation losses of 2.5 dB/cm), respectively in

blue and green. d Nonlinear coupling κ versus relative ori-
entation of the MoS2 crystal with respect to the waveguide,
α is the angle between the waveguide cross-section plane and
the ‘armchair’ (X) direction of the MoS2 (see figure 5.2c),
for w = 1.65 μm and h = 190 nm. . . . . . . . . . . . . . . . 5-13
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generation experiments. Nonlinear parameters as re-
ported, the other values were extrapolated. † Dremetsika
et al. [53] and Vermeulen et al. [54] were the first to inde-
pendently report negative values for the intensity-dependent
refractive index. ‡ In a second publication, Dremetsika et al.
published complex values for the nonlinear parameters [50]. . 2-13
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3.1 Rough estimates of |χ(3)|-values measured using third har-
monic generation for fundamental wavelengths in the vicinity
of 1550 nm, from different sources and with different Fermi
energies. † Measurements performed with a fundamental
wavelength of 1300 nm, values estimated from figure 4c in
reference [42]. ‡ Measurement performed with a fundamen-
tal wavelength of 1738 nm for a Fermi energy of about 250
meV. The value at higher doping is rough estimate assuming
a 4-fold enhancement of the χ(3)-parameter. . . . . . . . . . . 3-46

4.1 Second order susceptibility χ
(2)
ijk of different materials. Either

calculated from the Pockels coefficient using equation (4.7),
or measured using second order nonlinear processes such as
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Samenvatting

Doelstellingen en Motivatie

Gëıntegreerde fotonica is een heel snel evoluerende tak van de ingenieurswe-
tenschappen. Enkele decennia geleden waren optische chips nog academi-
sche curiositeiten, maar tegenwoordig worden ze steeds meer gebruikt voor
veelbelovende toepassingen, zoals optische communicatie, sensoren voor in-
dustriële en medische toepassingen, of zelfs voor de implementatie van neu-
rale netwerken. Verschillende materialen kunnen gebruikt worden om deze
chips te maken. Silicium en in toenemende mate siliciumnitride zijn waar-
schijnlijk het meest veelbelovend [1]. Het grote voordeel van deze materialen
is dat ze ook gebruikt worden in de micro-elektronica, en dat heel mature
fabricatiemethoden makkelijk hergebruikt kunnen worden. Verder kunnen
optische structuren bijzonder compact gemaakt worden door het hoge index-
contrast in deze platformen, en heeft vooral siliciumnitride een laag optisch
verlies, een goede thermische stabiliteit en kan het gebruikt worden voor
veel verschillende golflengtes. Er zijn echter ook nadelen. Op standaard
siliciumplatformen kun je optische modulatoren en detectoren maken, maar
geen lasers of versterkers. Actieve functionaliteiten zijn op nitride nog pro-
blematischer. Geen lasers of versterkers, noch detectoren of modulatoren,
zijn voorhanden.

Een veelbelovende strategie om deze problemen aan te pakken is de inte-
gratie van andere materialen op silicium- of siliciumnitridechips. In deze the-
sis kijken we specifiek naar materialen die sterke optische niet-lineariteiten
vertonen. Niet-lineaire effecten zijn aanwezig als de polarisatiedichtheid van
een materiaal op een niet-lineaire manier afhangt van de sterkte van het op-
tische veld. Zulke effecten zijn over het algemeen heel zwak en komen enkel
tot uiting als hoge vermogens gebruikt worden. De komst van gëıntegreerde
fotonica heeft dit enigzins veranderd. Licht wordt geconcentreerd in hele
kleine golfgeleiders, waardoor de lokale intensiteit enorm toeneemt. Hier-
door kunnen niet-lineaire effecten worden geobserveerd en zelfs gebruikt bij
veel lagere vermogens. Wanneer de polarisatiedichtheid van het materiaal
schaalt met het kwadraat van het elektrische veld, spreken we van tweede-
orde niet-lineariteiten. Deze kunnen gebruikt worden voor het genereren van
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licht bij nieuwe golflengten, maar ook voor elektro-optische fasemodulatie.
Dit laatste noemt men het Pockelseffect. Wanneer de polarisatiedichtheid
schaalt met de derde macht van het elektrische veld, spreken we van derde-
orde niet-lineaire effecten. Ook dit kan gebruikt worden voor de generatie
van nieuwe golflengten van licht, of zelfs van buitengewoon breedbandige
spectra. Silicium noch siliciumnitride kunnen gebruikt worden voor tweede-
orde niet-lineaire optica. Derde-orde effecten komen voor in nitride, maar
zijn relatief zwak. In silicium zijn ze heel wat sterker, maar hier maken an-
dere effecten zoals twee-foton-absorptie ze moeilijk bruikbaar. In deze thesis
onderzoeken we verschillende materialen. We gaan op zoek naar materialen
waarvan we enerzijds verwachten dat ze sterk niet-lineair zijn, en die ander-
zijds relatief makkelijk en goedkoop met bestaande silicium- en siliciumni-
tridechips gecombineerd kunnen worden. Grafeen, het meest bekende van
alle tweedimensionale kristallen, komt eerst aan de beurt. 2D-materialen
kunnen relatief gemakkelijk gëıntegreerd worden met nanofotonische com-
ponenten, bovendien hebben verschillende onderzoeksgroepen aangetoond
dat de derde-orde niet-lineare respons van grafeen heel sterk kan zijn. Een
tweede materiaal dat bestudeerd wordt is loodzirconaattitanaat (Eng.: lead
zirconate titanate - PZT). PZT staat bekend voor zijn interessante mate-
riaaleigenschappen, waaronder een sterke tweede-orde niet-lineaire respons
en een sterk Pockelseffect. Recente ontwikkelingen in de depositie van PZT
door de vaktroep Elektroncia en Informatiesystemen aan onze universiteit
maken het voor het eerst mogelijk lichtdoorlatende dunne lagen van hoge
kwaliteit te deponeren op onze fotonische chips [2]. Het laatste materi-
aal dat onder de loep wordt genomen is molybdeendisulfide (MoS2), dit is
een voorbeeld van een “transition metal dichalcogenide” (TMDC). TMDCs
zijn tweedimensionele kristallen, en net als grafeen kunnen ze relatief ge-
makkelijk met bestaande fotonische chips gecombineerd worden. In hun
monolaagvorm vertonen deze materialen tweede-orde niet-lineaire effecten.

Resultaten

Grafeen kan gecombineerd worden met zowel silicium- als siliciumnitride-
chips. Op figuur 1 staat zo een siliciumnitridechip afgebeeld. Het elektro-
nenmicroscoopbeeld van de dwarsdoorsnede (figuur 1c) toont dat het graf-
een op de oppervlakte van de chip in de directe nabijheid van de golfgeleider
ligt. Het grafeen wordt ook elektrisch verbonden met metaalcontacten. Gra-
feen op deze chips kan elektrostatisch “gegate” worden, dit betekent dat de
Fermi-energie kan aangepast worden door een gatespanning aan te leggen.
Op onze siliciumchips doen we dit door een gatespanning aan te leggen tus-
sen de kern van de golfgeleider zelf en het grafeen. Bij siliciumnitride is dit
niet mogelijk, en gebruiken we een zogenaamd elektrolytisch polymeer. Als
eerste experiment tonen we aan dat met grafeen bedekte siliciumgolfgelei-
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Figuur 1: Met grafeen bedekte siliciumnitridegolfgeleiders. a Optisch mi-
croscoopbeeld van enkele golfgeleiders. Het grafeen (onder de contacten) is niet
zichtbaar maar de positie is aangeduid met stippellijnen. b Elektronenmicro-
scoopbeeld van een golfgeleider, het grafeen is duidelijk zichtbaar. c Elektronen-
microscoopbeeld van de dwarsdoorsnede van een golfgeleider.

ders kunnen gebruikt worden voor hun satureerbare absorptie. Dit betekent
dat ze licht met een hoger vermogen minder absorberen. We meten satura-
tievermogens van ongeveer 1 W en tonen ook aan dat de mate van saturatie
kan aangepast worden door middel van de gatespanning. Op siliciumnitri-
degolfgeleiders verrichten we twee andere experimenten, de resultaten zijn
samengevat in figuur 2. Door middel van vierbundelmenging tonen we aan
dat de niet-lineaire parameter |γ| van de golfgeleiders en de derde-orde ge-

leidbaarheid |σ(3)
s | van grafeen ook heel sterk afhangen van de gatespanning

(figuur 2a). Door de signaalgolflengte aan te passen tonen we ook aan dat de
sterkte van de vierbundelmenging sterk afhangt van het golflengteverschil
tussen signaal en pomp (figuur 2b). Een kruismodulatie-experiment laat
ook toe de niet-lineaire faserespons en amplituderespons van elkaar te on-

derscheiden. Figuren 2c en d tonen respectievelijk Im(γ) ∝ Re(σ
(3)
s ), die de

kruis-amplitudemodulatie beschrijven, en Re(γ) ∝ Im(σ
(3)
s ), die hetzelfde

doen voor de kruis-fasemodulatie, in functie van de gatespanning. Opnieuw
zien we sterke variaties van de gemeten parameters met veranderende gate-
spanning. De variaties zijn zelfs drastischer dan wat we zien in het vierbun-
delmengingexperiment, met onder andere tekenveranderingen van zowel het
reëele als het imaginaire deel van γ. Dit betekent dat verschillende regimes
kunnen voorkomen, zoals een positieve of negatieve niet-lineaire breking,
satureerbaare absorptie, of juist het tegenovergestelde. Beide experimenten
kunnen we modeleren met redelijke overeenkomst. Ons model is gebaseerd
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Figuur 2: Gemeten niet-lineaire parameter van met grafeen bedekte
siliciumnitridegolfgeleiders (γ) en de hieruit berekende derde-orde op-

pervlaktegeleidbaarheid van grafeen (σ
(3)
s ). a, b γ en σ

(3)
s gemeten door

vierbundelmenging (pomp met golflengte λp ≈ 1550 nm), in functie van de gate-
spanning en de geschatte Fermi-energie, voor verschillende signaalgolflengten λs

(de legende toont λs − λp) (a) en als functie van het golflengteverschil λs − λp,

voor verschillende gatespanningen VGS (zie legende) (b). c, d γ en σ
(3)
s gemeten

door kruismodulatie tussen een pomp met golflengte λpump ≈ 1550 nm en een
probe met verstelbare golflengte λprobe, de legende toont het golflengteverschil

λprobe−λpump. c Im(γ) en Re(σ
(3)
s ), die kruis-amplitudemodulatie beschrijven, in

functie van de gatespanning en de geschatte Fermi-energie. d Re(γ) en Im(σ
(3)
s ),

die kruis-fasemodulatie kwantificeren, ook als functie van de gatespanning.

op de excitatie van ladingsdragers in grafeen. Dit betekent dat de sterke
niet-lineaire respons van grafeen niet voortkomt uit niet-resonante elektro-
nische effecten, die wel domineren in diëlektrica met lage verliezen.

Door middel van frequentieverdubbeling tonen we aan dat dunne la-
gen PZT tweede-orde niet-lineaire susceptibiliteiten van minstens χ(2) ≈ 40
pm/V kunnen hebben voor een pompgolflengte van 1550 nm. Figuur 3a
toont dat PZT-lagen ook gëıntegreerd kunnen worden met siliciumnitride-
golfgeleiders. Het propagatieverlies van dergelijke golfgeleiders hangt sterk
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Figuur 3: Siliciumnitride bedekt met PZT. a Elektronenmicroscoopbeeld van
de dwarsdoorsnede van een siliciumnitridegolfgeleider bedekt met PZT. b Optisch
microscoopbeeld van één van de ringmodulatoren.

Figuur 4: Metingen op PZT-op-siliciumnitridemodulatoren. a Transmis-
siespectra van een C-band ringmodulator, voor verschillende aangelegde spannin-
gen. b Elektro-optische kleinsignaalmeting (|S21|-parameter) van verschillende
modulatoren. c Voorbeeld van een oogdiagram met een bitrate van 28 Gbps.

af van de manier waarop de nitridechip wordt geplanariseerd voor de PZT-
depositie. Wanneer dit gedaan wordt door middel van chemisch mechanisch
polijsten kunnen verliezen van ongeveer 1 dB/cm gemeten worden. In deze
golfgeleiders tonen we ook frequentieverdubbeling aan. Verder kunnen ze
gebruikt worden voor elektro-optische fasemodulatie. Door een spanning
aan te leggen dwars over de golfgeleider, verandert de effectieve index van
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de optische mode. Op figuur 3b wordt getoond hoe dit kan gebruikt worden
in combinatie met een ringresonator om een amplitudemodulator te maken.
Figuur 4a toont het transmissiespectrum van deze ring, voor verschillende
spanningen. De resonantiegolflengte verschuift wanneer de spanning wordt
aangepast. Deze ring is ontworpen voor gebruik in de optische C-band (1530
- 1565 nm), verder zijn er ringmodulatoren voor de O-band (1260 - 1360
nm) en Mach-Zehndermodulatoren voor de C-band gemaakt. Halve golf
spanning-lengteproducten (VπL) van 3.2 Vcm kunnen worden aangetoond.
Hieruit kan een effectieve Pockelscoëfficient van 60-70 pm/V worden afge-
leid. Deze modulatoren worden gepoold met hoge spanningen voor gebruik.
Tests tonen aan dat de elektro-optische respons stabiel bijft voor minstens
enkele dagen na het polen. De kleinsignaalrespons van onze modulatoren
is te zien in figuur 4b. Bandbreedtes van meer dan 33 GHz wijzen erop
dat dit materiaal geschikt is voor hoge-snelheidsmodulatie. Oogdiagram-
men werden ook gemeten, en blijven open tot bij modulatiesnelheden van
ongeveer 40 Gbps (zie figuur 4c voor een voorbeeld). Simulaties tonen aan
dat simpele aanpassingen aan de dwarsdoorsnede van de golfgeleider nog
voor sterke verbeteringen kunnen zorgen.

Figuur 5: Metingen met MoS2. a Meting van frequentieverdubbeling op een
met MoS2 bedekt substraat, ofwel de s-gepolariseerde component (blauw), of de
p-gepolariseerde component (rood) van de tweede harmonische wordt gemeten.
De volle lijnen zijn de theoretische fits. b Verlies versus MoS2-lengte voor met
MoS2 bedekte siliciumnitridegolfgeleiders met een breedte van 1200 nm, het pro-
pagatieverlies in deze meting is ongeveer 20 dB/cm.

Via imec (Leuven) hebben we toegang tot monolaag MoS2. Figuur 5a
toont het resultaat van een frequentieverdubbelingsexperiment op een met
MoS2 bedekt silica-op-siliciumsubstraat. Een lichtstraal met een fundamen-
tele golflengte van 1550 nm valt in op het sample en is lineair gepolariseerd.
De polarisatiehoek wordt tijdens de meting geroteerd. De blauwe en rode
punten tonen het vermogen in respectievelijk de s- en de p-gepolariseerde
component van de tweede harmonische. Uit deze meting kunnen we een
tweede-orde oppervlaktesusceptibiliteit en bulksusceptibiliteit van respec-
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tievelijk χ
(2)
s ≈ 5·10−21 m2/V en χ

(2)
b ≈ 8 pm/V afleiden. We kunnen MoS2

ook combineren met optische golfgeleiders, gelijkaardig aan de golfgeleiders
in figuur 1. De gemeten propagatieverliezen op deze bedekte golfgeleiders
zijn echter relatief hoog (zie figuur 5b).

Conclusies

De experimenten met grafeen in deze thesis zijn een gote stap vooruit voor
het ontrafelen van het complex niet-lineaire gedrag van dit materiaal. We
tonen voor het eerst experimenteel aan dat een aantal niet-lineaire effec-
ten sterk afhankelijk zijn van de Fermi-energie, en dat ze vooral te wij-
ten zijn aan variaties in de distributie van de elektronen en gaten bij in-
tense belichting. Satureerbare absorptie op een chip kan gebruikt worden
voor bijvoorbeeld gëıntegreerde gepulste lasers. De vierbundelmenging- en
kruismodulatie-experimenten tonen aan dat de niet-lineariteiten in grafeen
inderdaad heel sterk kunnen zijn. Anderzijds concluderen we ook dat ze
veroorzaakt worden door excitatie van ladingsdragers. Dit betekent dat
deze sterke niet-lineariteiten samengaan met sterke lineaire absorptie, dat
ze waarschijnlijk zullen satureren bij hogere vermogens en dat fenomenen
zoals vierbundelmenging smalbandig zijn. Omwille hiervan is het aangera-
den geen onrealistisch grote hoop te koesteren voor het gebruik van grafeen
voor niet-lineaire toepassingen. We tonen echter ook aan dat al deze effec-
ten heel sterk aangepast kunnen worden door gating, wat dan weer een heel
sterke troef kan zijn.

We tonen hoe dunne lagen PZT kunnen gecombineerd worden met foto-
nische chips voor frequentieverdubbeling en elektro-optische modulatie. Ons
frequentieverdubbelingsexperiment toont aan dat dit mogelijk is, maar kan
nog sterk verbeterd worden. Wel hebben we de eerste echte hogesnelheids-
modulatoren gemaakt op siliciumnitride, wat een mijlpaal betekent voor
dit platform. Deze modulatoren kunnen nog verbeterd worden door opti-
malisatie van de dimensies van de doorsnede en op langere termijn zouden
Mach-Zehnder modulatoren met langere fasesecties moeten gemaakt wor-
den, zodat kleinere spanningen kunnen gebruikt worden. Het platform zou
ook modulatie bij andere golflengtes mogelijk maken en PZT kan verder ook
gebruikt worden op andere gëıntegreerde platformen. De materiaalcontan-
ten (de tweede-orde susceptibiliteit en de effectieve Pockels coëfficient) die
we hier meten zijn kleiner dan wat kan verwacht worden op basis van andere
metingen op bulk samples en dunne lagen [2]. Dit betekent dat het polen
van onze dunne lagen nog niet optimaal is, beter polen (bijvoorbeeld bij
hogere temperaturen) zou een directe weg naar betere modulatoren kunnen
zijn.

De tweede-orde niet-lineaire respons van MoS2 is niet buitengewoon
sterk. In combinatie met de hoge verliezen die we meten op met MoS2

bedekte golfgeleiders is dit niet zo veelbelovend. Er zijn echter een aantal
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pistes die nog kunnen verkend worden. Ten eerste is de oorsprong van de
grote verliezen nog niet volledig gekend. Dit verlies kan te maken hebben
met de materiaalkwaliteit. Het groeien van monolagen van TMDCs is com-
plex en wordt voortdurend verbeterd. Kleinere verliezen zouden betekenen
dat ondanks relatief kleine niet-lineariteiten toch sterke effecten gemeten
kunnen worden. Toen de metingen uitgevoerd werden was bovendien enkel
MoS2 voorhanden. Meer TMDCs, bijvoorbeeld WS2, kunnen tegenwoordig
gegroeid worden en kunnen worden onderzocht.
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Summary

Goals and Motivation

Integrated photonic technologies are rapidly coming of age. This is illus-
trated by the many applications that are being explored in both academia
and industry. Examples range from optical interconnects, over various types
of medical and industrial sensors, to neuromorphic photonic chips and much
more. Different material platforms are being developed for these purposes,
all with their own advantages and disadvantages. Particularly promising
materials for photonic chips are silicon, and increasingly silicon nitride [1].
The main selling point of silicon- and silicon nitride-based integrated op-
tics is that conventional CMOS-fabrication can be reused. This enables
us to recycle very mature fabrication techniques stemming from more than
half a century of research and development in the field of electronics. The
high index contrast in these platforms makes very compact circuits possible.
Especially silicon nitride exhibits low linear and nonlinear losses, a broad
transparency window and good thermal stability. There are however some
significant downsides. Although modulators and detectors can be made in
standard silicon platforms, lasers and amplifiers can’t. The situation for
silicon nitride with respect to active functionalities is even more dire, since
neither light modulation, detection nor generation or amplification is possi-
ble.

A promising strategy to solve these issues is the integration of other ma-
terials onto silicon or silicon nitride chips. In this work we look specifically
into the co-integration with materials which show large optical nonlineari-
ties. Nonlinear optical effects come into play when the polarization density
of a material depends nonlinearly on the optical field strength. Typically
these effects require very strong optical fields and thus very high optical
powers. However with the advent of integrated optics, where the optical
mode is confined into a very small cross-section, nonlinear effects can be
observed and even used using much lower powers. In second order non-
linear optics the polarization density scales with the square of the electric
fields. This can be used to generate new frequencies of light, for example
through second harmonic generation, but it can also be used for electro-optic
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phase modulation, which is referred to as the Pockels effect. Third order
nonlinearities, where the polarization density scales with the third power of
the field, can also be used to generate light at specific wavelengths, or even
to generate extremely broadband light. Neither silicon nor silicon nitride
show significant second order nonlinear effects. Third order nonlinearities
are typically weak in silicon nitride, and though they are relatively large in
silicon, they are not so useful since nonlinear absorption processes limit the
optical power that can be used. Several materials are studied in this thesis.
We focus on materials which are expected to show high optical nonlinear-
ities and can be integrated in a relatively straightforward and cheap way
onto chips fabricated in the CMOS foundry. Graphene, the prime example
of a two-dimensional material, is the first to be considered. 2D materials
can relatively easily be integrated onto nanophotonic structures, moreover
some groups have reported very strong third order nonlinear effects in this
material. A second material which is extensively studied is thin film lead
zirconate titanate (PZT). PZT is known for a variety of interesting prop-
erties, among which a strong second order nonlinear and Pockels response.
This material has always been an attractive candidate for second order non-
linear optics. However only recent progress in PZT-deposition made by the
Department of Electronics and Information Systems at our university en-
ables the deposition of high-quality optically transparent thin films onto
nanophotonic chips [2]. A final material which is studied, is molybdenum
disulphide (MoS2), this material belongs to the class of transition metal
dichalcogenides (TMDCs). TMDCs are 2D materials like graphene. They
can also be integrated onto nanophotonic structures in a relatively straight-
forward way. As single layers these materials can show significant second
order nonlinear effects.

Results

Graphene can be integrated onto both silicon and silicon nitride photonic
chips. On figure 1 such a silicon nitride chip is shown. On the electron micro-
scope image of the cross-section (figure 1c), one can see that the waveguide
core is in close proximity of the graphene on the chip’s surface. The gra-
phene is also contacted using metallic contacts. The graphene on these chips
can be electrostatically gated, which means that the Fermi energy can be
tuned by applying a voltage. On our silicon chips this is done by applying a
gate voltage onto the waveguide core itself. On our silicon nitride chips this
is done using a polymer electrolyte. As a first experiment, we demonstrate
that the graphene-covered silicon chips can be used as saturable absorbers.
This means that when injecting optical pulses the waveguide absorption de-
creases with increasing pulse power. The saturation power of this process
is roughly 1 W. It is also demonstrated that the strength of the absorption
saturation can be tuned by changing the gate voltage. On the silicon ni-
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Figure 1: Graphene-covered silicon nitride waveguides. a Optical micro-
scope image of a set of waveguides. The extent of the graphene (under the con-
tacts) is shown by the dashed lines. b Scanning electron microscope image of one
of the waveguides, the graphene is clearly visible. c Scanning electron microscope
image of the cross-section of such a waveguide.

tride waveguides, we perform two other experiments, the results of which are
summarized in figure 2. By means of degenerate four-wave mixing we show
that the effective waveguide nonlinear parameter |γ| and the correspond-

ing third order nonlinear conductivity |σ(3)
s | of the graphene are strongly

tunable when changing the gate voltage (figure 2a). By tuning the sig-
nal wavelength, we also show that the four-wave mixing response depends
very strongly on the detuning between the signal and the pump (figure 2b).
By doing a cross-modulation experiment, we can distinguish the nonlinear
phase and amplitude response separately. Figures 2c and d show respec-

tively Im(γ) ∝ Re(σ
(3)
s ), which quantifies cross-amplitude modulation, and

Re(γ) ∝ Im(σ
(3)
s ), quantifying cross-phase modulation, as a function of the

applied gate voltage. Again, we see strong variations in the nonlinear pa-
rameters. The tunability is even more drastic than when measured through
four-wave mixing, including sign changes in both the real and imaginary
part of γ. This implies that different regimes can exist, including both pos-
itive and negative nonlinear refraction, saturable absorption and its reverse
effect. Both the four-wave mixing and cross-modulation experiment can
be modeled with acceptable accuracy using a simple model based on carrier
heating. This implies that the strong nonlinearity of graphene stems mainly
from its carrier dynamics, and not from nonresonant electronic effects which
dominate in most low-loss dielectrics.

Second harmonic generation experiments on thin-film PZT show that the
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Figure 2: Measurements of the effective nonlinear parameter of
graphene-covered silicon nitride waveguides (γ) and the correspond-

ing third order nonlinear surface conductivity of the graphene (σ
(3)
s ).

a, b γ and σ
(3)
s characterized by degenerate four-wave mixing (pump wavelength

λp ≈ 1550 nm), as function of gate voltage and estimated corresponding Fermi
energy, for different values of signal-pump detuning λs − λp (see legend) (a) and
as a function of signal-pump detuning, for different gate voltages VGS (see leg-

end) (b). c, d γ and σ
(3)
s characterized by cross-modulation between a pump at

wavelength λpump ≈ 1550 nm and a tunable probe at wavelength λprobe, see leg-

ends for the detuning λprobe − λpump. c Im(γ) and Re(σ
(3)
s ), which quantify the

cross-amplitude modulation, as a function of gate voltage and estimated Fermi
energy. d Re(γ) and Im(σ

(3)
s ), which quantify the cross-phase modulation, also as

a function of gate voltage.

material can have second order nonlinear susceptibilities of at least χ(2) ≈ 40
pm/V for a pump at 1550 nm. We demonstrate that PZT thin-films can be
integrated on silicon nitride waveguides, as can be seen in figure 3a. The
losses of these PZT-covered waveguides depend strongly on the method
used to planarize the underlying silicon nitride chip. When this is done by
chemical mechanical polishing, losses on the order of 1 dB/cm are observed.
In these waveguides also second harmonic generation through modal phase
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Figure 3: PZT-on-silicon nitride Pockels modulator. a Scanning electron
microscope image of the cross-section of a silicon nitride waveguide covered with
a PZT film. b Microscope image of one of the ring modulators.

Figure 4: Some measurement results obtained using the PZT-on-silicon
nitride modulators. a Normalized transmission spectra of a C-band ring modu-
lator, for different applied DC voltages. b Electro-optic small signal (|S21| param-
eter) measurement of several modulators. c Example of an eye diagram obtained
with a C-band ring modulator, using a non-return-to-zero modulation scheme at
28 Gbps.

matching is observed. However of most significance is the ability to use the
Pockels effect in PZT for electro-optic phase modulation. By applying a
voltage across the waveguide, the effective index of the optical mode can be
changed. On figure 3b it is shown how this can be used in a ring resonator to
make an amplitude modulator. Figure 4a shows the transmission spectrum
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of this ring, for different applied voltages. The shift of the resonance wave-
length of these devices can be used for amplitude modulation. Besides this
ring modulator for the C-band (1530 - 1565 nm), ring modulators for the O-
band (1260 - 1360 nm) and Mach-Zehnder modulators for the C-band were
also fabricated. Half-wave voltage-length products as low as 3.2 Vcm are
measured. The extrapolated effective Pockels coefficients lie in the range of
60-70 pm/V. These modulators need to be poled using relatively high volt-
ages before use, the stability of the material after poling is tested, and the
response remains constant for at least several days at room temperature.
The small-signal response in figure 4b indicates that these devices can be
used for high-speed electro-optic modulation, with bandwidths beyond 33
GHz. Using a non-return-to zero modulation scheme, eye diagrams were
also measured, which remained open until about 40 Gbps, an example is
plotted in figure 4c. Simulations also show that the modulator efficiency
can still be improved by optimization of for example the PZT thickness,
electrode gap and waveguide width.

Figure 5: MoS2 measurements. a Measured second harmonic power for an
MoS2-covered substrate, for the analyzer selecting either the s- (blue) or p-
polarizations (red). The solid lines are the theoretical fits. b Loss versus MoS2-
covered length for MoS2-covered silicon nitride waveguides with a width of 1200
nm, the propagation loss in this measurement is around 20 dB/cm.

Through imec (Leuven, Belgium), we have access to large area single
layer MoS2. Figure 5a shows a second harmonic generation measurement
obtained with a silica-on-silicon substrate covered with monolayer MoS2.
The fundamental beam with a wavelength of 1550 nm is linearly polarized,
and the polarization angle is rotated during the measurement. The blue
and red line respectively correspond to the second harmonic power detected
with the analyzer set to select either the s- and p- polarized component.
From these measurements we extract respectively a surface and bulk second

order nonlinear susceptibility of χ
(2)
s ≈ 5 · 10−21 m2/V and χ

(2)
b ≈ 8 pm/V.

This material can also be transferred on top of an integrated waveguide
and patterned in a desirable shape. This was done using a silicon nitride
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waveguide similar to the one shown in figure 1. However the measured losses
were on the order of 20-25 dB/cm (see figure 5b), which is relatively high.

Conclusions and Perspectives

For graphene, this work is a step towards better understanding the mate-
rial’s intricate nonlinear behavior. We show that the nonlinear effects we
probe are strongly dependent on the Fermi energy, and that they are mainly
caused by changes in the carrier distribution under strong illumination.
Gate tunable saturable absorption could be used in integrated modelocked
lasers. In the four-wave mixing and cross-modulation experiment, very high
nonlinear parameters were measured. However since they are caused by car-
rier excitation, they inevitably coincide with a large linear absorption, they
will probably suffer from saturation at higher optical powers and effects
such as four-wave mixing are intrinsically narrowband. These reasons make
me less hopeful when it comes to actually using these effects in nonlinear
devices. However we have also shown that these effects are readily tunable
using a gate voltage, which might be a very strong advantage.

We show that thin-film PZT can be combined with integrated photonics
for second harmonic generation and electro-optic modulation. Our demon-
stration of on-chip second harmonic generation is very preliminary and still
needs to be improved, for example by looking into quasi phase-matching
by periodic poling. The modulators we fabricated are however the first
true high-speed modulators on silicon nitride. The most straightforward
next steps are the improvement of the modulator efficiency by optimizing
the cross-section and the design of Mach-Zehnder modulators with longer
phase shifters. Demonstrations of modulation in other wavelength ranges,
and perhaps the use of PZT on other integrated platforms, can also be
considered. It should be noted that the second order susceptibility and ef-
fective Pockels coefficient that were measured were lower than what can be
expected based on bulk values and other thin-film measurements [2]. This
might be an indication that the poling of the material was not yet optimal,
better poling (for example by raising the temperature) would be a direct
way towards more efficient modulation.

The second harmonic response of the MoS2 is not extremely high. In
combination with the high losses of MoS2-covered waveguides this does not
give a very positive outlook. However some future avenues can be explored.
First of all, the high loss is not yet understood. Absorption or scattering
might be related to the quality of the monolayer which is under constant im-
provement. If the loss can be reduced then the relatively small nonlinearity
can in principle be compensated for. At the time of the measurement, only
MoS2 was available, however more TMDCs, for example WS2, are available
now and could also be tested.
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Chapter 1

Introduction

1.1 Silicon and silicon nitride photonics

Optics is the branch of physics in which light is studied. The average

high-school curriculum does not go much further than covering lenses, mi-

croscopes and telescopes, which have been around since at least the 17th

century. As a consequence this topic perhaps has the reputation of being

somewhat old-fashioned among the broader public. In the past decades

this perception has however become completely unjust. Several key devel-

opments have transformed the science of light and its applications into a

hugely dynamic field, with increasing importance in modern society. At the

basis of this rejuvenation lie the invention of the laser, the introduction of

low-loss optical fiber, the development of semiconductor optical devices and

recently the advent of integrated optical circuits [1].

To underline the increasing use of semiconductor materials for generat-

ing and manipulating light, and the growing link between electronics and

optics, the term photonics has largely replaced the term optics [1]. One

of the main evolutions photonics has gone through has been the drastic

miniaturization. Making ever smaller components has already drastically

transformed the performance and economics of electronic systems. For pho-

tonic systems, the same general laws are valid. If you can make the building

blocks smaller, production volumes and yields tend to go up, driving prices

down. Photonic circuits can also become more complex, with improved

functionality. Figure 1.1 illustrates this evolution. Light can be a mixture

of different wavelengths, which for visible light correspond to different col-

ors. An important functionality of an optical system could be the ability

to separate these different colors. In the days of Isaac Newton, and in your

high-school physics class, this was done by using centimeter-scale glass com-
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50 µm

a b c

Figure 1.1: Different devices separating light into its different wavelengths. a
Dispersive prism (image reproduced from Wikipedia). b Silica-based integrated
optical arrayed waveguide grating (image from reference [2]). c Silicon-based
planar concave grating, the colors conceptually show how white light can get
split into its different components and do not represent actual colors (image from
reference [3]).

ponents such as dispersive prisms. This is shown in figure 1.1a. However

with the advent of novel photonic technologies, such as silica-based photon-

ics (figure 1.1b) and silicon photonics (figure 1.1c), devices with essentially

the same functionality on the order of tens to hundreds of micrometer can

be made.

The term “photonic integrated circuit” (PIC) refers to optical systems

implemented on a chip, as can be seen in for example figures 1.1b and

c. These chips are fabricated using very similar techniques as the ones

used for electronic chips. That photonic chips are here to stay is illus-

trated by the many applications which are currently being explored, both

in academia and industry. On the forefront are the many commercial prod-

ucts for optical interconnects, which have replaced long-distance electrical

interconnects, and are increasingly replacing interconnects within datacen-

ters [4]. Silicon photonics-based optical tranceivers for these markets are

being developed by both tech giants like Intel [5], and younger companies

like Luxtera [6]. In recent years, important progress has been made towards

combining photonic interconnects with conventional electronic processors

and memory on the same chip, which could be hugely beneficial for op-

erating speeds and power consumption of computing devices [7]. Other

applications are currently appearing at a rapid pace. PICs are especially

useful for biosensing and medical applications. Companies such as Gen-

alyte are working on silicon photonics-based lab-on-a-chip devices which

promise to provide cheaper, faster and better diagnostics [8]. Indigo, a
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spin-off of our research group, works towards next-generation needle-free

glucose monitoring systems, promising to improve the quality of life of nu-

merous diabetes patients [9]. Not only biosensors are being developed, but

also sensors for industrial applications, such as the silicon photonics-based

solutions for monitoring the structural health of windmills and other large

infrastructure which are currently being developed by Sentea [10]. In the

wake of extremely fast proliferation of machine learning and neural network-

ing, neuromorphic photonic chips are also in the pipeline. Important steps

towards hardware-based neural networks using light are being made [11],

which is illustrated by the recent appearance of startups Lightmatter and

Lightelligence [12, 13]. Driven by the needs of future self-driving cars, com-

panies like Analog Photonics are developing integrated photonic-based next

generation Light Detection and Ranging (LiDAR) sensors [14]. These are

only some of the examples of what integrated photonics has in store for

us. The list could go on, for example considering recent developments in

the use of integrated photonics for quantum information processing [15] or

the many potential applications of on-chip optical frequency combs, such as

spectroscopy or extremely precise optical clocks [16].

Unlike electronics, where silicon is the predominant material system for

making integrated circuits, PICs are still being fabricated in a variety of

platforms. Some notable examples are III-V materials such as InP, silicon-

on-insulator, silicon nitride, chalcogenide glasses, polymers and recently

nanophotonic lithium niobate-based platforms [35]. All of the aforemen-

tioned applications have different requirements, but generally an ideal plat-

form provides low-loss waveguides, good passive components such as filters

and splitters, optical sources, detectors and some kind of active control like

amplitude or phase modulators. Preferably this would be at a low cost, and

for a large range of optical wavelengths. Table 1.1 compares some key prop-

erties of commonly used material systems. Indium phosphide (InP) is prob-

ably the most mature platform, which is illustrated by the long-standing

success of companies using this technology like Infinera [36]. A fundamen-

tal advantage of III-V semiconductors is that they have a direct bandgap

and can be used for light generation in lasers and optical amplifiers. This is

for example not possible in silicon. However, silicon photonics has some no-

table advantages as well, an important one is the much larger index contrast

between the waveguide core and cladding. As a consequence silicon-based

PICs are significantly more compact. Another advantage is the much larger

transparency range, which for example makes mid-IR spectroscopy possi-

ble [37]. Although lasers and amplifiers cannot be made within the platform

itself, detectors and modulators can [38]. One of the most significant ad-

vantages of silicon is the fact that the technology is CMOS-compatible. The
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InP Silicon Silicon nitride

Transparency window (μm) 1.3→ 1.7 [17] 1.1→ 4 [18] 0.4→ 4 [18]

Index contrast (%) <10 [19] 140 [18] 38 [18]

Waveguide loss (dB/cm) 2→ 4 [20] 1→ 1.5 [18] 0.001→ 0.5 [18]

TPA Coefficient (m/W) 3 · 10−10 [21] 10−11 [22] 0 [23]

Thermo-optic coefficient (K−1) 2 · 10−4 [24] 1.8 · 10−4 [25] 2.5 · 10−5 [26]

χ(2) (pm/V) 286 [27] 7† 7†

χ(3) (m2/V2) 7 · 10−18 [28] 2.8 · 10−18 [29] 3.4 · 10−21 [30]

Waveguides and passives 3 3 3

Detectors 3 3 7

Fast modulators 3 3 7

Amplifiers 3 7‡ 7

Lasers 3 7‡ 7

CMOS-compatible fabrication 7 3 3

Table 1.1: Some key properties and available building blocks on some common
nanophotonic platforms. The color code denotes whether the properties are de-
sirable (green), moderately desirable (orange) or less desirable (red) for most
applications.
† Since these materials are centrosymmetric, their second order nonlinear coeffi-
cients are very small. Recently, several groups have however shown that second
order nonlinearities can be induced through control of composition [31], strain [32]
or the photogalvanic effect [33]. This is however not considered here.
‡ These devices can be fabricated through heterogeneous integration with III-V
materials [34].

PICs can be produced using standard CMOS processes, and decades of re-

search and investment from the field of electronics can be recycled. This

has a huge impact on fabrication cost and yield. Silicon nitride is a mate-

rial which appeared more recently [18] and is also CMOS-compatible. This

material is excellent for passive structures, and offers far reduced waveguide

losses, still with a reasonably high index contrast. Contrary to InP and Si,

high optical powers can be tolerated in the telecom bands (around wave-

lengths of 1.3 μm and 1.55 μm) due to the absence of two-photon absorption

(TPA). The lower thermo-optic coefficient implies much better temperature

stability. This however comes at a cost, being an insulator with a very large

bandgap, the use of SiN is limited to passives. Neither amplifiers, lasers,

modulators nor detectors can be directly fabricated in this platform.

It is now clear that the existing platforms all have specific advantages

and disadvantages, and that the choice of the material platform will depend
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strongly on the envisaged application. A promising strategy is to heteroge-

neously integrate other materials on silicon or silicon nitride. Co-integration

of III-V semiconductors on silicon PICs has been done routinely by our

research group, enabling amplifiers and light sources [34]. This thesis fol-

lows a similar strategy. However, instead of looking into the co-integration

of direct-bandgap materials with silicon or silicon nitride, we look at the

integration of several materials which exhibit large optical nonlinearities,

namely several two-dimensional crystals and the thin-film ferroelectric ma-

terial lead zirconate titanate. These phenomena will be discussed in more

detail in the next section. They can be used for different types of light

generation or amplification, and other more exotic applications such as all-

optical signal processing. Second order optical nonlinear materials are also

prime candidates for optical phase modulators. We have chosen to work

mainly with silicon nitride nanophotonic structures, and occasionally with

silicon. As was discussed before silicon nitride is a very good material for

integrated photonics, but it has some notorious flaws which in part can be

alleviated by the co-integration of highly nonlinear materials. One however

has to note that due to the specific deposition processes used in this work,

these materials can be readily integrated on other nanophotonic platforms

as well.

1.2 Nonlinear optics

Nonlinear optics is typically defined as the study of optical phenomena which

are nonlinear in the sense that the material polarization depends nonlinearly

on the optical field strength. Such a nonlinear relation can in most cases be

expressed using a Taylor expansion [29]:

P (t) =P (1)(t) + P (2)(t) + P (3)(t) + . . .

=ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . ),
(1.1)

where E(t) is the time-varying electric field and P (t) is the material polar-

ization density. χ(1) is the linear susceptibility and χ(2) and χ(3) are respec-

tively the second and third order nonlinear susceptibilities, ε0 is the vacuum

permittivity. The consequences of having significant nonlinear terms P (2)

and/or P (3) can be far-reaching. Let’s first consider a material where the

nonlinear terms are not present. In that case light, which is a sinusoidal

wave of frequency ω (say E(t) ∝ sin(ωt)), will induce a polarization of the

same frequency. This in turn will radiate electromagnetic waves at fre-

quency ω. Interference between the incident and emitted waves will merely

induce phase changes, which can be quantified by the refractive index of
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the material. In this case no new frequencies/wavelengths of light are gen-

erated. When the nonlinear terms are strong however, the polarization and

radiated electric field contain components which scale as E2(t) ∝ sin2(ωt) =

[1 − cos(2ω)]/2 and/or E3(t) ∝ sin3(ωt) = [3 sin(ω) − sin(3ω)]/4. Electro-

magnetic waves of new frequencies, 0, 2ω and/or 3ω, are now generated

in the material. When two waves of different frequencies ω1 and ω2 are

incident, the frequencies can even mix into different combinations of these

incident frequencies (ω1+ω2, ω1−ω2, 2ω1−ω2...). In other words, nonlinear

optics can be used to generate new wavelengths/colors of light.
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Figure 1.2: a Commercially available optical parametric oscillator (Coherent Mira-
OPO [39]). b Fiber-based supercontinuum source (NKT Photonics SuperK EVO
OEM [40]). c Example of a supercontinuum generated on an integrated silicon
nitride waveguide, the right-hand picture shows a scanning-electron micrograph
of the waveguide cross-section (images from reference [41]).

A strong second order nonlinearity, χ(2), can be used to generate new

frequencies through second harmonic generation (SHG, ω → 2ω), sum fre-

quency generation (SFG, ω1, ω2 → ω1 +ω2), difference frequency generation

(DFG, ω1, ω2 → ω1 − ω2) and optical rectification (ω → ω − ω = 0) [29].
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These phenomena are routinely used to obtain optical gain at specific wave-

lengths (Optical Parametric Amplification, OPA). This gain can then be

used to amplify modes of an optical cavity which is then called an opti-

cal parametric oscillator (OPO). OPOs are similar to lasers in that they

produce highly monochromatic, coherent and directional beams. Typically

these sources have a very large tuning range. OPOs are commercially avail-

able, see for example figure 1.2a, but they contain sensitive free-space op-

tics and are very expensive, bulky and cumbersome to operate. Sponta-

neous parametric downconversion (SPDC), which is essentially the reverse

process of SFG (ω1 + ω2 → ω1, ω2) is used in the field of quantum op-

tics to make entangled photon pair sources [42]. Finally, when one of

the input fields is not optical, but is an externally applied DC (or RF)

field EDC, then the induced polarization will contain the following terms

P (t) = ε0

[
(χ(1) + χ(2)EDC)E(t) + . . .

]
. The applied field changes the lin-

ear susceptibility and hence the refractive index of the material. This phe-

nomenon is called the linear electro-optic or the Pockels effect and is very

useful for making optical phase modulators. Unfortunately, as can be seen

in table 1.1, χ(2) is not present in silicon or silicon nitride (although there are

exceptions [31–33]). This is because in centrosymmetric materials second

order effects are negligible [29].

Third order optical nonlinearities (χ(3)) are however present in all ma-

terials. Again these effects can be used to generate new frequencies, for

example through third harmonic generation (THG, ω → 3ω). As a matter

of fact, any possible addition or subtraction of three incident frequencies

can be generated (for example ω1, ω2, ω3 → ω1 + ω2 − ω3), these processes

are typically called four-wave mixing (FWM) and can also be used for am-

plification, photon pair generation, etc. The optical Kerr effect, where the

incident field imposes an intensity-dependent phase change upon itself or

on another probe beam (self-phase modulation or cross-phase modulation),

is another important effect. The combination of the Kerr effect and cas-

caded four-wave mixing effects can be used to drastically broaden the spec-

trum of short optical pulses, and create extremely bright broadband sources

called supercontinua, an example of a commercially available supercontin-

uum source and its spectrum are shown in figure 1.2b.

These many applications show that nonlinear optics can be a very pow-

erful tool, however under most circumstances either the electric fields or

the nonlinear susceptibilities are too small for them to have any measurable

effect. In fact, it was only after the laser was invented that strong enough

optical fields were available to observe these effects [43]. The advent of

guided-wave optics has also been a game-changer for nonlinear optics. By

confining a light beam of a given power into a smaller cross-section, elec-
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tric field strengths go up drastically. Moreover by having long interaction

lengths, the newly generated optical frequencies can add up coherently and

become much stronger. This has lead to optical fiber-based broadband

sources of the kinds shown in figure 1.2b, which were the first actual plug-

and-play products based on nonlinear optics (much less cumbersome than

for example OPOs). Integrated optical devices consist of waveguides with

cross-sections that are more than an order of magnitude smaller than the

cores of optical fibers. This extra confinement enhances nonlinear processes

even more. This is for example demonstrated in figure 1.2c, which shows a

supercontinuum generated in an integrated silicon nitride waveguide, bright

white light is visible, even after only several millimeters of interaction length.

Modulators based on the Pockels effect typically consist of centimeter-long

nonlinear crystals. The advent of nanophotonics has recently also enabled

the fist demonstrations of strongly miniaturized χ(2)-based optical modula-

tors [44, 45], where the device footprints are on the order of several 100s of

micrometer. Other demonstrations of nanophotonic nonlinear devices, for

example producing entangled photon pairs or frequency combs, are appear-

ing at a rapid pace.

1.3 Enhancing silicon/silicon nitride
photonics with novel nonlinear materials

In the previous sections, we introduced integrated photonics and discussed

some of the material platforms which are particularly promising. Silicon

nitride (and to a slightly lesser extent silicon) photonics has some clear-cut

advantages, mainly stemming from the convenience and cost-effectiveness of

CMOS-fabrication, low losses, high-quality passives, small device footprint,

etc. However, especially silicon nitride is a notoriously unsuitable platform

for active devices for light generation, modulation, detection, etc.

χ(2) and χ(3) nonlinear optics can be used to fill some of these voids, as

discussed in the previous chapter, these processes can provide a flexible tool

for light generation and manipulation. Since both silicon and silicon nitride

have negligible χ(2), and relatively limited χ(3) 1 we will look into heteroge-

neous integration with other materials. There are several candidate mate-

rials. Utsav D. Dave has studied the co-integration of InGaP onto several

platforms [46]. The fabricated waveguides exhibit third order nonlineari-

ties similar to silicon waveguides, in the absence of two photon absorption.

1Silicon actually has a rather large χ(3), however two-photon absorption limits the
amount of optical power than can be injected in a waveguide, hampering the overall
effect.
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Moreover the material also has a relatively strong χ(2)-coefficient. However

the fabrication is based on bonding and is relatively cumbersome and expen-

sive. Lithium niobate, a material typically used for bulk modulators, can

also be integrated, for example for on-chip second harmonic generation [47]

or electro-optic modulation [48]. However in these examples, the waveguides

are patterned in SiN layers deposited on top of a lithium niobate layer, and

not using standard CMOS-processes. Using organic materials, some promis-

ing modulator designs have been made on silicon [49], although questions

can be asked about the long-term stability of these materials.

Integration of all the aforementioned materials onto silicon or silicon ni-

tride photonic chips is still in its infancy. It is certainly worth the effort to

be on the lookout for new materials which have high optical nonlinearities,

and perhaps are easier/cheaper to integrate. In this thesis, we investigate

several of such materials. First of all there is the class of 2D materials,

of which graphene is the most famous exponent. Our research was trig-

gered by some early reports [50, 51] suggesting that the χ(3) of graphene

is extremely high. Besides that, research around graphene is booming, and

relatively cheap high-quality large-area graphene is already commercially

available. Graphene is also considered to be one of the candidates for post-

Si electronics [52], so it is expected to be available in standard fabrication

facilities at some point. 2D materials in general also have the advantage

that they are naturally passivated, with no dangling bonds. This facilitates

integration with all kinds of integrated platforms. Another class of 2D ma-

terials, the transition metal dichalcogenides (TMDCs), is also considered.

The motivation for this is largely the same as for graphene: the ease of

integration and the large interest in these materials as a whole. Unlike gra-

phene, TMDCs have a nonzero second order nonlinearitiy χ(2). At the time

of the start of this PhD project, several groups had done preliminary stud-

ies of these effects, some of which again published extraordinary high values

of the material nonlinearity [53]. At the beginning of this project we were

for a big part driven by curiosity, wondering whether the hopeful numbers

that had been published would turn into something practically useful, or

whether it all would turn out to be a bit more complicated (let’s leave this

question open for now). Apart from 2D materials, we also studied integra-

tion of thin film lead zirconate titanate (PZT) onto our chips. This was

of course driven by the fact that this is a ferroelectric material known to

exhibit strong second order nonlinear effects. Moreover, we have the ability

to deposit this material onto our chips, thanks to the research performed

by John P. George [54], with who we closely collaborated. The deposition

method is unique in the sense that high-quality and optically transparent

thin films can be deposited onto any sufficiently planar surface, including
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silicon or silicon nitride chips fabricated in a CMOS-fab.

1.4 Overview of the work presented in this
thesis

The thesis is structured so that different materials are covered in different

chapters. Graphene, which was most extensively studied, comes first. Chap-

ter 2 first introduces this unique material, and then goes on discussing the

state of the art of graphene photonics and nonlinear optics, important con-

cepts for understanding nonlinear optics in graphene and graphene-covered

waveguides are introduced. Chapter 3 goes on discussing our experimen-

tal work on graphene-covered waveguides. Most notable are a study of

grate-tunable saturable absorption and tunable four-wave mixing and cross-

modulation in graphene-covered waveguides. PZT comes next, in Chap-

ter 4 we explore both the necessary theory, the second harmonic genera-

tion experiments performed both on thin films on a blank substrate and

in PZT-covered waveguides, and the fabrication and optimization of high-

speed phase and amplitude modulators. From the class of the TMDCs, we

studied the material molybdenum disulphide (MoS2). We chose to cover this

material last because it has properties in common with both graphene (it is

also a 2D crystal) and PZT (it has a large second order optical nonlinearity).

In chapter 5, we introduce this material and discuss the existing literature

on second order nonlinear optics using TMDCs. After this we discuss a

second harmonic generation experiment on the MoS2-samples available to

us through our collaborators at imec, Leuven. Finally a preliminary loss

measurement of MoS2-covered silicon nitride waveguides is presented. In

Chapter 6 some general conclusions and future prospects are given.

1.5 Publications and awards

1.5.1 Publications in international journals

Koen Alexander, Nadja A. Savostianova, Sergey A. Mikhailov, Dries Van

Thourhout and Bart Kuyken. Gate-tunable nonlinear refraction and ab-

sorption in graphene-covered silicon nitride waveguides. ACS Photonics,

Article ASAP, Published online on November 12, 2018.

https://pubs.acs.org/doi/10.1021/acsphotonics.8b01132

Koen Alexander, John P. George, Jochem Verbist, Kristiaan Neyts, Bart

Kuyken, Dries Van Thourhout and Jeroen Beeckman. Nanophotonic Pock-

els modulators on a silicon nitride platform. Nature Communications, vol.

https://pubs.acs.org/doi/10.1021/acsphotonics.8b01132
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9, no. 1, pp. 3444, 2018.

www.nature.com/articles/s41467-018-05846-6

Koen Alexander, Nadja A. Savostianova, Sergey A. Mikhailov, Bart Kuyken

and Dries Van Thourhout. Electrically tunable optical nonlinearities in

graphene-covered SiN waveguides characterized by four-wave mixing. ACS

Photonics, vol. 4, no. 12, pp. 3039-3044, 2017.

https://pubs.acs.org/doi/10.1021/acsphotonics.7b00559

1.5.2 Publications in national and international
conferences

John P. George, Koen Alexander, Bart Kuyken, Dries Van Thourhout

and Jeroen Beeckman. Advances in PZT-on-SiN electro-optic modulator

platform. Advanced Photonics 2018 (Integrated Photonics Research, Sili-

con and Nanophotonics), Switzerland, 2018.

www.osapublishing.org/abstract.cfm?uri=IPRSN-2018-ITh3B.2

Utsav D. Dave, Nicolas Poulvellarie, Koen Alexander, Simon-Pierre Gorza,

Fabrice Raineri, Sylvain Combrié, Alfredo De Rossi, Günther Roelkens,

Bart Kuyken, and François Leo. Second Harmonic Generation by Mixing

Longitudinal and Transverse Electric Field Components in Indium Gallium

Phosphide-on-insulator Wire Waveguides. Advanced Photonics 2018 (Non-

linear Photonics), Switzerland, 2018.

www.osapublishing.org/abstract.cfm?uri=NP-2018-NpTh1C.2

Koen Alexander, Bart Kuyken, and Dries Van Thourhout. Electrically

Tunable Nonlinear Refraction and Absorption in Graphene-covered SiN Wave-

guides. Conference on Lasers and Electro-Optics (CLEO), United States,

2018.

www.osapublishing.org/abstract.cfm?uri=CLEO_QELS-2018-FF2E.3

Koen Alexander, John P. George, Bart Kuyken, Jeroen Beeckman and

Dries Van Thourhout. Broadband electro-optic modulation using low-loss

PZT-on-silicon nitride integrated waveguides. Conference on Lasers and

Electro-Optics (CLEO), United States, 2017. (Post-deadline)

www.osapublishing.org/abstract.cfm?uri=CLEO_AT-2017-JTh5C.7

Koen Alexander, Muhammad Mohsin, Utsav D. Dave, Stéphane Clem-

men, Daniel Neumaier, Bart Kuyken and Dries Van Thourhout. Electrically

Tunable Optical Nonlinearity of Graphene-Covered SiN Waveguides. Con-

www.nature.com/articles/s41467-018-05846-6
https://pubs.acs.org/doi/10.1021/acsphotonics.7b00559
www.osapublishing.org/abstract.cfm?uri=IPRSN-2018-ITh3B.2
www.osapublishing.org/abstract.cfm?uri=NP-2018-NpTh1C.2
www.osapublishing.org/abstract.cfm?uri=CLEO_QELS-2018-FF2E.3
www.osapublishing.org/abstract.cfm?uri=CLEO_AT-2017-JTh5C.7
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ference on Lasers and Electro-Optics (CLEO), United States, 2017.

www.osapublishing.org/abstract.cfm?uri=CLEO_QELS-2017-FM2F.3

Dries Van Thourhout, Marianna Pantouvaki, Herbert D’heer, Koen Alex-

ander, Bart Kuyken, Inge Asselberghs, Steven Brems, Cédric Huyghebaert,

Leili Abdollahi Shiramin, Chiara Alessandri, John P. George, Jeroen Beeck-

man, Min-Hsiang Hsu, Clement Merckling and Joris Van Campenhout. New

materials for modulators and switches in silicon photonics. Silicon Photon-

ics XII, United States, 2017.

spie.org/Publications/Proceedings/Paper/10.1117/12.2253679

Dries Van Thourhout, Leili Abdollahi Shiramin, Chiara Alessandri, Koen

Alexander, Bart Kuyken, Marianna Pantouvaki, Inge Asselberghs, Steven

Brems, Joris Van Campenhout and Cédric Huygebaert. Hybrid Graphene-

Silicon Photonics Devices for Telecom and Datacom. Graphene2017, Spain,

2017.

www.photonics.intec.ugent.be/download/pub_3967.pdf

Koen Alexander, Bart Kuyken and Dries Van Thourhout. Characteri-

zation of graphene-covered SiN waveguide using four-wave mixing. Annual

Symposium of the IEEE Photonics Benelux Chapter, IEEE Photonics So-

ciety, Belgium, 2016.

www.photonics.intec.ugent.be/download/pub_3903.pdf

Dries Van Thourhout, Yingtao Hu, Marianna Pantouvaki, Koen Alexan-

der, Bart Kuyken, Steven Brems, Inge Asselberghs, Cédric Huyghebaert,

Chiara Alessandri, Philippe Absil and Joris Van Campenhout. Hybrid

graphene-silicon photonics devices. European Conference on Optical Com-

munication (ECOC), Spain, 2015.

https://ieeexplore.ieee.org/document/7341887/

Koen Alexander, Yingtao Hu, Marianna Pantouvaki, Steven Brems, Inge

Asselberghs, Simon-Pierre Gorza, Cedric Huyghebaert, Joris Van Camp-

enhout, Bart Kuyken and Dries Van Thourhout. Electrically controllable

saturable absorption in hybrid graphene-silicon waveguides. Conference on

Lasers and Electro-Optics (CLEO), United States, 2015.

www.osapublishing.org/abstract.cfm?uri=CLEO_SI-2015-STh4H.7

1.5.3 Awards

Incubic/Milton Chang Travel Grant at the Conference on Lasers and

Electro-Optics 2018 for the paper Electrically Tunable Nonlinear Refraction

www.osapublishing.org/abstract.cfm?uri=CLEO_QELS-2017-FM2F.3
spie.org/Publications/Proceedings/Paper/10.1117/12.2253679
www.photonics.intec.ugent.be/download/pub_3967.pdf
www.photonics.intec.ugent.be/download/pub_3903.pdf
https://ieeexplore.ieee.org/document/7341887/
www.osapublishing.org/abstract.cfm?uri=CLEO_SI-2015-STh4H.7


Introduction 1-13
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Chapter 2

Graphene as a material
for nonlinear optics

The material presented in this chapter has in part been published in refer-

ences [1, 2].

2.1 Introduction

Based on several promising experimental and theoretical results, graphene

has been described as a material with great potential for nonlinear optics.

To underline the strength of the third order optical nonlinearity in graphene,

authors of some of the pioneering experimental studies have not shied away

from using terms like “very strong” [3], “remarkably huge” [4] or “giant”

[5]. An often discussed advantage of graphene is the potential tunability

of the optical properties through electrostatic gating [6–8]. At the onset

of this PhD project however, not much more was known than the rather

vague description given here. Measured values of nonlinear parameters were

orders of magnitude apart, and the assumed tunability had not yet been

demonstrated experimentally. Within this PhD project, we have combined

graphene with silicon and silicon nitride photonic structures, to characterize

its nonlinearity through different experiments. The experimental results will

be discussed in-depth in Chapter 3. In this chapter, the context is sketched,

some important literature is reviewed and necessary theoretical concepts

are introduced.

To start, in Section 2.2, a brief introduction to graphene and its short

history is given. In Section 2.3, we describe how graphene has been used

so far in the field of photonics. Section 2.4 introduces graphene nonlinear

optics, including an overview of the different units that are used and with
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a strong focus on some issues with the existing experimental demonstra-

tions. In Section 2.5, the theory describing third-order nonlinear optics in

graphene-covered waveguides is developed. This section provides important

tools for the interpretation of the experiments in Sections 3.4 and 3.5.

2.2 A brief introduction to graphene

For almost 70 years, it was assumed that purely two-dimensional (2D) crys-

tals could simply not exist, that they would be thermodynamically unstable

and would disintegrate at even the lowest temperatures [9–11]. As a con-

sequence, interest in graphene and other 2D crystals was for many years

purely academical, as a model system for theoretical physicist [11]. In 2004

however, this assumption was fundamentally challenged, when Konstantin

S. Novoselov, Andre K. Geim and their collaborators published the first

experimental findings on single layer graphene [12, 13]. They had isolated

single crystals using a technique called micromechanical cleaving or the

‘scotch-tape method’, since it involves repeated peeling from bulk graphite

using adhesive tape [12, 13]. Soon it was recognized that graphene, and the

many other 2D materials that since have followed, showed many extraor-

dinary properties and novel physics. This has lead to a surge in research

interest from researchers from a variety of different backgrounds, and even-

tually the contributions of Novoselov and Geim were recognized with the

2010 Nobel Prize in Physics [14].

a b

Figure 2.1: a Crystal structure of graphene, consisting of a hexagonal lattice
of carbon atoms (image reproduced reference [15]). b A hypothetical graphene
hammock (image from reference [14]).

Figure 2.1a shows an artist’s impression of a graphene sheet. It consists

of a single layer of sp2 hybridized carbon atoms in a hexagonal crystal lattice.

The combination of this crystal structure with the exceptional strength of

the carbon-carbon bonds [15], gives rise to extraordinary mechanical prop-

erties. Graphene is extremely strong (with a breaking strength over 100

times higher than that of steel), though remarkably stretchable and flexi-
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ble [14, 16]. This was intuitively illustrated by the Royal Swedish Academy

of Sciences when awarding the 2010 Nobel Prize with the analogy shown

in figure 2.1b: if one was to make a hypothetical 1 m2-large hammock of

single crystalline graphene (which is not possible at the time of writing),

then this hammock would be able to support a full-grown cat, whilst weigh-

ing less than one of its whiskers [14]. As is discussed below, the hammock

would furthermore be colorless and (almost) invisible. Graphene is being

heavily researched for the use in composite materials, where it can not only

strongly improve the mechanical properties, but also can contribute to the

gas barrier properties, electrical and thermal conductivity, and more [16].

EF

E

kx

ky

a b

Figure 2.2: a Sketch of the band structure of graphene. EF is the Fermi energy. b
Demonstration of the electric field effect in graphene, sheet conductivity σ versus
gate voltage Vg (image adapted from reference [13]).

The electrical properties of graphene are equally remarkable. Graphene

is a zero-overlap semimetal, with valence and conductance bands touching

at the K- and K’-points in the Brillouin zone [15], also known as the Dirac

points. At low energies (< 1 eV), the bands are almost perfectly conical [17],

following the dispersion relation E = ~vF|k|, with vF ≈ 106 m/s the Fermi

velocity [11]. The conical part of the band structure of graphene is sketched

in figure 2.2a. One of the first notable electrical properties of graphene that

was studied was its strong electric field effect: using a gate electrode, the

charge carrier density, and correspondingly the conductivity in graphene

can be strongly tuned [11, 12]. An early demonstration of this is shown in

figure 2.2b. Graphene is characterized by a very high carrier mobility µ,

which moreover remains high at elevated carrier concentrations [11]. Carrier

mobilities at room temperature exceeding µ = 105 cm2V−1s−1 and ballistic
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transport over several micrometers have been demonstrated [18].

Graphene has attracted interest for many electronic applications, the In-

ternational Technology Roadmap for Semiconductors (ITRS) considers it as

one of the candidates for post-Si electronics [19]. On the long run, graphene

is expected to enable novel RF and logic transistors [16]. However, the zero

bandgap of graphene causes a non-zero off state drain current, currently

severely limiting the on-off ratio of graphene transistors [16]. Methods to

artificially open a band gap in graphene, such as the use of bilayers, nanorib-

bons or chemical modification, are actively being researched, and functional

device prototypes using graphene transistors are only projected to appear

in the next decade [16]. On a shorter term, graphene is an ideal candidate

as a conductive film in flexible electronics, for example for touch screens,

rollable e-paper, foldable OLEDs, flexible sensors and more [16, 20].

Expectations for graphene are high in many other fields, such as energy

generation and storage, sensing and metrology, bioapplications (for example

for drug delivery) and photonics [21].

2.3 Graphene photonics

The importance of the optical properties of graphene could hardly be un-

derestimated. This was already illustrated by the very first experimental

isolation of monolayer graphene [11, 12]. The ‘scotch tape method’, where

a piece of graphite is repeatedly peeled with adhesive tape until monolay-

ers of graphene are found, had been used before [22]. However single or

few layer graphene flakes had not been discovered. Even though single lay-

ers were almost certainly present, finding them is like finding a needle in

a haystack. This was not even feasible using advanced methods such as

atomic force microscopy (AFM) or scanning electron microscopy (SEM).

The key to discovering the first monolayer flakes was the simple observation

that these become visible in an optical microscope on top of a Si wafer with

with a very specific thickness of SiO2, due to interference effects [11, 12]. If

it wasn’t for this method, graphene would have probably remained undis-

covered. In a sense simple optics was key in enabling graphene science as a

whole.

Likewise, graphene is starting to play an enabling role in optics and pho-

tonics. This material shows very strong light-matter interaction and has

an almost perfectly wavelength-independent absorption spectrum (≈ 2.3 %

for normal incidence) for wavelengths ranging from ≈ 500 nm to the mid-

infrared (the upper wavelength limit depends on the doping level) [17, 23].

Photodetectors using graphene have been demonstrated [24, 25]. The broad-

band nature is for example illustrated by recent work from Goossens et al.,
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who demonstrated a graphene-CMOS image sensor array covering the 300-

2000 nm wavelength range [26]. Moreover, the high carrier mobility allows

for ultra-fast carrier extraction, in principle making photodetectors with

bandwidths exceeding 500 GHz possible [27]. Graphene photodetectors rely

on different physical mechanisms, such as the photovoltaic effect, the photo-

thermoelectric effect or the bolometric effect, for a comprehensive review

see reference [28]. Closely related to photodetectors are optical modulators.

A major asset of graphene is that its Fermi energy can be changed to a

large extent by electrostatic gating, this gives rise to strong tunability of its

electromagnetic properties, for example causing its strong electric field ef-

fect [12]. Similarly, both absorption and refraction at optical frequencies can

be tuned drastically. This enabled the demonstration of integrated electro-

absorption modulators on silicon [29–31] and silicon nitride waveguides [32].

More recently, Sorianello et al. demonstrated that graphene can also be used

to make highly efficient integrated phase modulators [33, 34]. In a some-

what different context, Yao et al. have shown that gated graphene can be

used to control the properties of a frequency comb by tuning the chromatic

dispersion of the ring resonator in which it is generated [35]. Graphene can

furthermore support plasmons. This seems especially promising for applica-

tions in the terahertz and mid-infrared wavelength range, such as imaging,

sensing, or even active metamaterial development [36]. Again tunability of

the plasmon resonance through gating or doping is a crucial advantage of

graphene [36].

Finally, graphene is a very strong saturable absorber, a phenomenon

that can be used to make ultrafast modelocked lasers [37, 38]. When light

gets absorbed by graphene, electrons get excited from the valence to the

conductance band, between the energy levels at −~ω/2 and ~ω/2 (with ω

the photon frequency). After this they will relax, due to carrier-carrier in-

traband collisions and phonon emission, into a hot Fermi-Dirac distribution

(on a timescale of about 100 fs [38]). On a timescale of picoseconds, they

further relax due to interband relaxation and cooling of hot phonons [38].

At high illumination intensities, the band-filling becomes large enough to

induce a significant decrease in the absorption of the material (no two elec-

trons can occupy the same state), this phenomenon is called Pauli blocking.

In graphene, saturable absorption in the near-infrared wavelength range oc-

curs at relatively low powers. As a consequence of the combination of a

linear dispersion relation and the vanishing density of states at the Dirac

point, optical fields can produce particularly large changes in the charge

carrier distributions and the corresponding absorption [39]. It is moreover

a fast process due to the small relaxation times involved, and it is intrinsi-

cally broadband. Initial demonstrations were modelocked fiber lasers with
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wavelengths around 1560 nm [37, 38]. However other laser types at other

wavelengths soon followed, such as in vertical-external-cavity surface emit-

ting lasers at 935-981 nm [40] or modelocked lasers in the mid-IR [41, 42].

Pulse durations down to 29 fs have been demonstrated [43]. Saturable ab-

sorption is an example of a nonlinear optical process, and it was the first to

be experimentally observed in graphene.

2.4 Graphene nonlinear optics

Nonlinear optics can be defined as the study of optical phenomena which

are “nonlinear” in the sense that the material response (for example polar-

ization or current) depends nonlinearly on the optical field strength [44].

Light-matter interaction in graphene is remarkably strong, and the mate-

rial shows a variety of nonlinear phenomena at even moderate powers. This

part focuses on experimental results that can be found in literature (Section

2.4.3) and on some models that are being used to explain these phenomena

(Section 2.4.2). First however, a section is devoted to the different ways

in which nonlinear optical phenomena are quantified in graphene, since a

variety of approaches have been used.

2.4.1 Quantifying the optical nonlinearity of graphene

Graphene nonlinear optics has been studied for about a decade [45]. This

quickly lead to the consensus that the third order nonlinearity of graphene

is “strong”, often quantified by a single scalar real valued material param-

eter (nonlinear index or susceptibility). However a very large large spread

in the measured nonlinear parameters has been published (table 2.1), hence

before giving a brief overview of these results in the next section, it is help-

ful to discuss the different material parameters typically used to quantify

nonlinear optical phenomena in graphene, and how they can be compared.

2.4.1.1 Nonlinear susceptibility

Historically, nonlinear optical processes have been studied in the context of

dielectrics, the nonlinear optical response is described by an optical polar-

ization P (t) with a nonlinear dependency on the electric field strength E(t).

This is often expressed by a power series [44],

P (t) =P (1)(t) + P (2)(t) + P (3)(t) + . . .

=ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . ),
(2.1)
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where ε0 is the vacuum permittivity and χ(1), χ(2), χ(3),... are respectively

the linear susceptibility and the second and third order nonlinear susceptibil-

ities. Equation (2.1) works very well for many isotropic dielectrics, for which

certain approximations are valid [44]. Graphene, being a two-dimensional

semi-metal, behaves differently and several of these approximations need to

be revisited. Mainly, graphene is extremely anisotropic, and the material

response is non-instantaneous. Taking this into account, the mth term of

the polarization series expansion can be written as [46],

P(m)(t) = ε0

∫ ∞
0

dτ1· · ·
∫ ∞

0

dτmR(m)(τ1, . . . , τm)
...E(t− τ1) . . .E(t− τm) ,

(2.2)

where R(m)(τ1, . . . , τm) is the polarization response function of the mth

order [46]. The time-dependence reflects the non-instantaneous nature of

the nonlinear response, and R(m) being a tensor reflects the anisotropy of

the medium. If we decompose the electric field and the polarization in a set

of monochromatic waves, with frequencies ωj and complex amplitudes E(ωj)

and P(m)(ωj). Then the relationship between the nonlinear polarization and

electric complex field amplitudes can be written as 1,

P(m)(ωj) =
ε0

2m−1

∑
ωj=ω1+···+ωm

χ(m)(ωj ;ω1, . . . , ωm)
...E(ω1) . . .E(ωm) ,

(2.3)

with χ(m)(ωj ;ω1, . . . , ωm) the mth order Fourier transform of R(m) [46].

The sum is taken for all combinations of m frequencies for which ωj = ω1 +

· · ·+ωm. Note that for a non-instantaneous response, χ(m)(ωj ;ω1, . . . , ωm)

is in general dependent on the exact frequencies involved2.

Being the parameter-of-choice in dielectrics, χ(m) is often used for gra-

phene [3, 4, 47–50]. Due to symmetry considerations only the odd orders

χ(1), χ(3), χ(5), ... are present in centrosymmetric materials such as gra-

phene [44]. Often it is assumed that χ(3) is the only non-negligible nonlinear

term.

2.4.1.2 Nonlinear surface conductivity

Graphene is known to be a conductor, rather than a dielectric. Moreover

χ(m) is usually defined as a bulk parameter, whereas graphene is inherently

1A similar approach can be taken for more general fields, replacing the sum in equation
(2.3) by an appropriate integral [46].

2ωj is not an argument of this function, it is a common convention to write the
“generated” frequency (the sum of all the actual frequency arguments [44]) before the
frequency arguments ω1, . . . , ωm.
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a 2D material. It is much more natural to describe graphene as an infinitesi-

mally thin surface, and to quantify its response to electromagnetic radiation

(both linear and nonlinear) using surface conductivities σ
(m)
s , so that,

J(m)
s (ωj) =

1

2m−1

∑
ωj=ω1+···+ωm

σ(m)
s (ωj ;ω1, . . . , ωm)

...E(ω1) . . .E(ωm) ,

(2.4)

is the mth order surface current density. Both descriptions are equivalent

using the relation,

J(m)(t) =
J

(m)
s (t)

δ
=
∂P(m)(t)

∂t
, (2.5)

where δ is the graphene thickness and J(m) is the mth order bulk current

density. This leads to,

σ(m)
s (ωj ;ω1, . . . , ωm) = −iε0δωjχ

(m)(ωj ;ω1, . . . , ωm). (2.6)

Using symmetry considerations one can also prove that the third order

conductivity tensor of graphene has only the following nonzero elements

[6] (with x and y coordinates within the graphene sheet, the out-of-plane

components are negligibly small [50]):

σ(3)
s, xxxx = σ(3)

s, yyyy , (2.7)

σ(3)
s, xxyy = σ(3)

s, yyxx , (2.8)

σ(3)
s, xyxy = σ(3)

s, yxyx , (2.9)

σ(3)
s, xyyx = σ(3)

s, yxxy , (2.10)

σ(3)
s, xxxx = σ(3)

s, xxyy + σ(3)
s, xyxy + σ(3)

s, xyyx . (2.11)

2.4.1.3 Nonlinear refractive index

Alternatively, the nonlinear response of graphene is often quantified by sim-

ply assuming that the refractive index n+iκ of the material depends linearly

on the illumination intensity I,

n+ iκ = n0 + iκ0 + (n2 + iκ2)I (2.12)

where n2 + iκ2 is called the intensity-dependent refractive index. n2 and

κ2 represent the nonlinear refraction and absorption, respectively. When

the optical absorption is negligible, κ� n, and the relations n2 ∝ Re(χ(3))

and κ2 ∝ Im(χ(3)) can be used. In a strongly absorbing medium such as
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graphene however, the nonlinear refraction and absorption are the result of

a more complex functions of real and imaginary parts of χ(1) (σ
(1)
s ) and χ(3)

(σ
(3)
s ) [51],

n2 =
3

4ε0c(n2
0 + κ2

0)

[
Re(χ(3)) +

κ0

n0
Im(χ(3))

]
=

3

4ε20cωδ(n
2
0 + κ2

0)

[
−Im(σ(3)

s ) +
κ0

n0
Re(σ(3)

s )

]
,

(2.13)

κ2 =
3

4ε0c(n2
0 + κ2

0)

[
Im(χ(3))− κ0

n0
Re(χ(3))

]
=

3

4ε20cωδ(n
2
0 + κ2

0)

[
Re(σ(3)

s ) +
κ0

n0
Im(σ(3)

s )

]
.

(2.14)

In absorbing media, the complex linear refractive index is related to the

linear susceptibility and conductivity through the relation (n0 + iκ0)2 =

1 + χ(1) = 1 + iσ
(1)
s /(ωδε0).

As mentioned before, graphene is often used as a saturable absorber

[37, 38]. In this context usually only nonlinear absorption is considered and

a somewhat different phenomenological model is used [37],

α(I) = αNS +
αS

1 + I/IS
, (2.15)

where αS and αNS are the saturable and the nonsaturable contributions

to the absorption, and IS is the saturation intensity. For the limit I � IS
this converges to the intensity dependent refractive index model (α(I) ≡
(4π/λ)(κ0 + κ2I), with λ the optical wavelength), with,

κ2 ≈ −
λ

4π

αS

IS
. (2.16)

2.4.1.4 Which description should one use?

Historically, third order nonlinear optical properties have been described in

terms of a nonlinear index or a nonlinear susceptibility [44]. For graphene,

these conventions have been taken over by most experimentalists [3–5, 47,

48, 52–54].

However to unambiguously quantify third order processes in graphene,

the third order surface conductivity tensor σ
(3)
s is the best option. It natu-

rally reflects graphene’s high conductance, its 2D nature and can encompass

frequency dependence.
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Using a third order susceptibility tensor χ(3) is in practice equivalent

and will yield the same results. However it is intrinsically a bulk value and

hence somewhat unnatural for graphene (we effectively assume graphene is

a uniform slab of thickness δ). Using this quantity also leads to some unfair

and even deceptive comparisons. Extremely large χ(3) values for graphene

compared to bulk materials such as glass or silicon are often used as a selling

point. However these large nonlinearities are characteristic to monolayers

and the interaction volumes/lengths are henceforth orders of magnitude

smaller than when shining light through bulk materials (think for example

about a ≈ 0.3 nm thick layer of graphene covering a 300 nm thick SiN

waveguide and the correspondingly small overlap between graphene and

the optical mode).

The nonlinear refractive index is the least appropriate. It is again a pa-

rameter defined for bulk media. Anisotropy as well as frequency dispersion

are often not included. Moreover the conversion to the other parameters

is nontrivial, equations (2.13) and (2.14) were initially derived for lossy

isotropic bulk media [51] and should only be used for order-of-magnitude

estimates when comparing experimental values for a material such as gra-

phene. More detailed studies show that experimentally reported n2 (κ2)

values depend on different combinations of the σ
(3)
s tensor components, de-

pending on the measurement technique and the pump/probe polarizations

used [55].

As a general rule, the use of bulk parameters such as linear and nonlin-

ear refractive indices should be avoided for monolayer 2D materials, linear

and nonlinear optical processes can be appropriately modelled using surface

conductivities.3

2.4.2 Theoretical models for optical nonlinearities in
graphene

The strong nonlinear response of graphene to electromagnetic radiation

was, from a theoretical point of view, first noted by Mikhailov in 2007

[45]. Qualitatively, his argumentation was based on the linear carrier dis-

persion relation of graphene. He noted that in the presence of a sinu-

soidal electric field Ex ∝ cos Ωt, the momentum of an electron follows the

equation of motion dpx/dt = −eEx, hence px ∝ sin Ωt and the velocity

vx = ∂ε/∂px ∝ sgn(sin Ωt), where ε is the electron energy. As a conse-

quence the induced current does not only oscillate at frequency Ω, but also

strong higher harmonics of frequencies mΩ, m = 3,5,7,... are present. This

3A parameter which is equally appropriate, but was not mentioned here, is the surface

susceptibility χ
(m)
s ≡ δχ(m) = iσ

(m)
s /(ε0ω). For low loss 2D materials or interfaces this

parameter is often used, see for example Chapter 5.
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first quasi-classical theory only takes into account intraband transitions and

is valid for frequencies typically below 5-10 THz [45].

Since then, Mikhailov and other authors have published more extensive

theoretical models for the nonlinear conductivity of graphene, also taking

into account interband transitions, and extending their models to the op-

tical domain [6–8]. Analytical expressions are obtained using perturbative

approaches, be it of large complexity. These models have been success-

fully linked to several experimental results, such as recent demonstrations

of gate-tunable third harmonic generation [56, 57] and the four-wave mixing

experiment presented in Section 3.4.

A more intuitive approach is developed in Appendix A. We apply a sim-

ple phenomenological model which takes into account the heating of the

electron-hole gas by the incident electromagnetic radiation and its cooling

due to interaction with the environment, with a phenomenological time con-

stant τE . Based on some simplifying assumptions, we calculate the intensity

I (or electric field Eω) dependence of the charge carrier distribution in the

graphene. Since the linear conductivity of graphene (and hence the linear

optical properties) depend strongly on this distribution, an estimate can

be made of the intensity-dependence of the conductivity, σ
(1)
s (|Eω|2) (see

Appendix A for more information). A σ
(3)
s -based description of the nonlin-

earities assumes that the function σ
(1)
s (|Eω|2) is approximately linear with

respect to |Eω|2, so that σ(1)(|Eω|2) ≈ σ(1)(0) + 3
2σ

(3)|Eω|2. Our model is

based on the assumption that the electron distribution can at all times be

described by a Fermi-Dirac-type function. The chemical potential µ and hot

electron temperature T describing this distribution are dependent on the lo-

cal optical intensity. It must be clear that this approach can only be used to

describe phenomena for which the fluctuations in the local intensity occur at

a longer time-scale than the time needed to reach a steady-state Fermi-Dirac

distribution. This model can be used to describe self- and cross-modulation

experiments, as long as sub-THz modulation frequencies are used, or pulses

with ps durations or more. The model is validated by cross-modulation

experiments in Section 3.5. Four-wave mixing experiments can also be de-

scribed using this model, be it for a relatively small signal-pump wavelength

detuning, this is discussed further in Section 3.4. The model is also used

to explore the limitations of a purely σ
(3)
s -based description of the optical

nonlinearities in graphene in terms of optical intensity, see Section 2.4.3

(and Appendix A.4 for more details).
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2.4.3 Experimental demonstrations of nonlinear
optics in graphene

In 2009, the first demonstration of strong optical nonlinearities in gra-

phene was published, in the context of saturable absorption for modelocked

lasers [37]. The first demonstration of frequency conversion through four-

wave mixing was published by Hendry et al. in 2010 [3]. Soon many other

experimental demonstrations of nonlinear optical processes in graphene fol-

lowed. Gu et al. also observed four-wave mixing in graphene, this time

after incorporating it in an integrated silicon photonic crystal cavity [47].

Wu et al. studied self-phase modulation in solution dispersions of chem-

ically exfoliated graphene. The same phenomenon was later also studied

on CVD-grown single layer graphene using the Z-scan method [5, 52, 53].

Dremetsika et al. used an optical heterodyne detection technique for mea-

suring the optical Kerr effect (OHD-OKE), concluding that the nonlinear

refractive index n2 had a negative value in their measurements [53]. They

later refined their method and reported complex values of the nonlinear

index, conductivity and susceptibility [50]. The observation that graphene

can induce negative nonlinear refraction was also made by Vermeulen et al.,

who covered integrated silicon waveguides with graphene and performed a

self-phase modulation experiment using chirped pulses [54]. Strong third

harmonic generation has furthermore been demonstrated on graphene by

several groups [48, 49].

Table 2.1 summarizes the nonlinear parameters reported in some of these

earlier experimental studies (mostly pre-2017), along with some of the ex-

perimental parameters. The nonlinear parameters as they are reported in

the paper are denoted by a grey background, the others are estimated based

on the relations from the previous section. These values are often only crude

order-of-magnitude estimates, because not all information is available to do

a proper conversion. For example conversion between the nonlinear index

and the nonlinear conductivity/susceptibility requires full knowledge of the

complex nonlinear index, as can be seen in equations (2.13) and (2.14).

When comparing these different experimental studies, one cannot but

notice the enormous spread in reported values. This can have several differ-

ent causes. As was mentioned in the previous section, n2 values measured

using different experimental methods are generally not the same, as they are

functions of different components of the σ
(3)
s tensor. An other explanation

for this is the variety of different phenomena that have been experimentally

studied, at different wavelengths. The nonlinear conductivity is very depen-

dent on its frequency arguments, and we for example cannot expect third

harmonic generation and self-phase modulation experiments to yield the

same values. Theoretical models further indicate that sample dependent



Chapter 2 2-13

Ref.
λ

(nm)
∆t
(ps)

Ip
(W/m2)

|χ(3)|
(m2/V2)

|σ(3)
s |

(Am2/V3)
n2

(m2/W)

[3] 760-1200 6 ≈ 1013 2.1 · 10−15 1.5 · 10−20 ≈ 10−13

[47] 1560 CW - ≈ 10−15 ≈ 10−20 ≈ 10−13

[4] 532 CW < 106 ≈ 10−15 ≈ 10−20 ≈ 10−13

[5] 1550 3.8 < 1013 ≈ 10−12 ≈ 10−18 ≈ 10−11

[52] 733 0.1 ≈ 1015 ≈ 10−15 ≈ 10−20 ≈ 10−13

[54]† 1550 1.2 ≈ 1013 ≈ 10−14 ≈ 10−20 ≈ −10−13

[53]† 1600 0.18 5 · 1012 ≈ 10−14 ≈ 10−20 −1.1 · 10−13

[53]† 1550 3.8 5 · 1012 ≈ 10−13 ≈ 10−19 −2 · 10−12

[50]‡ 1600 0.18 5 · 1012
(−6− 9.6i)

·10−16

(−3.3 + 2.1i)

·10−21

(−1− 1.6i)

·10−13

[48] 789→ 263 0.05 2 · 1014 2 · 10−19 5 · 10−24 -

[49] 1550→ 520 0.15 3 · 1015 4 · 10−15 5 · 10−20 -

Table 2.1: Some earlier experimental values for χ(3), σ
(3)
s or n2 from literature. λ

is the wavelength of the measurement, ∆t is the approximate pulse duration (CW
denotes continuous wave illumination). Ip is the approximate (peak) intensity.

Four-wave mixing experiments.
Self- or cross- phase(or amplitude) modulation experiments.
Third harmonic generation experiments.
Nonlinear parameters as reported, the other values were extrapolated.

† Dremetsika et al. [53] and Vermeulen et al. [54] were the first to independently
report negative values for the intensity-dependent refractive index.
‡ In a second publication, Dremetsika et al. published complex values for the
nonlinear parameters [50].

parameters such as the Fermi energy EF or the carrier lifetime (material

quality) strongly influence the nonlinear conductivity of graphene [6–8]. Fi-

nally, in most experimental studies, the third order nonlinearity is assumed

to be dominant, and higher order terms are neglected. However when us-

ing high optical powers the validity of this assumption is not so trivial.

Demetriou et al. recently showed that higher order nonlinearities become

significant at intensities on the order of 1012 Wm−2 and higher [58]. It has

even been argued that at very high powers, the whole series expansion of the

type in equation (2.1) becomes incorrect [59] and an exact solution for the
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Figure 2.3: a Real part of the intenstity-dependent change in linear conductivity
σ(1)(|Eω|2) − σ(1)(0), as a function of τE |Eω|2. The dotted lines represents the
approximation using only the third order conductivity σ(3); σ(1)(|Eω|2) = σ(1)(0)+
3
2
σ(3)|Eω|2. b Imaginary part of the same parameters. See Appendix A, Section

A.4 for more details. These calculations are done for a wavelength of 1550 nm,
assuming continuous-wave illumination.

intensity dependent conductivity σs(I) has to be calculated. Using the sim-

ple phenomenological model for the optical nonlinearities in graphene which

was introduced in Section 2.4.2 and is described in detail in Appendix A,

this issue can be explored in some more detail. This is done in Section A.4.

As discussed, this model takes into account the heating of the electron and
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hole distributions in graphene under strong illumination. An estimate can

then be made of the intensity-dependent linear conductivity of graphene,

σ
(1)
s (|Eω|2) and the third order nonlinear conductivity by introducing the

linearization, σ(1)(|Eω|2) ≈ σ(1)(0) + 3
2σ

(3)|Eω|2. Figure 2.3 shows the vari-

ation in linear conductivity as a function of electric field strength, using

both the full model (solid lines) and this linearization (dotted lines), for a

variety of Fermi energies EF. According to these estimates the σ(3)-based

model is a reasonably good representation for τE |Eω|2 . 1 sV2/m2. For

increasing intensities, the linearization starts to deviate strongly from the

exact calculations. For τE |Eω|2 > 10 sV2/m2, even order-of-magnitude esti-

mates become problematic. Our experimental results in Sections 3.4 and 3.5

show reasonable correspondence with this model for time constants within

the range 0.1 ps < τE < 1 ps. For these values, we expect the third order

description to lose its validity somewhere within the local intensity range

of 1010 . . . 1012 Wm−2, depending upon the exact time constant, the Fermi

energy and the amount of error that can be tolerated. This is compara-

ble with, or even slightly more pessimistic than, the conclusions made by

Demetriou et al. [58].

With the experiments presented in Sections 3.4 and 3.5, we try to re-

solve some of these issues. We measure different nonlinear phenomena on

graphene (four-wave mixing and cross-amplitude/phase modulation) and

we explicitly map the frequency dependence of the corresponding nonlin-

ear conductivity σ
(3)
s . By using SiN waveguides we moreover strongly im-

prove the efficiency of the nonlinear interactions, allowing us to work in the

continuous-wave regime with limited local intensities. Finally, we have also

gated the graphene, which enabled us to map σ
(3)
s over a range of Fermi

energies EF. Recently, several other groups have also performed more elab-

orate studies on gated graphene. Soavi et al. reported a change of almost

two orders of magnitude in the third harmonic generation efficiency when

tuning the Fermi level in gated graphene [56]. Jiang et al. reported similar

dependencies, for third harmonic generation, and four-wave mixing [57].

2.5 Third order nonlinear optics in
graphene-covered waveguides

For the experiments presented in the next chapter, graphene will be de-

posited on integrated waveguides. This has some advantages compared to

more traditional experiments performed on single-layer graphene. Firstly,

the optical mode is strongly confined, which is beneficial for nonlinear ex-

periments which scale nonlinearly with the local intensity. Secondly, the

interaction length can be tailored and can easily amount to hundreds of
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Figure 2.4: Sketch of typical graphene-covered waveguide

micrometer, in contrast to experiments where the light passes through a

layer of graphene with a nominal thickness of only several Ångström. A

disadvantage however is that by using a waveguide the nonlinearity in the

graphene is measured indirectly. Instead of the nonlinear conductivity of

the graphene σ
(3)
s , an effective nonlinear parameter of the whole waveguide,

typically called γ, is measured. The relation between the nonlinear con-

ductivity and this waveguide parameter is complicated and depends on the

exact waveguide cross-section. In this section we derive the conversion be-

tween these parameters.

Figure 2.4 shows a typical graphene-covered waveguide. It consists of a

dielectric core and cladding, which have an overall nonlinearity quantified

by a position-dependent nonlinear susceptibility χ
(3)
diel.(x, y). The graphene

layer covers the waveguide. Its contribution to the overall nonlinearity of

the waveguide can be taken into account by assuming that the graphene

is an infinitesimally thin layer with nonlinear surface conductivity σ
(3)
s , or

equivalently by assuming it is a uniform layer with thickness δ and nonlinear

susceptibility χ
(3)
graph.. The conversion between these parameters is shown

on figure 2.4.

We will start our derivation by using the latter assumption, in that case

the overall nonlinear susceptibility χ(3)(x, y) is just the sum of the dielectric

contribution and the contribution by the graphene. Another assumption is

that we consider the nonlinear interaction between a discrete number of

monochromatic waves. This allows us to express the nonlinear polariza-

tion density at frequency ωj within the cross-section using the following

expression,

PNL(ωj) =
ε0

4

∑
ωj=ωk+
ωl+ωm

χ(3)(ωj ;ωk, ωl, ωm)
...E(ωk)E(ωl)E(ωm).

(2.17)

In the derivation of the effective nonlinear parameters of the graphene-

covered waveguides, we will assume that this nonlinear polarization causes

only a small perturbation to the waveguide modes calculated using the linear
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material parameters. The complex amplitude of an unperturbed waveguide

mode at frequency ωj can be written as:

E0(ωj , r) =A0(ωj)
e(ωj , r⊥)√

Pj

eiβjz, (2.18)

H0(ωj , r) =A0(ωj)
h(ωj , r⊥)√

Pj

eiβjz. (2.19)

Where e(ωj , r⊥) and h(ωj , r⊥) are the vectorial electric and magnetic mode

profiles, in what follows, we will often omit the arguments r and r⊥ for

brevity. A0(ωj) is the complex amplitude of the mode. βj is the mode

propagation constant and Pj is the power normalization constant, defined

so that the total power of the mode equals |A0(ωj)|2:∫∫
A∞

1

2
Re{|A0(ωj)|2

e(ωj)√
Pj

× h∗(ωj)√
Pj

} · êzdA ≡ |A0(ωj)|2

⇒Pj =
1

4

∫∫
A∞

{e(ωj)× h∗(ωj) + e∗(ωj)× h(ωj))} · êzdA.
(2.20)

A∞ is the plane perpendicular to the waveguide propagation direction. êz
is the unit vector in the propagation direction z. By definition, these modes

obey the Maxwell curl equations,

∇×E0(ωj) =iωjµ0H0(ωj), (2.21)

∇×H0(ωj) =− iωjε0n2E0(ωj), (2.22)

n(r⊥) is the refractive index of the unperturbed waveguide cross-section.

One can include the effect of perturbations, such as linear losses and non-

linearities, by introducing complex slowly varying amplitudes A(ωj , z). The

perturbed waveguide modes are then written as:

E(ωj , r) =A(ωj , z)
e(ωj , r⊥)√

Pj

eiβjz , (2.23)

H(ωj , r) =A(ωj , z)
h(ωj , r⊥)√

Pj

eiβjz. (2.24)

In practice, we will consider the total time-varying fields to be superpositions

of a number of monochromatic waves:

Ẽ(r, t) =
∑
j

Re{A(ωj , z)
e(ωj , r⊥)√

Pj

e−i(ωjt−βjz)} , (2.25)

H̃(r, t) =
∑
j

Re{A(ωj , z)
h(ωj , r⊥)√

Pj

e−i(ωjt−βjz)}. (2.26)
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These perturbed modes should also obey the Maxwell curl equations, where

the influence of third order nonlinearities can be incorporated as a nonlinear

polarization density, PNL(ωj),

∇×E(ωj) =iωjµ0H(ωj) , (2.27)

∇×H(ωj) =− iωjε0n2E(ωj)− iωjPNL(ωj) . (2.28)

To derive the coupled-wave equations, we can start from the conjugated

form of the Lorentz reciprocity theorem [60]:∫∫
A∞

∇ · F =
∂

∂z

∫∫
A∞

F · êzdA. (2.29)

A∞ is the surface perpendicular to the propagation direction. The F-field

can be constructed from the perturbed and unperturbed waveguide mode

fields as F ≡ E∗0(ωj)×H(ωj)+E(ωj)×H∗0(ωj). Substituting this in equation

(2.29) yields:∫∫
A∞

{(∇×E∗0(ωj)) ·H(ωj)−E∗0(ωj) · (∇×H(ωj))

+ (∇×E(ωj)) ·H∗0(ωj)−E(ωj) · (∇×H∗0(ωj))}dA

=
∂

∂z

∫∫
A∞

A0(ωj)
∗A(ωj , z)

Pj
{e(ωj)× h∗(ωj) + e∗(ωj)× h(ωj))} · êzdA.

(2.30)

The left hand side of equation (2.30) can be simplified by substituting equa-

tions (2.21)-(2.22) and (2.27)-(2.28). The right hand side can be simplified

by using the normalization condition (equation (2.20)). Eventually this

gives

∂

∂z
A(ωj , z) = iωj

e−iβjz

4
√

Pj

∫∫
A∞

e∗(ωj) ·PNL(ωj)dA, (2.31)

substituting equations (2.23) and (2.24) in equation (2.17), and subse-

quently in equation (2.31), one gets a general coupled-wave equation for

the set of slowly varying amplitudes:

∂

∂z
A(ωj , z) =iε0ωj

∑
ωj=ωk

+ωl+ωm

A(ωk, z)A(ωl, z)A(ωm, z)e
i(βk+βl+βm−βj)z

16
√

PjPkPlPm

·

∫∫
A∞

e∗(ωj) · χ(3)(ωj ;ωk, ωl, ωm)
...e(ωk)e(ωl)e(ωm)dA,

(2.32)
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here the summation goes over all possible combinations of 3 frequencies that

add up to ωj, including the negative frequencies. Moreover, since the time-

dependent electrical fields are real-valued, one can make use of the equalities

e(−ω) = e∗(ω) and A(−ωj) = A(ωj)
∗ [44].

The integral in equation (2.32) can now be split into the dielectric contri-

bution containing χ
(3)
diel., and the graphene contribution χ

(3)
graph.. Moreover,

we can switch to the description using the nonlinear sheet conductivity for

graphene using the conversion σ
(3)
s = −iε0δωχ

(3)
graph.,

∂

∂z
A(ωj , z) =

∑
ωj=ωk

+ωl+ωm

A(ωk, z)A(ωl, z)A(ωm, z)e
i(βk+βl+βm−βj)z

16
√

PjPkPlPm

·

[
iε0ωj

∫∫
A∞

e∗(ωj) · χ(3)
diel.(ωj ;ωk, ωl, ωm)

...e(ωk)e(ωl)e(ωm)dA

−
∫
G

e∗(ωj) · σ(3)
s (ωj ;ωk, ωl, ωm)

...e(ωk)e(ωl)e(ωm)d`

]
SiN
≈ −

∑
ωj=ωk

+ωl+ωm

A(ωk, z)A(ωl, z)A(ωm, z)e
i(βk+βl+βm−βj)z

16
√

PjPkPlPm

·

∫
G

e∗(ωj) · σ(3)
s (ωj ;ωk, ωl, ωm)

...e(ωk)e(ωl)e(ωm)d`,

(2.33)

where for the graphene contribution, the surface integral over the cross-

section of the waveguide has become a line integral over the graphene. The

final approximation is in the assumption that the nonlinear interactions in

the dielectrics are negligible compared to the ones in the graphene. This the

case for our graphene-covered SiN waveguides discussed in the next chapter.

A simple SiN waveguide without graphene has a nonlinear parameter of

γSiN ≈ 1.4 cm−1W−1 [61], more than 3 orders of magnitude smaller than

our experimental values for graphene-covered waveguides presented in the

next chapter. This is not necessarily the case for silicon waveguides, for

example in reference [54].

Note that in the above derivation, we have not taken into account lin-

ear losses, although these are very important when considering graphene.

Linear losses in these waveguides can be obtained by calculating the unper-

turbed modes with a mode-solver (by making n(r⊥)2 complex, or by adding

a conductive boundary representing the graphene). The propagation loss is

then α(ωj) = 2Im(βj). The most intuitive way to describe loss is to incorpo-

rate a loss term, −α(ωj)
2 A(ωj , z), in the right-hand side of equations (2.32)

and (2.33) and to assume the propagation constant is real. For graphene-
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covered waveguides, it is also intuitive to treat the linear loss due to the

graphene absorption as a perturbation, namely by adding a term represent-

ing the linear surface current density σ
(1)
s (ωj)E(ωj) to equation (2.28). A

similar derivation as the one given before will then give,

α(ωj) =
1

2Pj

∫
G

e∗(ωj) · σ(1)
s (ωj)e(ωj)d`, (2.34)

with σ
(1)
s the linear surface conductivity of graphene.

2.6 Conclusion

In this chapter we started by introducing graphene from a general perspec-

tive (Section 2.2), then we have focused more on the potential of graphene as

a material for photonics (Section 2.3) and more specifically nonlinear optics

(Section 2.4). In Section 2.4.1, the issue of quantifying the optical nonlin-

earities in graphene was addressed. This is a seemingly tedious exercise,

however necessary because several units have been used in literature and

the interpretation and comparison is not straightforward. In Section 2.4.2,

a brief overview of different theoretical approaches to model the optical

nonlinearities in graphene is given. A phenomenological model discussed

in detail in Appendix A, is also introduced here. Section 2.4.3 gives an

overview of some important experimental demonstrations of graphene non-

linear optics. A comparison between the numerical values given in these

different publications is made, to the extent that this is possible. The main

conclusion is that there is a very large discrepancy between different pub-

lished parameters. Several possible explanations of these large differences

are given. For example the different wavelengths used, differences in dop-

ing levels and graphene quality, etc. The possibility that the third-order

description of the optical nonlinearities, which is generally used, is just not

adequate for the high optical powers used in many experiments, is also ex-

plored in more detail. These large differences between existing experimental

values and the potential experimental issues serve as a motivation for the

experiments discussed in Chapter 3, more specifically Sections 3.4 and 3.5.

In these experiments the nonlinear properties of graphene incorporated on

integrated waveguides are probed, while carefully tuning parameters such

as the carrier density and while keeping the local optical intensities modest.

In Section 2.5, a general theoretical model describing third-order nonlinear

optics in graphene-covered waveguides is developed. This theory will serve

as a stepping stone for the interpretation of the experiments in Sections 3.4

and 3.5.
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[54] N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajew-

ska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps. Negative

Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-

phase modulation. Physical Review Applied, 6(4):044006, 2016.



2-26 Graphene as a material for nonlinear optics

[55] N. A. Savostianova and S. A. Mikhailov. Optical Kerr effect in gra-

phene: Theoretical analysis of the optical heterodyne detection tech-

nique. Physical Review B, 97(16):165424, 2018.

[56] G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De Fazio, T. Ma,

B. Luo, J. Wang, A. K. Ott, D. Yoon, S. A. Bourelle, J. E. Muench,

I. Goykhman, S. Dal Conte, M. Celebrano, A. Tomadin, M. Polini,

G. Cerullo, and A. C. Ferrari. Broadband, electrically tunable third-

harmonic generation in graphene. Nature Nanotechnology, 13:583–588,

2018.

[57] T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi,

Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T.

Liu, and S. Wu. Gate-tunable third-order nonlinear optical response of

massless Dirac fermions in graphene. Nature Photonics, 12:430–436,

2018.

[58] G. Demetriou, F. Biancalana, E. Abraham, W. ji, Y. Wang, and A. K.

Kar. Negative Irradiance-Dependent Nonlinear Refraction in Single-

Layer Graphene. In Conference on Lasers and Electro-Optics, page

JTu2A.115. Optical Society of America, 2018.

[59] S. A. Mikhailov. Nonperturbative quasiclassical theory of the nonlinear

electrodynamic response of graphene. Physical Review B, 95(8):085432,

2017.

[60] R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W.

Hsieh, E. Dulkeith, W. Green, and Y. A. Vlasov. Engineering non-

linearities in nanoscale optical systems: physics and applications in

dispersion-engineered silicon nanophotonic wires. Advances in Optics

and Photonics, 1(1):162–235, 2009.

[61] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson. New CMOS-

compatible platforms based on silicon nitride and Hydex for nonlinear

optics. Nature Photonics, 7(8):597–607, 2013.



Chapter 3

Nonlinear optics in
graphene-covered
waveguides

The material presented in this chapter has in part been published in refer-

ences [1–6].

3.1 Introduction

In Chapter 2, graphene was introduced as a material for nonlinear op-

tics. The context and literature were discussed and some theoretical back-

ground was provided. In this chapter, the experiments performed using

graphene-covered waveguides within this PhD project will be discussed.

The first experiment, a demonstration of gate-tunable saturable absorption

in graphene-covered silicon (Si) waveguides, is presented in Section 3.2. In a

sense this experiment stands somewhat separate for the other experiments

discussed in this chapter. Firstly, because it is the only experiment us-

ing Si waveguides, secondly, because saturable absorption is not a simple

third order nonlinear effect if measured with high-power pulses. Hence the

theory developed in Section 2.5 is not adequate and a different model will

be used. The remaining experiments have been performed using graphene

covered silicon nitride (SiN) waveguides, the development of this platform

is described in Section 3.3. The main reason for switching from Si to SiN

is the strong optical nonlinearity (Kerr and two-photon absoprtion) in Si,

which make it more difficult to intperpret the nonlinear measurements of

graphene-covered silicon waveguides. Gate-tunable four-wave mixing and

cross-modulation were demonstrated on this platform, the experiments and
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their interpretations are discussed in Sections 3.4 and 3.5. The possibility of

using this platform for gate-tunable third harmonic generation is discussed

in Section 3.6. Some conclusions are drawn in Section 3.7. Appendix A is

closely related to this chapter, it contains a theoretical model which is used

to interpret some of the experimental results.

3.2 Gate-tunable saturable absorption in
graphene-covered Si waveguides

The first experiment that was performed in the context of this thesis was

the demonstration of gate-tunable saturable absorption in graphene. As

was mentioned above, saturable absorption is a well-known phenomenon in

graphene, at high optical intensities the absorption of the material decreases

due to band-filling and Pauli blocking. This experiment is distinct from the

experiments presented later in this chapter (four-wave mixing and cross-

modulation) in that it is performed using a picosecond pulsed laser, and that

only nonlinear absorption, and no nonlinear refraction effects are probed.

3.2.1 Sample fabrication and measurement setup

The samples for this experiment were originally designed and fabricated

by Yingtao Hu, in the context of the development of graphene electro-

absorption modulators [7]. The device fabrication is summarized in figure

3.1a. The waveguides, grating couplers etc. are first defined and patterned

using deep UV lithography. Phosphorous ion implantation is used to lower

the electrical resistance of the Si (while keeping the optical loss acceptable,

hence the different doping levels). A thermal oxide layer of ≈ 5 nm thick

is then grown on the surface. The graphene is grown by chemical vapor

deposition (CVD) on a Si/SiO2/Cu substrate and transferred using an elas-

tomer stamp at Graphenea [8]. After this it is patterned through an oxygen

plasma etch at Ghent University. Finally the doped silicon and the gra-

phene were contacted in two different steps. More details on the fabrication

can be found in reference [7]. Figure 3.1b shows a sketch of the final device.

The silicon waveguide itself can be used as a gate for the graphene, due to

the thin layer of thermal gate oxide. When applying a gate voltage VG the

charge carrier density in the graphene can be drastically tuned, changing

its optical absorption. These waveguides have been used as efficient electro-

absorption modulators [7]. In figure 3.1c typical mode profiles of a TE and

a TM mode are plotted and figure 3.1d shows optical microscope and SEM

images of the fabricated devices, note that monolayer graphene is clearly

visible in the SEM. Waveguides are either optimized for TE or TM modes
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Figure 3.1: a Fabrication steps for graphene-on-silicon waveguides. b Sketch of
the cross-section of the final device, with applied gate voltage VG (doping levels
n ≈ 1018cm−3, n+ ≈ 1019cm−3, n + + ≈ 1020cm−3). c Examples of mode fields
of a TE and a TM mode. d Optical micrograph (top) and SEM images (bottom)
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depending on the grating couplers used.

The setup used for the saturable absorption measurements is shown in

figure 3.2. Pulses from a Pritel, inc. FFL-1550-10 modelocked laser are am-

plified using a Pritel, inc. HPP-PMFA-20 high peak-power erbium doped
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99/1

VG
Modelocked laser 1%

99%
VOA

FPC
PD

PD

EDFA

Figure 3.2: Setup used for the saturable absorption measurements. Modelocked
laser: Pritel, inc. FFL-1550-10, EDFA: erbium-doped fiber amplifier. VOA: vari-
able optical attenuator. PD: photodiode. FPC: fiber polarization controller. In
the measurement presented in figure 3.4, a modelocked laser of type Calmar FM-
SA-306-SN was used, without EDFA.

fiber amplifier (EDFA), producing pulses of about 8 ps long at 10 MHz

repetition rate, with a central wavelength of 1550 nm. The pulses are then

attenuated using a JDS Fitel HA9 variable optical attenuator (VOA), en-

abling us to tune the optical power without significantly changing the pulse

shape. A splitter and photodiode are used to have a reference measurement

of the optical power injected into the chip and a fiber polarization controller

(FPC) is used to optimize the amount of light coupled into the waveguide.

The power coupled out of the waveguide is detected with another photodi-

ode (PD). Hence the transmission of the graphene-covered waveguide can be

estimated as a function of voltage and input power. Using picosecond pulses

and a relatively low repetition rate, the influence of free carriers generated

by two-photon absorption in Si is minimized.

3.2.2 Experimental results

In figure 3.3a, the measured transmission as a function of the input peak

power is plotted for different voltages, for a TM-waveguide of width 650 nm,

with a graphene-covered section of 150 μm long. At low optical powers the

transmission is independent of input power and the device behaves linearly.

One can see that the absorption decreases when the gate voltage decreases.

The graphene becomes increasingly p-doped and the occupation probability

at −~ω/2 gradually decreases, reducing the number of available electrons

and thus reducing the low-power absorption. In this regime the device op-

erates as an electro-absorption modulator. At high input powers nonlinear

effects play a significant role. On one hand one can see a clear initial de-

crease of optical loss, especially for the high positive voltages. This is a clear

signature of saturable absorption. At higher powers however, the transmis-

sion drops drastically, this is a known complication of silicon waveguides and

is due to very strong two-photon absorption (TPA) in silicon at telecommu-

nication wavelengths [9]. Saturable absorption is caused by band-filling and

subsequent Pauli-blocking in graphene (less electrons in the valence band



Chapter 3 3-5

20 25 30 35 40

−16

−14

−12

−10

Input peak power (dBm)

T
ra

n
sm

is
si

on
(d

B
)

a

9 V 0 V
6 V -3 V
3 V -9 V

−10 −5 0 5 10
0

2

4

6

·10−2

VG (V)

α
′ S
,
α
′ N

S
(d

B
/
µ

m
)

b

αNS
αS

−10 −5 0 5 10
0

1

2

VG (V)

P
S

(W
)

c

Figure 3.3: a Transmission as a function of input peak power for the TM mode of
a hybrid graphene-covered Si waveguide. Measurements for different gate voltages
are shown (see legend), the solid lines represent a theoretical fit. Pulse duration:
≈ 8 ps, wavelength: 1550 nm, waveguide width: 650 nm, graphene-covered length:
150 μm. b, c Saturable loss (α′S), nonsaturable loss (α′NS) and saturation power
for the fits shown in figure a (solid lines). Using the phenomenological model in
equation (3.1), as a function of gate voltage. An effective two-photon absorption
coefficient β′TPA = 100 m−1W−1 was used.

and unoccupied states in the conduction band are available for absorption).

The saturable absorption modulation depth, defined as the ratio between

the peak transmission and the the low-power transmission, amounts to 2.2

dB for VG = 9 V. At lower voltages, as the linear absorption drops, the

relative effect of absorption saturation due to band-filling also becomes less

pronounced. This causes TPA to dominate and brings the modulation depth

down to 0 dB.
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A simple phenomenological model based on equation (2.15) can be fitted

to these results1. The power transmission through a section of graphene-

covered waveguide can be modelled by the following differential equation,

∂P (z)

∂z
= −

[
α′NS +

α′S

1 + P (z)
PS

+ β′TPAP (z)

]
P (z), (3.1)

where P (z) represents the optical power as a function of position along

the waveguide z. α′NS and α′S represent respectively the contribution to

the waveguide loss which does not saturate, and the contribution which

saturates. PS is the saturation power and β′TPA the effective two-photon

absorption coefficient of the waveguide. The primes in α′NS, α′S and β′TPA

denote that these parameters are effective waveguide parameters and not

material parameters (as opposed the parameters in equation (2.15)). The

devices discussed here also have significant sections of silicon waveguides

which are not covered with graphene (see figure 3.1d), these can be mod-

elled with acceptable accuracy by only maintaining the two-photon absorp-

tion term in equation (3.1). In figure 3.3a, the solid lines represent fits to

the different measurements, using this model. In figure 3.3b and c, the

corresponding fitting parameters are plotted. An effective two-photon ab-

sorption coefficient of β′TPA = 100 m−1W−1 was used. This is a realistic

value considering the (approximate) relation β′TPA = βTPA/Aeff [10] (where

βTPA ≈ 0.5 cm/GW [9] is the two-photon absorption coefficient of silicon

and Aeff is the nonlinear effective area [10]).

In figure 3.4a, a measurement of the transmission versus peak power for

a TE-waveguide of width 500 nm, also with a graphene-covered section of

150 μm long, is shown. For this measurement, the source was a different

modelocked laser (Calmar FM-SA-306-SN) without EDFA, generating an

estimated on-chip pulse duration of 4 ps, with central wavelenght of 1548

nm. The fits based on the equation (3.1) are represented by solid lines.

In figures 3.4c and d, the corresponding fitting parameters are plotted, an

effective TPA coefficient of β′TPA = 260 m−1W−1 was used to obtain a good

fit.

Comparing the nonlinear response of the TM and TE waveguides (fig-

ures 3.3a and 3.4a), one can clearly see that the saturable absorption is

much less pronounced for the TE waveguide. This is illustrated by figure

3.4b. In this graph, the saturable absorption modulation depth is plotted

for different voltages, for the TE and TM waveguide. The difference is

due to the very distinct field profiles of the TE and TM modes. As can

1Note that the purely third-order model developed in Section 2.5 is not adequate for
this experiment, since high peak-power pulses are used.
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Figure 3.4: a Transmission as a function of input peak power for the TE mode of
a hybrid graphene-covered Si waveguide. Measurements for different gate voltages
are shown (see legend), the solid lines represent a theoretical fit. Pulse duration:
≈ 4 ps, wavelength: 1550 nm, waveguide width: 500 nm, graphene-covered length:
150 μm. b Comparison between the measured saturable absorption modulation
depth for this TE-waveguide and the TM-waveguide characterized in figure 3.3a.
c, d Saturable loss (α′S), nonsaturable loss (α′NS) and saturation power for the
fits shown in figure a (solid lines). Using the phenomenological model in equation
(3.1), as a function of gate voltage. An effective two-photon absorption coefficient
β′TPA = 260 m−1W−1 was used.

be seen on figure 3.1c, the TE mode is much more confined in the wave-

guide core. The contribution of the TPA in silicon will as a consequence be

much higher. Hence a β′TPA of almost 3 times higher was used for the TE

mode, and the ‘roll-off’ in the transmission curves due to TPA occurs at

lower powers. Secondly, the interaction between the optical mode and the

graphene is different for both modes. The interaction between the optical

mode and the graphene is larger for TM than for TE modes. Intuitively,

but incorrectly, one might attribute this to this high out-of-plane electric
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field component just outside the waveguide core for TM modes (see figure

3.1c). This is however incorrect as graphene is highly anisotropic and only

interacts strongly with field components parallel to its plane. This high

interaction is mainly caused by the longitudinal component of the electric

field, which for silicon waveguides is almost as strong (though continuous)

as the out-of-plane component in the vicinity of the interface.

3.2.3 Conclusion and comparison with literature

In conclusion we have demonstrated that the saturable absorption proper-

ties of graphene-covered silicon waveguides can be drastically tuned through

electrostatic gating. We are not the first to demonstrate a change in the

saturable absorption properties of graphene as a function of charge carrier

density. Lee et al. have studied such effects for chemically doped gra-

phene [11], and Baylam et al. using electrostatic gating [12]. We are the

first however to demonstrate this effect on integrated waveguides. By mak-

ing use of the high confinement and long interaction lengths inherent to such

waveguides, the nonlinear interactions are strong and saturable absorption

modulation depths exceeding 2 dB are demonstrated. An important mate-

rial parameter of graphene as a saturable absorber is its saturation intensity

IS. By simulating the electric field components in-plane with the graphene

and converting this to a local intensity, we estimate the saturation intensity

in our measurements to be on the order of 100–200 MW/cm2. This fits

within the saturation intensities found in literature (0.71 MW/cm2 in refer-

ence [13], ≈1-30 MW/cm2 in reference [14], >100 MW/cm2 in reference [15],

250 MW/cm2 in reference [11], etc.). The spread of these published satu-

ration intensities is very large, this might have to do with differences in

quality of the used graphene samples. Higher quality graphene has a longer

carrier lifetime so will saturate easier. Bao et al. also work with multilayer

graphene [13] and Sun et al. use a graphene suspension. These might all be-

have differently. An other possible explanation of the discrepancies could be

mistakes in the previously publised results, Lee et al. for example question

the correctness of the very low saturation intensity published by Bao et al..

Yao et al. have recently demonstrated that gate-tunability of graphene-

coated fibers can be used for tuning the operational regime (continuous-

wave, Q-switching or mode-locking) of a modelocked fiber laser, as well as

for stabilization of the timing jitter and tuning of the repetition rate (by

tuning the linear properties through gating) [14]. By studying gate-tunable

saturable absorption on an integrated waveguide platform, the results in

this section can be the basis for the design of integrated modelocked lasers

with similar properties. A notable disadvantage of silicon is the competi-

tion between the graphene saturable absorption and two-photon absorption
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in silicon. For the experiments discussed in the remainder of this chapter,

we have switched to graphene-covered silicon nitride waveguides, in which

two-photon absorption is negligible.

3.3 Gate-tunable graphene-covered SiN
waveguides

Saturable absorption measurements were performed on graphene-covered

silicon waveguides, as discussed in Section 3.2. It is clear that these wave-

guides can indeed be used to study graphene nonlinear optics, but that

the silicon itself shows strong optical nonlinearities. For the experiments

presented below (in Sections 3.4 and 3.5), we have also deposited graphene

on integrated waveguides. Using a guided-wave approach we benefit from

the high optical confinement and long interaction lengths, this enables us

to perform our experiments at low powers, which assures that third order

nonlinear effects are dominant. However we preferred not to use silicon

waveguides because the strong third order nonlinear effects in silicon would

introduce extra uncertainties in our measurements. As an alternative we

used silicon nitride waveguides, third order nonlinear effects in these wave-

guides are over two orders of magnitude weaker than in silicon [16]. As

the goal was to study the Fermi-energy dependence of the nonlinearities

in graphene, we gated the graphene using a polymer electrolyte. This was

an extra complication compared to silicon waveguides, since silicon can be

made conductive and the waveguide itself can be used as a back-gate (see

Section 3.2). Here, we elaborate on the fabrication of the graphene-on-SiN

structures and the gating with the polymer electrolyte.

3.3.1 Fabrication

The initial fabrication steps were performed in a CMOS pilot line. The SiN

waveguides and other integrated structures were patterned in a 330 nm thick

SiN layer deposited by low pressure chemical vapor deposition (LPCVD)

on top of a 3 μm buried oxide layer on a silicon handle wafer. The sample

was then covered with LPCVD oxide and planarized by means of chemical

mechanical polishing (CMP). Resulting in SiN structures covered by ≈ 1 μm

of top-oxide. To obtain strong interaction between the light in the waveguide

and a monolayer of gate-tunable graphene several subsequent processing

steps are performed, they are summarized in figure 3.5 and described in

more detail below.

Oxide thinning First, the top oxide needs to be thinned down signifi-

cantly. Ideally, we want to obtain structures with a smooth surface, where
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Figure 3.5: Fabrication flow of the graphene-on-silicon nitride photonics struc-
tures.

the oxide surface lies in the same plane as the waveguide top surface. Ini-

tially, this was attempted through wet etching using buffered oxide etch

(BOE). The results are shown in figures 3.6a, b. It is clear that this results

in very deep and irregular trenches next to the waveguide. This results in

increased scattering losses and significant topology in the chip’s surface. An

alternative way of thinning down the oxide is through reactive ion etching

(RIE) using a combination of SF6 and O2. However, as opposed to wet

etching, the SiN structures themselves would also be significantly damaged

when exposed to this etch recipe. This means that for the case of accidental

over-etching, the chips would become useless. Moreover we get no feed-

back during the etch process and there tends to be quite some variability

in the exact initial oxide thicknesses and the etch-rates of different chips.

For our final devices, we opted to use a combination of the two etch recipes.

First, we remove most of the top oxide through RIE, aiming for a remaining

thickness of 100-200 nm. Subsequently, we use wet etching to thin down

the oxide further. Before the second step, we perform an optical lithogra-

phy step in which we cover the whole chip in resist, apart from some test

structures (usually some alignment markers). We first etch the oxide on

these structures in a step-wise manner, while carefully monitoring the sur-

face with a profilometer (Dektak 150). This way we can estimate the exact

residual thickness of the oxide, the etch rate and the appropriate etch time

needed to planarize the whole chip. Figures 3.6c, d show the cross-sections

of two waveguides planarized using this method. It is clear that there is
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wet etching, top view. b Only wet-etching, cross-section. c, d Combination of
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still quite some variability in this process, both in the RIE and in the wet

etching step, added variability is caused by slight non-uniformities in the

initial oxide thickness. In figure 3.6c, a thin layer of oxide remains on top

of the waveguide, resulting in a very flat surface, but a weaker interaction

between the optical mode and materials deposited on the top surface. Fig-

ure 3.6d shows an example of slight over-etching, trenches of the kind seen

in figures 3.6a, b are also present, be it to a much smaller extent.

Graphene transfer and patterning A graphene monolayer grown

with chemical vapor deposition (CVD) is transferred to the samples by

Graphenea [8]. After this, the graphene is patterned using a photolithogra-

phy step and an etch step based on O2 plasma (more details can be found

in reference [17]).

Metallic contacts Metallic contacts (Ti/Au; typically ≈ 5 nm/300 nm)

were deposited through a subsequent lithography step, metal evaporation

and lift-off.

Polymer electrolyte deposition Finally the structures were covered

with a polymer electrolyte. The electrolyte is dissolved in water and was

spin-coated for 2 minutes at 6000 rpm. After this the remaining water

was evaporated using a hotplate (1 min. at 100 ◦C). How the polymer

electrolyte allows us to gate the sample is described in more detail below

(Section 3.3.2).

Figure 3.7a shows an optical microscope image of a set of contacted

graphene-covered waveguides, prior to the deposition of the polymer elec-

trolyte. The SiN waveguides can be seen, as well as the grating couplers

used to couple to the optical fibers. The graphene is not visible, therefore
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Figure 3.7: a Optical microscope image of a set of waveguides. The extent of the
graphene (under the contacts) is shown by the dashed lines. b SEM image of one
of the final devices. The patterned graphene can clearly be seen. Both images are
taken on samples with no polymer electrolyte.

its extent is shown by the dashed lines. A more detailed picture is given

by the SEM image in figure 3.7b, here the patterned graphene is clearly

visible.

3.3.2 Electrostatic gating using a polymer electrolyte
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A polymer electrolyte or ion gel (consisting of LiClO4 and polyethylene

oxide (PEO) in a weight ratio of 0.1:1) is used to gate the graphene, i.e.

to electrostatically change its carrier density or Fermi energy. The work-

ing principle of the polymer electrolyte is schematically illustrated in figure

3.8a. After spin-coating and drying, the electrolyte consists of a polymer

matrix with free ions, Li+ and ClO4
– . If a gate voltage is applied, as is

shown in figure 3.8a, these ions will move through the matrix and accu-

mulate at the ionic gel/gate electrode and ionic gel/graphene interfaces to

counteract the applied electric field, forming so-called Debye layers [18]. A

corresponding accumulation of charge carriers occurs in the electrode and

the graphene layer and electrical double layers (EDL) are formed [19]. After
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reaching the equilibrium, most of the potential drop is situated within a few

nanometers of the interfaces. The electric double layers effectively behave

like two capacitor structures in series, with a spacing between the capacitor

‘plates’ of only a few nanometers [19]. This allows us to gate the graphene

significantly with only moderate voltages, using a gate electrode which is

not in the direct vicinity of the graphene. The dependence of the Fermi

energy EF on the gate voltage VGS can be approximated by the following

formula [18, 19]:

VGS − VD = sgn(EF)
eE2

F

~2v2
FπCEDL

+
EF

e
, (3.2)

with e the electron charge, vF ≈ 106 m/s the Fermi velocity and CEDL

the electric double layer capacitance. VD is the Dirac voltage, the volt-

age at which the graphene becomes intrinsic (EF = 0). The first term in

equation (3.2) is due to the regular geometrical capacitance, it equates to

φ = ne/CEDL using the relation beteen Fermi energy and electron density n;

EF = ~vF
√
πn [18, 19].2 The second term is caused by the significant impact

of band-filling/band-emptying in the graphene upon charging/discharging,

which is non-negligible due to the large electric double layer capacitance

and the small density-of-states of graphene, sometimes this contribution is

described using the concept of an extra ‘quantum’ capacitance CQ in series

with the electric double layer [18, 19].

Figure 3.8b shows a sketch of the cross-section of the SiN waveguides.

Each waveguide is covered with a certain length of patterned graphene,

which is contacted at both sides. The whole sample is covered with the

polymer electrolyte, this allows us to apply the gate voltage VGS on one of

the contacts of an adjacent waveguide structure, hereby tuning the charge

carrier density in the graphene. By applying a small ‘drain-source’3 voltage

VDS across the graphene we can measure the resistance over the graphene

sheet as a function of VGS. Figure 3.9a shows such a resistance measure-

ment. Since the resistivity of graphene is known to peak at EF = 0 [21], we

can estimate the Dirac voltage through this measurement (VD ≈ 0.64 V in

this specific case).

Figure 3.9b shows the optical loss as a function of the gate voltage, for a

wavelength of 1550 nm. For this measurement, the propagation loss without

2These are the expressions are for n-doped graphene (EF > 0) at low temperatures,
for p-doping, φ = −pe/CEDL and EF = −~vF

√
πp can be used, with p the hole den-

sity. Simulations have furthermore shown that this approach is to good approximation
applicable at room temperature [20].

3We measure the ‘field effect’; the change of conductance of a channel in response to
applying a gate voltage, we thus reuse terminology used for semiconductor field-effect
transistors.
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Figure 3.9: a The measured electrical resistance over the graphene as function of
the gate voltage VGS. b The measured optical loss for a wavelength of 1550 nm
and corresponding fit, proportional to the real part of the linear conductivity of
graphene σ

(1)
s . For waveguides with a width of 1600 nm. c Estimated relation

between gate voltage VGS and Fermi energy EF of the graphene covering the
waveguides.
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Figure 3.10: a Energy-level description of non-degenerate four-wave mixing. b
Energy-level description of degenerate four-wave mixing. c Frequency components
involved in degenerate four-wave mixing.

applying a gate voltage was first measured on a set of waveguides covered

with different lengths of graphene. Then the voltage-dependent loss was

measured on a single waveguide, from this the voltage-dependence of the

propagation loss was extrapolated. The optical loss is proportional to the

real part of the linear conductivity σ
(1)
s , which can be calculated using the

equations (A.1, A.2) in Appendix A. By fitting this model to the measured

propagation loss and using the relation between the gate voltage and Fermi

energy in equation (3.2) CEDL ≈ 1.8 · 10−2 F m−2 can be estimated (other

used parameters for this fit were ~Γ = 10 meV and T = 293 K). The fit is

also plotted in figure 3.9b. The resulting relation between Fermi energy and

gate voltage using the fitted VD and CEDL values is shown in figure 3.9c.

3.3.3 Theory of nonlinear optics in graphene-covered
SiN waveguides

For the experiments performed on the graphene-covered silicon nitride wave-

guides, we will assume that third order nonlinear effects are dominant. As

discussed in Section 2.4, this is not trivial. However the on-chip optical

powers are on the order of 10 mW or smaller, resulting in local intensities

on the order of 1010 Wm−2. For these intensities a third-order description

should still be reasonably adequate (see Section 2.4.3 and reference [22]). In

this case, the relevant coupled-wave equations for the nonlinear interaction

between a set of monochromatic waves can be found in Section 2.5.

3.4 Four-wave mixing in graphene-covered
SiN waveguides

Four-wave mixing (FWM) is one of the most commonly studied third or-

der nonlinear processes. A FWM experiment typically involves two pump
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frequencies (ωp,1 and ωp,2), of which energy is transferred to two other fre-

quencies of light, typically called the signal and idler, ωs and ωi. Energy

conservation dictates that ωp,1 + ωp,2 = ωs + ωi. The energy-level descrip-

tion of this process is shown in figure 3.10a. In practice, four-wave mixing

experiments are often performed in a degenerate regime, in this case a sin-

gle pump wave (ωp,1 = ωp,2 ≡ ωp) is used, the energy level description is

shown in figure 3.10b, two identical pump photons are annihilated, and a

signal and idler photon are created. The frequency components involved

are sketched in figure 3.10c. Typically, both the pump and the signal beam

are externally injected, in this case the signal experiences parametric am-

plification [23].

Intuitively, this process can be understood in terms of the intensity-

dependent refractive index n2 + iκ2 (see Section 2.4.1). The pump and

idler beam interfere and the total optical intensity contains a corresponding

beat note at frequency |∆ω| = |ωs − ωp|. Through the nonlinear index,

the refractive index (and possibly the absorption, through a non-zero κ2)

of the medium is modulated with he same frequency. This modulation will

generate sidebands on the pump, one generating the idler, and one construc-

tively interfering with the already existing signal. It is clear that the signal

and generated idler will also experience modulation and more sidebands

can be created. Cascaded four-wave mixing is an important phenomenon

in the generation of frequency combs in microresonators [24]. From this

intuitive explanation it is also clear that FWM is a phase sensitive process,

and that coherent built-up of the idler only occurs efficiently as long as

phase-matching is ensured, |2β(ωp) − β(ωs) − β(ωi)|L ≈ |β2(∆ω)2|L � π,

where β is the propagation constant of the mode, β2 ≡ ∂2β
∂ω2 represents the

group-velocity dispersion and L is the interaction length. In practice this

means that four-wave mixing occurs efficiently over a limited band around

the pump frequency (unless specific care is taken to engineer the disper-

sion [25]).

To indirectly characterize the nonlinear conductivity of graphene, we

performed a degenerate four-wave mixing experiment on our graphene-

covered SiN waveguides. In the following section, a mathematical descrip-

tion of the problem is given. Then the experiment and experimental results

are described and finally the result are briefly compared with existing the-

oretical models.

3.4.1 Coupled-wave equations

For the case of degenerate four-wave mixing, only three monochromatic

waves are involved, the pump, signal and idler, respectively at frequencies
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ωp, ωs and ωi at equally spaced intervals (∆ω = ωs − ωp = ωp − ωi).

For this specific case, the coupled wave equations (equation (2.33)) can

be simplified to:

∂Ap

∂z
= i{γ(ωp;ωp, ωp,−ωp)|Ap|2Ap + 2γ(ωp;ωp, ωs,−ωs)|As|2Ap

+ 2γ(ωp;ωp, ωi,−ωi)|Ai|2Ap + 2γ(ωp;ωs, ωi,−ωp)AsAiA
∗
pe
−i∆βz}

− α(ωp)

2
Ap,

(3.3)

∂As

∂z
= i{γ(ωs;ωs, ωs,−ωs)|As|2As + 2γ(ωs;ωs, ωp,−ωp)|Ap|2As

+ 2γ(ωs;ωs, ωi,−ωi)|Ai|2As + γ(ωs;ωp, ωp,−ωi)ApApA
∗
i e
i∆βz}

− α(ωs)

2
As,

(3.4)

∂Ai

∂z
= i{γ(ωi;ωi, ωi,−ωi)|Ai|2Ai + 2γ(ωi;ωi, ωp,−ωp)|Ap|2Ai

+ 2γ(ωi;ωi, ωs,−ωs)|As|2Ai + γ(ωi;ωp, ωp,−ωs)ApApA
∗
s e
i∆βz}

− α(ωi)

2
Ai,

(3.5)

where Ap(z) ≡ A(ωp, z), As(z) ≡ A(ωs, z) and Ai(z) ≡ A(ωi, z) are short-

hand notations for the complex amplitudes of respectively the pump, signal

and idler. ∆β = 2β(ωp)− β(ωs)− β(ωi) is the phase mismatch term. α(ω)

represents the linear loss and γ(ωp + ωq + ωr;ωp, ωq, ωr) is the frequency

dependent nonlinear parameter of the waveguide. Comparing with equa-

tion (2.33) and using equation (2.34) for the linear loss, these parameters

become:

α(ωj) =
1

2Pj

∫
G

e∗(ωj) · σ(1)
s (ωj)e(ωj)d`, (3.6)

γ(ωj = ωp + ωq + ωr;ωp, ωq, ωr) =i
3

N(p,q,r)
·

∑
k,l,m

1

16
√

PjPkPlPm

∫
G

e∗(ωj)·σ(3)
s (ωj ;ωk, ωl, ωm)

...e(ωk)e(ωl)e(ωm)d`.

(3.7)

In equation (3.7), the summation parameters (k, l,m) take all different per-

mutations of the set (p, q, r). N(p,q,r) is the number of permutations of the

set (p, q, r).

For the four-wave mixing experiments presented in this section, the

coupled-wave equations (3.3)-(3.5) can be further simplified. Firstly, the
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pump carries a much higher power than the signal, moreover the idler will

be orders of magnitude weaker (|Ap| > |As| � |Ai|). Secondly, in the ex-

periments presented here the on-chip power levels were kept on the order

of 10 mW or lower. Hence the assumption can be made that the nonlin-

ear terms describing self- and cross-modulation are negligible compared to

the linear loss terms, |γ||Ap,s,i|2 � |α(ω)
2 |. As will become clear from the

experiments that |γ| < 104 W−1m−1, and from figure 3.9b we know that
α(ωpump)

2 ∼ 103 . . . 104 m−1). This is also in line with our saturable ab-

sorption measurements on silicon (Section 3.2), where we concluded that

significant saturation of the absorption only occurs for powers of the order

of 1 W or higher. Thirdly, the phase mismatch is negligible (Lβ2∆ω2 � 1,

L = O(100 μm), ∆ω < 1013 rad/s and β2 ≡ ∂2β
∂ω2 of a SiN waveguide is

on the order of 10−25 s2/m [16]). All these assumptions lead to heavily

simplified coupled-wave equations:

∂Ap

∂z
≈− α(ωp)

2
Ap, (3.8)

∂As

∂z
≈− α(ωs)

2
As, (3.9)

∂Ai

∂z
≈iγ(ωi;ωp, ωp,−ωs)ApApA

∗
s −

α(ωi)

2
Ai. (3.10)

Under these conditions the conversion efficiency η, defined as the ratio of

the idler power to the signal power, has a quadratic dependence on the

nonlinear parameter γ [26]:

η ≡ Pi(L)

Ps(L)
=
|Ai(L)|2

|As(L)|2

≈ |γ(ωi;ωp, ωp,−ωs)|2Pp(0)2L2
effe
{α(ωs)−α(ωi)}L

≈ |γ(ωi;ωp, ωp,−ωs)|2Pp(0)2L2
eff,

(3.11)

where the effective interaction length is defined as:

Leff ≡
1− e−{α(ωp)+α(ωs)/2−α(ωi)/2}L

α(ωp) + α(ωs)/2− α(ωi)/2
≈ 1− e−αL

α
. (3.12)

The final expressions in equations (3.11) and (3.12) are only valid when the

approximation α(ωp) ≈ α(ωs) ≈ α(ωi) ≡ α holds, i.e. when the frequen-

cies detuning is small (∆ω � ωp). For the four-wave mixing experiments

presented here, the expressions for α and γ can be further simplified. It is

assumed that a flat sheet of graphene lies in the xz plane (this can easily be

generalized to arbitrary graphene shapes). Firstly, the linear conductivity

has only two nonzero elements, which are equal: σ
(1)
xx = σ

(1)
zz . Now we can
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treat the linear conductivity as a scalar parameter and calculate the linear

loss as:

α(ωj) =
σ

(1)
s,xx(ωj)

2Pj

∫
G

|e(ωj)‖|2d`, (3.13)

where e(ωj)‖ is the electric field component tangential to the graphene sheet.

Moreover, simulations show that the modes in the SiN waveguides used

here are quasi-TE, meaning that ex � ez. This implies that the term

containing σ
(3)
s, xxxx in equation (3.7) is about two orders of magnitude larger

than any of all other terms. The expression for the nonlinear parameter can

be simplified to:

γ(ωi;ωp,ωp,−ωs)

≈ i3σ
(3)
s, xxxx(ωi;ωp, ωp,−ωs)

16Pp

√
PiPs

∫
G

e∗(ωi)xe(ωp)xe(ωp)xe∗(ωs)xd`

≈ i3σ
(3)
s, xxxx(ωi;ωp, ωp,−ωs)

16P2
p

∫
G

|e(ωp)x|4d`.

(3.14)

To arrive to the second expression, we have used the assumption that

e(ωp) ≈ e(ωs) ≈ e(ωi), which is the case when one considers the same

spatial modes and small detunings (∆ω � ωp). Note that we also do not

take the ‘sum over different permutations of (ωp, ωp, −ωs)’, as was done

in equation (3.7), this because the convention of intrinsic permutation sym-

metry implies that σ
(3)
s, xxxx(ωi;ωp, ωp,−ωs) = σ

(3)
s, xxxx(ωi;ωp,−ωs, ωp) =

σ
(3)
s, xxxx(ωi;−ωs, ωp, ωp) [23] 4.

We can further generalize this expression to arbitrary graphene shapes:

γ(ωi;ωp, ωp,−ωs) ≈ i
3σ

(3)
s, xxxx(ωi;ωp, ωp,−ωs)

16P2
p

∫
G

|e(ωp)‖ × êz|4d`. (3.15)

3.4.2 Experimental results

The setup used for the FWM experiment is shown in figure 3.11. A pump

laser (Syntune S7500, λp ≈ 1550 nm) is amplified using an Erbium-doped

fiber amplifier (EDFA), a tunable band-pass filter suppresses the Ampli-

fied Spontaneous Emission (ASE) of the EDFA. The signal is provided by

a Santec Tunable Laser TSL-510. Pump and signal are coupled into the

waveguide through a grating coupler. At the output a fiber Bragg grat-

ing (FBG) filters out the strong pump light and the signal and idler are

visualized on an Anritsu MS9740A optical spectrum analyzer (OSA).

4Note that this equality is not valid for non-diagonal terms of the σ
(3)
s -tensor!
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Figure 3.11: Setup used for the FWM experiments. EDFA: erbium-doped fiber
amplifier, FBG: fiber Bragg grating, OSA: optical spectrum analyzer.
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Figure 3.12: a Example of a FWM measurement on an ungated graphene-covered
waveguide (L = 500 μm, waveguide width: 1200 nm). b FWM conversion ef-
ficiency versus detected pump power. The solid line represents a quadratic fit.

Figure 3.12a shows an example of a FWM measurement, for this mea-

surement the FBG that filters out the pump has been removed for illustra-

tive purposes. The measurement was also performed on an ungated sample.

A strong pump (1549.61 nm) and a weaker signal (1548.67 nm) are injected.

A clear peak at the idler wavelength (1550.55 nm) arises. Note that another

small peak arises at 1547.73 nm, this is the result of a FWM process where

the roles of the pump and the signal have been switched. The FWM con-

version efficiency η can be easily read from this spectrum. On figure 3.12b,

a plot of η as a function of pump power is shown. As is expected from

equation (3.11), we observe a quadratic dependence.

To map the graphene nonlinearity in more detail, we performed an ex-

periment where we measured the conversion efficiency as function of the

signal-pump detuning ∆λ = λs − λp and gate voltage VGS. Figure 3.13

summarizes the experimental results obtained for a 1600 nm wide waveguide

covered with 100 μm of graphene and for a pump wavelength of λp = 1550.18



Chapter 3 3-21

1,546 1,550 1,554
−100

−80

−60

−40

−20

0

20

η

λs λi

λ (nm)

P
ow

er
(d

B
m

)

a

−1 0 1
40

60

80

100

VGS (V)
L

e
ff

(μ
m

)

b

−10

0

10

−1

0

1

−70

−60

−50

λs − λp (nm)
VGS (V)

η
(d

B
)

c

−70

−60

−50

Figure 3.13: a Examples of the optical spectra (VGS = −0.5 V). The pump peak
(1550.18 nm) is filtered out by the FBG. The signal peaks can be seen on the
left and the corresponding idler peaks on the right. Graphene section length:
L =100 μm. b Effective length of the nonlinear interaction, calculated using the
propagation loss in figure 3.9b, the black circles correspond to measured losses,
the blue line is calculated using the fitted loss. c Conversion efficiency η as a
function of VGS and detuning λs − λp.

nm. In figure 3.13a, some of the measured spectra are plotted (VGS = −0.5

V). The spectra are corrected for variations in the transmission of the grat-

ing couplers with changing wavelength. The propagation loss as a function

of gate voltage for this waveguide can be found in figure 3.9b. Note that

the absorption drops sharply for negative voltages, and that the interband

absorption edge, EF = −~ω/2 is reached for VGS ≈ −0.8 V. The corre-

sponding effective interaction length Leff of the FWM process is plotted

in figure 3.13b. The measured conversion efficiencies are plotted in figure
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3.13c, as a function of gate voltage and signal wavelengths. The estimated

on-chip pump power for this measurement was Pp(0) = 10.5 dBm. The

FWM conversion efficiency depends strongly on both the detuning and the

gate voltage. Note that the increase of η for a given detuning can be almost

10 dB between VGS = 0 V and VGS ≈ −0.6 V, an increase that can not

be explained by the slight increase in Leff alone (figure 3.9b). Hence the

nonlinear response itself changes drastically.

Using the derived expression for η (equation (3.11)), the known effec-

tive length (figure 3.9b) and the on-chip pump power, the magnitude of

the nonlinear parameter |γ(ωi;ωp, ωp,−ωs)| can be readily estimated. One

can then use equation (3.14) to relate this noninear parameter to the mag-

nitude of the third order conductivity |σ(3)
s (ωi;ωp, ωp,−ωs)|. The integral

and power normalization constant Pp in equation (3.14) are calculated us-

ing a COMSOL Multiphysicsr-model of the cross-section of the waveguide.

The graphene is located in the evanescent field of the optical mode, which

decays approximately exponentially with distance from the waveguide core.

Moreover, the conversion between γ and σ
(3)
s scales with the fourth power

of the local electric field in graphene (equation (3.14)). Getting a good es-

timate of the cross-sectional dimensions of the waveguides, and especially

the thickness of the residual oxide that might still cover the nitride, is of

utmost importance. For this the dimensions were estimated using a SEM

image of the waveguide on which the nonlinear experiment was performed.

This cross-section can be found in figure 3.6c. Figures 3.14a and 3.14b show

the results of these conversions. The measured values for |γ| and |σ(3)
s | have

a sharp resonance as a function of detuning and a broad asymmetric res-

onance as a function of EF. |γ| is about 2800 m−1W−1 at small |EF| (for

minimum detuning) and about 6400 m−1W−1 at its absolute peak. The

uncertainty on the measured |γ| ≈ √η/(Pp(0)Leff) results from the sepa-

rate uncertainties on η, Pp(0) and Leff . The biggest errors are introduced

by Pp(0), through uncertainty or drift in the coupling. A conservative guess

for this uncertainty would be ±1 dB. Likewise the uncertainty on the effec-

tive length (see figure 3.13b) is at worst only a couple of micrometer, so on

the order of ±0.5 dB ≈ ±12%. This would lead to a total uncertainty of

≈ ±40%.

The estimated values for |σ(3)
s | can be as high as 4.3 · 10−19 Am2/V3

for small detunings and VGS ≈ −0.5 V (EF ≈ −0.35 eV). However for low

doping and larger detuning values, |σ(3)
s | seems to decay to values of the

order 10−20 Am2/V3. These strong variations in the nonlinear response

can already explain some of the variations than can be found in literature

(see table 2.1). Hendry et al. reported a nonlinear susceptibility corre-

sponding to |σ(3)
s | ≈ 1.5 · 10−20 Am2/V3 for a FWM experiment at large
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Figure 3.14: a Measured nonlinear parameter |γ(ωi;ωp, ωp,−ωs)|, and the corre-

sponding graphene nonlinear conductivity |σ(3)
s (ωi;ωp, ωp,−ωs)|, as a function of

gate voltage and estimated Fermi energy for different values of signal-pump de-
tuning ∆λ = λs−λp (see legend). b Measured |γ(ωi;ωp, ωp,−ωs)| and estimated

|σ(3)
s (ωi;ωp, ωp,−ωs)| as a function of signal-pump detuning, both in wavelength

difference (bottom axis) and angular frequency difference (top axis).

detuning (> 100 nm). The values we measure for ∆λ → 0 converge to

|γ(ωp;ωp, ωp,−ωp)| which is also the dominant term in self-phase modula-
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tion experiments using pulses of bandwidths smaller than the peaks in figure

3.14b (corresponding to pulse durations longer than about a ps). Two such

experiments can for example be found in Zhang et al. [27] and Vermeulen

et al. [28]. They respectively report values that are about one order of

magnitude higher (≈ 10−18 Am2/V3) and one order of magnitude lower

(≈ 10−20 Am2/V3) than what we measure. Here however, as explained in

Section 2.4.3, there are several issues with some of the measurements in

these papers which might explain order of magnitude differences (for exam-

ple saturation of the nonlinear response at high peak powers) also differences

in sample quality and environmental influences can cause some difference.

These experiments are compared in more detail with the cross-modulation

experiments presented in Section 3.5. Again we can make a rough esti-

mate of the uncertainty of our |σ(3)
s |-measurement. As discussed above a

crude estimate of the error on the |γ|-measurement is ≈ ±40%. On top of

this we have the potential error in the conversion between |γ| and |σ(3)
s |.

The biggest contribution to this error is the uncertainty with respect to the

cross-section of the waveguide, namely the thickness of the oxide on top of

the waveguide. Simulations show that a change of 20 nm of this thickness

changes the conversion with roughly 20%. This seems like a reasonable es-

timate for the error. This brings the total uncertainty of the measurement

to about ±60− 70%.

3.4.3 Comparison with theoretical models

As was explained in Section 2.4.2, several theoretical models can be used

to interpret these experimental results. Here, we try to use both the simple

model introduced in Appendix A, as well as more advanced models from

literature, to interpret our results.

Simple phenomenological model A first option is to use the simple

model developed in Appendix A. This model takes into account the heating

of the charge carrier distribution in graphene under strong illumination and

the cooling due to the interaction with the environment, the nonlinearities

stem from the intensity dependent changes in the linear optical response

due to this change in charge carrier distribution. With a phenomenological

energy relaxation time τE = 500 fs, we get the results plotted in figure 3.15.

Figure 3.15a shows |σ(3)
s | as a function of Fermi energy, for different signal-

pump detuning values. It is immediately clear that, despite being very

simple, this model is able to grasp some of the main features of the four-

wave mixing experiment. We see qualitatively similar behavior as function

of Fermi energy, with a peak when approaching the interband absorption

edge EF = −~ω/2 ≈ −0.4 eV, and strong decay for higher doping levels.

There are however differences, the model predicts a sharper resonance, and
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Figure 3.15: Simulated |σ(3)
s (ωi;ωp, ωp,−ωs)|, using the phenomenological model

discussed in Appendix A. a |σ(3)
s | versus Fermi energy for different values of signal-

pump detuning ∆λ = λs − λp (see legend). b |σ(3)
s | versus detuning for different

Fermi energies (see legend). Model parameters: kBT0 = 25 meV, Ei = 100 meV,
τE = 0.5 ps, the pump wavelength is 1550 nm (~ωp ≈ 0.8 eV).

a much smaller response at low doping. There can be multiple reasons

for this, the model might be too approximate (for example the assumption

that the carrier distribution can be modelled by a Fermi-Dirac distribution

with a single chemical potential might not always hold), or might fail to

take some of the contributions to the nonlinearity into account. Another

cause of the differences can be variations in the Fermi energy along the
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waveguide length, causing us to measure a ‘smeared out’ (heterogeneously

broadened) version of the actual EF-dependence. Quantitatively, there is a

difference at the peak of about a factor 3. This might be due to the same

reasons mentioned before, or due to measurement uncertainties, for example

on the estimate of Ppump(0) or the waveguide loss. Figure 3.15b shows

|σ(3)
s | versus detuning, for different Fermi energies. Note that this is just a

simple Lorentzian lineshape with damping rate τ−1
E . Despite this simplicity

and limited validity (probably for less than only a couple of nanometers

of detuning, see Appendix A), it seems to describe the measured behavior

quite well.

More advanced models5 More elaborate models for the third order

conductivity of graphene exist (see Section 2.4.2). We can compare our

experimental results with a slightly modified version of the theory published

in references [29, 30]. In these papers analytical expressions for the third

order conductivity σ
(3)
s, αβγδ(ω1 + ω2 + ω3;ω1, ω2, ω3, EF,Γ) were derived at

T = 0, where the relaxation rate Γ was assumed to be energy independent.

Here we however assume that Γ(E) is a function of the electron energy.

This assumption is supported by both theoretical [31] and experimental [32]

studies. An appropriate model is,

Γ(E) =
Γ0

(1 + E2/E2
0)
α/2

, (3.16)

where 0.5 . α . 1 is determined by the scattering mechanism (α = 1 for

impurity scattering) and E0 is related to the density of impurities [31]. The

quantities Γ0, E0 and α in equation (3.16) are treated as fitting parameters.

In addition, to take into account the effects of nonzero temperatures, we

can use the formula (the frequency arguments are omitted for clarity) [30]:

σ
(3)
s, αβγδ(EF,Γ0, E0, α, T ) =

1

4T

∫ +∞

−∞

σ
(3)
s, αβγδ(E

′
F,Γ0, E0, α, T = 0)

cosh2
(
EF−E′F

2T

) dE′F.
(3.17)

Figures 3.16a and 3.16b show the obtained theoretical dependencies of the

absolute value of the third order conductivity |σ(3)
s, xxxx(ωi;ωp, ωp,−ωs)| on

the Fermi energy and the detuning λs − λp. The parameters ~Γ0 = 2.5

meV, E0 = 250 meV and α = 0.8 have been chosen so that good qualitative

agreement was obtained with the experimental plots shown in figure 3.14.

5The simulations and adaptations to the theory summarized in this paragraph and
in figure 3.16 were done by Sergey A. Mikhailov and Nadja A. Savostianova. More
information can be found in reference [4].



Chapter 3 3-27

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

20

40

60

EF (eV)

|σ
(3

)
s
|(

10
−

1
9

A
m

2
/V

3
)

a

∆λ =
−5 nm
−3 nm
0 nm
3 nm
5 nm

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

λs − λp (nm)

|σ
(3

)
s
|(

10
−

1
9

A
m

2
/V

3
)

b

EF =
0 eV
−0.20 eV
−0.33 eV
−0.40 eV
−0.42 eV
−0.45 eV

6 4 2 0 −2 −4 −6

ωs − ωp (1012 rad/s)

Figure 3.16: Simulated |σ(3)
s (ωi;ωp, ωp,−ωs)|, using an adapted version of the

model from references [29, 30]. The pump wavelength is 1550 nm. a |σ(3)
s | versus

Fermi energy for different values of signal-pump detuning ∆λ = λs − λp (see

legend). b |σ(3)
s | versus detuning for different Fermi energies (see legend). The

simulations were performed by Sergey A. Mikhailov and Nadja A. Savostianova.

One can see that, just like for the simpler phenomenological model, the the-

ory indeed describes the most important features of the FWM response: a

narrow resonance as a function of λs−λp and a broad strongly asymmetric

shape as a function of EF; the inflection point in the vicinity of the inter-

band absorption edge is also observed. The relative difference between peak

and low-doping levels is in better correspondence with the measurements
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than for the simpler model. Quantitatively however, the theory again pre-

dicts higher values than what was measured, with a discrepancy of about

an order of magnitude. In part, this discrepancy can have the same causes

mentioned in the previous paragraph, such as measurement uncertainties,

inhomogeneities in doping level and imperfections in the graphene the the-

ory fails to take into account. This discrepancy, and the discrepancy in

magnitude between the two different models, should be subject to further

investigation.

3.5 Cross-amplitude and cross-phase
modulation in graphene-covered SiN
waveguides

The four-wave mixing experiment presented in the previous section gave de-

tailed insight in some aspects of the nonlinear behavior of graphene. Namely

strong variations with signal-pump detuning, as well as gate-tunability of

the nonlinear response, were observed. However, the experiment can only be

used to measure the magnitude of the nonlinear conductivity |σ(3)
s | (∠σ(3)

s

influences the phase of the generated idler, which is not easily observable).

However, σ
(3)
s is a complex parameter. Its real part (Re(σ

(3)
s ) ∝ Im(χ(3)))

expresses power dependent changes in the optical absorption, whereas its

imaginary part (Im(σ
(3)
s ) ∝ Re(χ(3))) expresses nonlinear changes in optical

refraction. For many applications, such as all-optical signal processing, full

knowledge of σ
(3)
s is imperative.

In this section, our SiN waveguides covered with gated graphene are used

to perform a simultaneous measurement of cross-amplitude and cross-phase

modulation (XAM/XPM) between a relatively strong modulated pump and

a weaker probe. Through this measurement we extract the full complex

value of the waveguide nonlinear parameter γ, and a corresponding estimate

of σ
(3)
s , as a function of gate voltage and pump-probe detuning.

First, a mathematical description of cross-modulation in waveguides will

be given, then the experimental method will be described in detail. Finally

the results will be analyzed and compared with theoretical calculations and

related experiments from literature.

3.5.1 Coupled-wave equations

For the cross-modulation experiments presented in this part of the thesis,

there are 2 quasi-monochromatic waves involved. The pump and the probe

have respective frequencies ωpump and ωprobe. The coupled wave equations
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(equation (2.33), with inclusion of a loss term) can be written as:

∂Apump

∂z
= i{γ(ωpump;ωpump, ωpump,−ωpump)|Apump|2

+ 2γ(ωpump;ωpump, ωprobe,−ωprobe)|Aprobe|2}Apump

− α(ωpump)

2
Apump,

(3.18)

∂Aprobe

∂z
= i{γ(ωprobe;ωprobe, ωprobe,−ωprobe)|Aprobe|2

+ 2γ(ωprobe;ωprobe, ωpump,−ωpump)|Apump|2}Aprobe

− α(ωprobe)

2
Aprobe,

(3.19)

where Apump(z) ≡ A(ωpump, z) and Aprobe(z) ≡ A(ωprobe, z) are the com-

plex amplitudes of respectively the pump and probe. As was the case for

four-wave mixing, these equations can be strongly simplified. Again on-chip

powers are limited to about 10 mW, so the cross- and self modulation terms

can in general be neglected. However the cross-modulation term in the equa-

tion of the probe (2iγ|Apump|2Aprobe) should be kept. This is because in

the experiments presented below, the pump will be modulated at frequency

Ω. Hence the cross-modulation term will add extra frequency components

to the probe, which will be small in amplitude but can be distinguished

from the unmodulated terms using the right techniques. The coupled-wave

equations now look like:

∂Apump

∂z
≈ − α(ωpump)

2
Apump , (3.20)

∂Aprobe

∂z
≈ i2γ(ωprobe;ωprobe, ωpump,−ωpump)|Apump|2Aprobe

− α(ωprobe)

2
Aprobe .

(3.21)

The equation for the pump amplitude/power can be solved easily, leading

to:

Apump(z) = Apump(0)e−
α(ωpump)

2 z , (3.22)

Ppump(z) ≡ |Apump(z)|2 = Ppump(0)e−α(ωpump)z . (3.23)

Substituting this in the differential equation for the probe, we get the fol-

lowing expression for the probe field as a function of z:

Aprobe(z) =

Aprobe(0)e−
α(ωprobe)

2 zei2γ(ωprobe;ωprobe,ωpump,−ωpump)Ppump(0)Leff ,

(3.24)
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where the effective length is defined as Leff ≡ 1−e−α(ωpump)z

α(ωpump) . The expression

for the propagation loss α(ωj) is given by equation (3.13), alternatively the

linear loss can be calculated using a mode-solver. The nonlinear parameter

γ(ωprobe;ωprobe, ωpump,−ωpump) is, analogously to equation (3.14), given

by,

γ(ωprobe;ωprobe, ωpump,−ωpump)

≈ i3σ
(3)
s, xxxx(ωprobe;ωprobe, ωpump,−ωpump)

16P2
pump

∫
G

|e(ωpump)‖ × êz|4d` .

(3.25)

Note that this is in general not the same γ-parameter as in the four-wave

mixing case (equation (3.14)) for ωp = ωpump and ωs = ωprobe, since we are

measuring the σ
(3)
s -function for different frequency arguments!

3.5.2 Measurement setup and methodology

EDFAVG
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Probe Laser
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Filter

50/50
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Apump(L,t)
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Figure 3.17: Sketch of the setup for the cross-amplitude/cross-phase modulation
experiment. Red dotted arrow: path of the signal, blue dotted arrow: path of
the pump. EDFA: erbium doped fiber amplifier, VNA: vector network analyzer,
FBG: fiber Bragg grating, SMF: single mode fiber.

In the cross-modulation experiment, the pump is modulated at RF fre-

quencies, we use a vector network analyzer (VNA) to sweep the modulation

frequency and a dispersive fiber to distinguish amplitude from phase mod-

ulation. The method was in part based on reference [33]6. The setup for

this experiment is shown in figure 3.17. Through the modulator, the VNA

6Wathen et al. have used a similar technique to measure the ratio between the real and
imaginary part of γ [33], which serves as a commonly used figure-of-merit for nonlinear
optics in dielectrics with significant two-photon absorption, such as silicon. We expanded
their method to also get quantitative information on the magnitude of γ.
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will sinusoidally modulate the pump power, we will now assume the pump

power at the start of the graphene-covered waveguide section to be:

Ppump(0, t) = Ppump,0 + Ppump,Ω cos(Ωt). (3.26)

Using equation (3.24), we can now write the complex amplitude of the probe

field, at the end of the graphene-covered waveguide section, as:

Aprobe(L, t) =

Aprobe(0)e−
α(ωprobe)

2 Lei2γLeff [Ppump,0+Ppump,Ω cos(Ωt)],
(3.27)

where we have omitted the frequency arguments of γ for clarity, and where

Aprobe(0) is the probe field at the waveguide input. In the experiment, the

optical power is being measured at 3 different locations, using high-speed

optical receivers, the resulting electrical signals are then fed to the ports

of the VNA. The fiber Bragg grating (FBG) is chosen so that the probe

wavelength is in its pass-band, and the pump wavelength (≈ 1550 nm) is

reflected, hence the total time-dependent optical power received by photo-

diode 2 (PD2) is:

PPD2(t) = T2 · Ppump(L, t− τg,2)

= T2 · [Ppump,0 + Ppump,Ω cos(Ω(t− τg,2))] · e−α(ωpump)L,
(3.28)

τg,2 is the total group delay between the waveguide (at the end of the

graphene-covered section) and the photodiode, approximately equal to β1×
(total fiber length), with β1 ≡ ∂β

∂ω =
ng
c and β and ng are respectively

the propagation constant and group index of the fiber. We assume that

the total fiber length is on the order of several meters, moreover we are

only interested in relatively low frequencies at this port, hence the group

velocity dispersion β2 ≡ ∂2β
∂ω2 can be ignored. T2 is the total power loss

between the waveguide (after the graphene section) and the photodiode:

T2 = TGC(ωpump)Tcirc.;1,2(ωpump)Tcirc.;2,3(ωpump)RFBG(ωpump). With TGC,

RFBG and Tcirc.;i,j the transmission (T ) and reflection (R) functions of the

grating coupler (GC), FBG and circulator (circ.).

The FBG transmits only the probe field. We can calculate the time-

dependent probe field amplitude at photodiode 3 (PD3):

APD3(t) ≈ t3Aprobe(0)e−
α(ωprobe)

2 Lei2γLeff [Ppump,0+Ppump,Ω cos(Ω(t−τg,3))],
(3.29)
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from this the power can be calculated as:

PPD3(t) = |APD3(t)|2

= T3Pprobe(0)e−α(ωprobe)Le−4Im(γ)Leff [Ppump,0+Ppump,Ω cos(Ω(t−τg,3))]

≈ T3Pprobe(0)e−α(ωprobe)Le−4Im(γ)LeffPpump,0 ·
[1− 4Im(γ)LeffPpump,Ω cos(Ω(t− τg,3))] ,

(3.30)

where T3 = TGC(ωprobe)Tcirc.;1,2(ωprobe)TFBG(ωprobe)Tsplitter,10%(ωprobe) (≡
|t3|2), TFBG is the FBG transmission spectrum and Tsplitter,10% is the power

transmission to the 10 % port of the splitter. τg,3 is the total group delay

in the path to PD3.

To calculate the field at photodiode (PD4), we have to take into account

group velocity dispersion due to the long length of single mode fiber (SMF).

For this we start by approximating the field amplitude at the end of the

waveguide (equation (3.24)) by:

Aprobe(L, t) ≈

Aprobe(0)e−
α(ωprobe)

2 Lei2γLeffPpump,0 [1 + i2γLeffPpump,Ω cos(Ωt)].

(3.31)

This approximation is based on the assumption that γLeffPpump,Ω � 1,

which is the case for our experiments. The optical field amplitude at the

photodiode is,

APD4(t) ≈ t4Aprobe(0)e−
α(ωprobe)

2 Lei2γLeffPpump,0 ·

[1 + i2γLeffPpump,Ω cos(Ω(t− τg,4))e
iβ2LSMFΩ2

2 ],

(3.32)

where τg,4 is again the total group delay for the path to the photodi-

ode, and β2 ≡ ∂2β
∂ω2 represents the group velocity dispersion of the fiber,

LSMF is the total single mode fiber length. T4 = |t4|2 = TGC(ωprobe)

Tcirc.;1,2(ωprobe)TFBG(ωprobe)Tsplitter,90%(ωprobe) TSMF(ωprobe)GEDFA(ωprobe),

were Tsplitter,90% is the transmission to the 90 % port of the splitter, TSMF

the power transmission of the SMF and GEDFA the gain of the EDFA. The

power on PD4 is then,

PPD4(t) = |APD4(t)|2

≈ T4Pprobe(0)e−α(ωprobe)Le−4Im(γ)LeffPpump,0 ·
[1 + 2|γ|2L2

effP
2
pump,Ω

− 4|γ|LeffPpump,Ω sin

(
β2LSMFΩ2

2
+ ∠γ

)
cos (Ω(t− τg,4))

+ 2|γ|2L2
effP

2
pump,Ω cos (2Ω(t− τg,4))].

(3.33)
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From the perspective of the vector network analyzer (VNA), the whole

optical system between the RF-port of the modulator and the RF-ports of

the receivers is treated as a black-box. All the VNA does is measure the

frequency dependent scattering parameters between input and output. For

this specific experiment we only apply a drive signal through port 1 of the

VNA, and measure scattering parameters S21, S31 and S41. Subsequently

we can calculate (a), Im(γ) from S31 and S21 and (b), ∠γ from S41.

(a) We can estimate |Imγ| from |S31|/|S21|,

|S31|
|S21|

= 4
RPD3T3Pprobe(0)|Im(γ)|Leffe

−α(ωprobe)Le−4Im(γ)LeffPpump,0

RPD2T2e−α(ωpump)L

≈ 4
RPD3T3

RPD2T2
|Im(γ)|LeffPprobe(0),

(3.34)

for the last approximation we make use of the observations that Im(γ)

LeffPpump,0 � 1 and that the pump-probe detuning is usually small, so

we can neglect dispersion in the optical absorption term α(ωprobe) ≈
α(ωpump). RPDi is the responsivity of the respective ith photodiode.

To derive the sign of Im(γ) we can use the observation that:

∠S31 − ∠S21 =

 −(τg,3 − τg,2)Ω if Im(γ) < 0

−(τg,3 − τg,2)Ω + π if Im(γ) > 0
, (3.35)

and consequently that,

lim
Ω→0

(∠S31 − ∠S21) =

0 if Im(γ) < 0

π if Im(γ) > 0
. (3.36)

(b) On the other hand, we can use S41 to estimate ∠γ,

|S41| ∝
∣∣∣∣sin(β2LSMFΩ2

2
+ ∠γ

)∣∣∣∣ . (3.37)

By measuring the S41 parameter with a high enough bandwidth and

using a long enough fiber, ∠γ can be estimated through a sinusoidal fit,

provided the sign of β2 is known (which is the case for standard SMF)

and sgn(Im(γ)) has been estimated as described in (a).

It is now clear that these observations can be used to estimate the com-

plex value of γ, through estimation of its imaginary part and phase. In

principle this method can also be used by only using 3 ports of the VNA, as

Im(γ) can also be estimated from limΩ→0
S41

S21
, however then a good knowl-

edge of the EDFA amplification is necessary.
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Influence of fiber nonlinearities

In the above derivation, we have assumed for simplicity that we could ne-

glect nonlinear effects in the input fiber. This is for example the case for

experiments presented in reference [33], where the pump and probe were

combined in free-space. In our experiments, in particular the influence of

the fiber section between the 50/50 splitter and the chip has a non-negligible

influence that has to be taken into account. The fiber section between split-

ter and grating coupler has length LSMF,in and a nonlinear coefficient γSMF.

The pump power in this fiber section is,
Ppump(0,t)
TGC(ωpump) , hence we have to substi-

tute Aprobe(0) in equation (3.24) by Aprobe(0) exp
(
i2
γSMFPpump(0,t)LSMF,in

TGC(ωpump)

)
.

This implies that using the method described above, rather than γ(ωprobe;

ωprobe, ωpump,−ωpump) of the graphene-covered waveguide alone, we mea-

sure:

γ = γ(ωprobe;ωprobe, ωpump,−ωpump) + γSMF
LSMF,in

LeffTGC(ωpump)
, (3.38)

hence we have to correct the obtained values accordingly. In the the experi-

ments described in this paper, LSMF,in ≈ 1.77 m and γSMF = 2πn2

λAeff
= 0.0013

/W/m [34] (for a standard SMF, n2

Aeff
= 3.18 · 10−10 /W [35]). In the mea-

surements presented in this work, this correction is small but non-negligible,

on the order of 800 m−1W−1 (varies slightly with gating/effective length).

3.5.3 Experimental results

The cross-modulation experiment described here was performed on a wave-

guide with a width of 1400 nm, covered with graphene over a length of

50 μm. As was the case for the FWM experiment, the graphene is gated

through a polymer electrolyte. On figure 3.18, measurements of the gra-

phene resistance (figure 3.18a) and waveguide loss (figure 3.18b) are shown.

Following the procedure described in Section 3.3.2, the Dirac voltage and

electric double layer capacitance of this sample are respectively estimated

to be VD ≈ 0.6 eV and CEDL ≈ 1.82 · 10−2 F m−2. The resulting relation

between Fermi energy and voltage is plotted in figure 3.18c. The grey area

in this figure denotes the parameter range for which the cross-modulation

experiment discussed below is performed.

Using the methodology introduced in the previous section, the complex

value of γ(ωprobe;ωprobe, ωpump,−ωpump) was estimated for a range of dif-

ferent gate voltages and probe wavelengths (λpump = 1550.18 nm). For

every single one of these parameter combinations a measurement of the S-

parameters was performed and analyzed. It is not possible to show all the
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Figure 3.18: a The measured electrical resistance per unit of length (of the gra-
phene section) over the graphene as function of the gate voltage VGS. Measured
on a device with an 800 μm long graphene section. b The measured optical loss
for a wavelength of 1550 nm and corresponding fit, proportional to the real part
of the linear conductivity of graphene σ

(1)
s . For waveguides with a width of 1400

nm. c Estimated relation between gate voltage VGS and Fermi energy EF of the
graphene covering the waveguides. The range of gate voltages and corresponding
Fermi energies for which the cross-modulation experiment was performed is shown
by the shaded area.

data, however figure 3.19 shows some examples of measured S-parameters

as an illustration.

In figure 3.19a, |S21| and |S31| are plotted, for VGS = 0 V and λprobe =

1551 nm. From equation (3.34) we know that |S31|/|S21| is proportional to

|Im(γ)| in the low-frequency limit. At these ports, two Thorlabs PDB480C-

AC receivers were used, with bandwidths limited to ≈ 1.8 GHz. Note that

since we only look at low frequencies the limited bandwidth is not an issue.

From equation (3.34) one can see that, to obtain proper normalization,

the only necessary parameters are the on-chip probe power Pprobe(0) and
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Figure 3.19: Examples of S-parameter measurements used in a cross-modulation
experiment performed on a waveguide of width 1400 nm, covered with 50 μm of
graphene. The traces shown here are for λprobe = 1551 nm and λpump = 1550.18
nm. a Traces of |S21| and |S31| for VGS = 0 V. The ratio |S31|/|S21| can be used
to estimate |Im(γ)|. b Trace of ∠(S31/S21) used to estimate the sign of Im(γ), for
two different gate voltages. c Traces of |S41| for two different gate voltages. The
dashed lines show the corresponding sinusoidal fits (∝

∣∣sin (
β2LSMFΩ2/2 + ∠γ

)∣∣),
used to estimate ∠γ.

the effective lenth Leff . For this experiment, the on-chip probe powers

vary between −5 and 0 dBm with variations caused by the wavelength

dependence of the grating couplers. The effective length was calculated

using a loss measurement similar to the one shown in figure 3.9b.

To obtain the sign of Im(γ), we can use the phase difference ∠S31−∠S21,

as can be seen in equation (3.36). When this phase difference converges to

0, in the limit Ω → 0, then Im(γ) < 0. This essentially means that we

are observing saturable absorption, which causes the pump and probe to

oscillate in phase (increasing the pump power decreases the absorption of

the probe, and hence increases the probe power at the output). If the phase
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Figure 3.20: a Measured Im(γ) as function of VGS for different probe wavelengths
λprobe (see legend). The top axis shows the estimated Fermi energy correspond-

ing to the gate voltage, the right-hand axis shows the corresponding Re(σ
(3)
s ). b

Measured Re(γ) and corresponding Im(σ
(3)
s ), as function of gate voltage and es-

timated Fermi energy. The grey dashed lines in both a and b show the simulated
results for λprobe = λpump (see Section 3.5.4).

difference converges to ±π, the opposite happens and the pump and probe

oscillate out of phase, which is a signature of increasing probe absorption

with increasing pump power, hence Im(γ) > 0. The blue circles on figure

3.19b show this phase difference for the measurement shown in figure 3.19a,

the linear fit shows that limΩ→0(∠S31 − ∠S21) ≈ 0, indicating saturable

absorption. A measurement for a different gate voltage (VGS = −0.9 V,
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Figure 3.21: a Measured Im(γ) as a function of λprobe, respectively, for different
gate voltages VGS (see legend). The top axes show the corresponding probe-
pump detuning in radial frequency, the right-hand axis shows the corresponding
Re(σ

(3)
s ). b Measured Re(γ) and corresponding Im(σ

(3)
s ), as function of probe

wavelength and frequency detuning.

λprobe = 1551 nm) is plotted in red, this time the phase difference converges

to π, indicating that the opposite to saturable absorption, an increase of

absorption with power, occurs for certain gating voltages.

Finally, as described by equation (3.37), the phase ∠γ can be estimated

using the |S41|-trace, which is proportional to | sin
(
β2LSMFΩ2

2 + ∠γ
)
|. As

an example, figure 3.19d shows two of these measurements, accompanied

by the sinusoidal fits. Hence a sinusoidal fit of the |S41|-measurement, in



Chapter 3 3-39

combination with the knowledge of |Im(γ)| and sgn(Im(γ)) acquired as de-

scribed above, can be used to fully characterize the nonlinear parameter

γ. In practice, the fibers used to couple light into the chip also cause non-

negligible cross-phase modulation. This contribution is corrected for in the

measurements presented below, as is described in the previous section.

Figures 3.20 and 3.21 summarize the final results of this measurement.

The measured values for Im(γ) and Re(γ) are plotted. The right-hand axes

show the corresponding Re(σ
(3)
s ) and Im(σ

(3)
s ). In analogy to the FWM ex-

periment the conversion was done through equation (3.25), using a realistic

cross-section of the waveguide based on a SEM-image (a different sample

than for the FWM experiment was used). In figure 3.20, these parame-

ters are plotted as a function of the gate voltage. On the top axes, the

estimated corresponding Fermi energies are plotted. It is clear from these

measurements that γ(ωprobe;ωprobe, ωpump,−ωpump), and the correspond-

ing σ
(3)
s (ωprobe;ωprobe, ωpump,−ωpump) of graphene, are very Fermi energy-

dependent, and that both its real and imaginary part show strong resonance-

like features around |EF| ≈ ~ω/2. At lower doping levels (|EF| � ~ω/2),

the negative sign of Im(γ) (Re(σ
(3)
s )) corresponds to saturable absorption,

a well-known phenomenon in graphene (see references [13, 15, 36] and Sec-

tion 3.2). However, in the vicinity of |EF| ≈ ~ω/2, the opposite effect is

observed! The measured Re(γ) (∝ −Im(σ
(3)
s )) is positive for low doping,

but becomes strongly negative around |EF| ≈ ~ω/2, after which it decays to

zero. In figure 3.21, the same parameters are plotted as a function of λprobe,

for different gating voltages VGS. γ is relatively insensitive to pump-probe

detuning, apart from a small resonant feature around λprobe ≈ λpump.

3.5.4 Comparison with theory

Again, these experimental values can be compared with predictions made by

theoretical models. We will focus on the phenomenological model described

in Appendix A.

In figures 3.22a and 3.22b we show the real and imaginary parts of the

calculated third order conductivity as a function of Fermi energy. The pump

wavelength is 1550 nm and several different values of the probe wavelength

are used. The equilibrium (before irradiation) temperature kBT0 = 25 meV

corresponds to room temperature. For the parameter Ei we took a value

of 100 meV (see Appendix A). Our simulated results are moreover practi-

cally insensitive to the exact value of Ei used. The overall Fermi-energy

dependence qualitatively corresponds to the experimental data. Approxi-

mate quantitative agreement is achieved using a phenomenological relax-

ation time τE ≈ 0.165 ps. The difference between the curves for different
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Figure 3.22: Simulated real (a) and imaginary (b) parts of σ
(3)
s as a function of

Fermi energy at different probe wave frequencies (∆λ ≡ λprobe−λpump). Real (c)

and imaginary (d) parts of σ
(3)
s , as a function of λprobe at different Fermi energies.

Parameters: kBT0 = 25 meV, Ei = 100 meV, τE = 0.165 ps, the pump wavelength
is 1550 nm (~ωpump ≈ 0.8 eV).

probe wavelengths is small and the overall behavior agrees with the exper-

imental findings in figure 3.20. The calculated values for ∆λ = 0 nm are

displayed on figure 3.20 (grey lines) to highlight this correspondence.

In figures 3.22c and 3.22d the real and imaginary parts are plotted as

a function of probe wavelength detuning ∆λ = λprobe − λpump. The curves

follow qualitatively similar trends as the experimental curves (figure 3.21),

however we do not see any resonant feature at λprobe ≈ λpump. We believe

that this deviation around λpump between the model and experiment is due

to a slight deviation of the actual carrier distribution function from the as-
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sumed Fermi-Dirac distribution in the vicinity of energy levels ±~ωpump/2,

due to spectral hole burning. This local perturbation to the distribution is

believed to give rise to the resonant features in the measured σ
(3)
s values.

For the simulations here we used a relaxation rate τE which was smaller

than the one used for the simulations in the context of the four-wave mixing

experiments (see Section 3.4 – 165 ps versus 500 ps). Partly, this can be

due to experimental errors. But note that for the FWM experiments the

relaxation rate was chosen in order to get a similar width of the Lorentzian

line-shapes between figures 3.14b and 3.15b. This value resulted in simu-

lated nonlinear conductivities of about a factor 3 higher than the measured

ones. Since from Appendix A it is clear that σ
(3)
s (ω;ω, ω,−ω) ∝ τE , we

would get the comparable discrepancies between experiment and model if

we would use τE = 500 ps for the experiments described here. In other

words, the quantitative difference between model and experiment is similar

for both the FWM and cross-modulation experiment.

3.5.5 Comparison with other experiments

We can now compare these experimental results with other nonlinear mea-

surements in graphene. First and foremost, we do this for the four-wave

mixing experiment in Section 3.4. Through FWM only the magnitude of

the nonlinear conductivity can be estimated, hence to have a fair compari-

son, we have to estimate |σ(3)
s | for the cross-modulation experiment as well,

this is plotted in figure 3.23a, for λprobe = 1551.5 nm. Comparing with fig-

ure 3.14a we see a similar peak in the vicinity of the interband absorption

edge, quantitatively the values are also comparable. Note that we only ex-

pect the values to converge in the limit λprobe → λpump for cross-modulation

and λs → λp for FWM, and that the measurements were performed on dif-

ferent samples, so the graphene quality and conversion between γ and σ
(3)
s

might differ.

In figure 3.23b, the estimated real and imaginary part of the nonlin-

ear refractive index are plotted. They are calculated using equations (2.13,

2.14), the linear refractive index is computed using the expressions for the

linear conductivity given in Appendix A. The dotted lines give a theoretical

estimation, calculated using the model in Appendix A with phenomenolog-

ical relaxation time τE = 0.16 ps. Despite our belief that these units are

not the most appropriate for graphene (see discussion in Section 2.4.1 and

reference [37]), this conversion makes it possible to compare with other ex-

periments available in literature (see table 2.1). Figure 3.23b shows that

the nonlinear index fluctuates strongly in the vicinity of EF = −~ω/2. In

terms of magnitude, the low-doping limit of n2 ≈ 10−13 m2/W is compara-
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Figure 3.23: a Measured |σ(3)
s (ωprobe;ωprobe, ωpump,−ωpump)|, for λprobe = 1551.5

nm. b Estimated nonlinear refractive index n2 + iκ2 as a function of estimated
Fermi energy. The measurement of σ

(3)
s using λprobe = 1551.5 nm in figure 3.20

was used. The dotted lines are calculated values. c Estimated electron tem-
perature as a function of illumination intensity for a wavelength of 1550 nm. d
Theoretical calculations of n2 for different electron temperatures. All calculations
have been done using the phenomenological model described in Appendix A, with
τE = 0.16 ps.

ble with what has been measured in references [28, 38–41]. Dremetsika et

al. [40, 41] and Vermeulen et al. [28] however reported negative values for n2,

for Fermi energies of around −0.2 eV. A possible explanation for this is the

high optical peak intensity typically used in these experiments (1012 . . . 1013

W/m2). Using the model in Appendix A, we can estimate how the electron

temperature increases for increasing illumination intensity, by enforcing the

electroneutrality condition, equation (A.4), and the energy balance condi-

tion, equation (A.10). In figure 3.23c the estimated electron temperature

versus intensity is plotted. Note that for the illumination intensities used
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in references [28, 40, 41], the electron temperature is probably significantly

increased. On figure 3.23d, the nonlinear index n2 is calculated for different

electron temperatures. According to the model, an elevated electron tem-

perature can indeed switch the sign of the nonlinear index. Note that the

explanation given here is probably not entirely correct for the experiments

in references [28, 40, 41], as short pulses are used for which the model in

Appendix A is no longer valid. However the simulations illustrate how the

use of high peak intensities can perturb the carrier distribution in graphene

to the extent that very different values of n2 are observed.

3.6 Third harmonic generation in
graphene-covered SiN waveguides

Gate-tunable third harmonic generation using graphene has recently been

demonstrated by several groups. In this section we explore the possi-

bility of doing this on an integrated waveguides. Experimental work on

third harmonic generation was not performed within the PhD project. We

merely give a mathematical framework, suggest an approach for quasi-

phase-matching and perform some preliminary simulations.

3.6.1 Coupled-wave equations

When performing third harmonic generation in a graphene-covered wave-

guide, two optical frequencies should be considered, the fundamental ωf ,

and its third harmonic ωTH = 3ωf . Both can be in very distinctive optical

modes, with electric field profiles ef ≡ e(ωf , r⊥) and eTH ≡ e(ωTH, r⊥) and

with slowly varying amplitudes Af(z) ≡ A(ωf , z) and ATH(z) ≡ A(ωTH, z).

The coupled wave equations for the nonlinear interactions (equation (2.33))

can be written as:

∂Af

∂z
= iγ(ωf ;ωTH,−ωf ,−ωf)ATHA

∗2
f e
−i∆βz − α(ωf)

2
Af , (3.39)

∂ATH

∂z
= i

1

3
γ(ωTH;ωf , ωf , ωf)A

3
f e
i∆βz − α(ωTH)

2
ATH, (3.40)

where ∆β = 3βf − βTH. Here we have, as was done for the four-wave

mixing experiments, assumed that the cross- and self-modulation terms are

negligible. The propagation loss is again given by equation (3.13). If we

assume that the coupling between the transversal components of the electric



3-44 Nonlinear optics in graphene-covered waveguides

fields is dominant, we get the approximate expressions for the γ-parameters:

γ(ωf ;ωTH,−ωf ,−ωf) ≈ i
3σ

(3)
s, xxxx(ωf ;ωTH,−ωf ,−ωf)

16P
3
2

f P
1
2

TH

∫
G

(eTH)x[(ef)
∗
x]3d`

(3.41)

γ(ωTH;ωf , ωf , ωf) ≈ i
3σ

(3)
s, xxxx(ωTH;ωf , ωf , ωf)

16P
3
2

f P
1
2

TH

∫
G

(eTH)∗x[(ef)x]3d`

(3.42)

For a third harmonic generation experiment, we can typically assume that

the down-conversion term in equation (3.39) can be ignored. The amplitude

of the fundamental field is then given by Af(z) = Af(0) exp[−α(ωf)z/2].

Substituting this in equation (3.40), we can get the following expression for

the third harmonic amplitude (assuming that the field at z = 0 is 0):

ATH(z) =
iA3

f,0e
−αTH

2 z

3

∫ z

0

γe[ 1
2 (αTH−3αf )+i∆β]z′dz′

=
iγA3

f,0e
−αTH

2 z

3

(e[ 1
2 (αTH−3αf )+i∆β]z − 1)

1
2 (αTH − 3αf) + i∆β

,

(3.43)

where we have introduced the short-hand notations γ ≡ γ(ωTH;ωf , ωf , ωf),

αf ≡ α(ωf), αTH ≡ α(ωTH) and Af,0 ≡ Af(0).

3.6.2 Phase-matching techniques for third harmonic
generation

Integrated waveguide modes are strongly dispersive. This implies that when

two fundamental TE modes are coupled through THG, the generated third

harmonic field (equation 3.43) strongly oscillates as a function of z. In other

words a nonzero phase mismatch term ∆β is detrimental for efficient wave-

length conversion. There are two commonly used solutions for this problem,

modal phase-matching and quasi-phase-matching. In the former, one looks

for two distinctly different modes, often the fundamental TE mode for the

fundamental frequency and some higher-order mode at higher frequencies.

Once such a pair of modes is found, equation (3.43) can be readily used to

estimate the power conversion. However this approach typically results in a

strongly reduced γ-parameter due to the relatively small overlap integral in

equation (3.42). The second approach assumes that the nonlinear parame-

ter γ itself is a periodic function of z. A periodic γ-function with period Λ

can be written as a Fourier series [23]:

γ(z) =

∞∑
m=−∞

gme
imKz, (3.44)
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where K = 2π/Λ. Equivalent to equation (3.43) we can write,

ATH(z) =

∞∑
m=−∞

iA3
f,0e
−αTH

2 z

3

∫ z

0

gme
[ 1
2 (αTH−3αf )+i(∆β+mK)]z′dz′

=

∞∑
m=−∞

igmA
3
f,0e
−αTH

2 z

3

(e[ 1
2 (αTH−3αf )+i(∆β+mK)]z − 1)

1
2 (αTH − 3αf) + i(∆β +mK)

.

(3.45)

It is now clear that most of the terms in this series expansion will oscillate

with a period comparable to or smaller than Λ, the period can be chosen

so that at most one term is phase-matched (|∆β + mK| � K). Only

this term will build up coherently over multiple phase-matching periods.

If we neglect the other terms, keep this term and assume perfect phase-

matching, mK = −∆β (∆β is negative for the typical case nTH > nf), we

can approximate:

ATH(z) ≈
igmA

3
f,0e
−αTH

2 z

3

(e
1
2 (αTH−3αf )z − 1)
1
2 (αTH − 3αf)

. (3.46)

In a waveguide covered with graphene, or any other 2D material, a trivial

way to modulate the nonlinear parameter γ is to selectively etch away a the

graphene in a periodic pattern. If we assume that we periodically remove

half of each period, then γ(z) can be expressed as,

γ(z) = γmax

{
1

2
+

1

2
sgn[cos(Kz)]

}
, (3.47)

for which the Fourier coefficients are,

gm =


γmax/2 if m = 0

(−1)(m−1)/2γmax/mπ if m is odd and m 6= 0

0 if m is even and m 6= 0

. (3.48)

One can see that only odd values of m yield a nonzero effect, moreover

as m increases, the efficiency drops drastically. The third harmonic power

conversion efficiency in a perfectly quasi-phase-matched waveguide (with

phase-mathing order m = 1) of length L can be estimated from equation

(3.45),

PTH(L)

Pf(0)3
≈ 4|γmax|2

9π2

∣∣∣∣∣e−
3
2αfL+i(∆β+K)L − e− 1

2αTHL

(αTH − 3αf) + i(∆β +K)

∣∣∣∣∣
2

, (3.49)

For higher-order odd phase matching schemes the efficiency drops with a

factor 1/m3, however this corresponds to longer phase-matching periods

which might be technologically easier to achieve.
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Note that in our derivation another approximation was made, namely

that the modulation of the waveguide losses α(ω) (with period Λ) is ne-

glected. However if the loss per period is small, we can use an average value

for the loss and expect no significant influence on the outcome.

3.6.3 Simulations

There are two recent experimental studies on gate tunable THG in gra-

phene, by Jiang et al. [42] and Soavi et al. [43]. Both give estimates of the

χ(3) of graphene for fundamental wavelengths in the vicinity of 1550 nm

and for different doping levels, which are shown in table 3.1. For a typi-

cal waveguide (width 1400 nm and height 300 nm), γ was estimated using

a COMSOL Multiphysicsr-model and equation (3.42). An estimate of the

average waveguide losses is also given. Figure 3.24 shows the calculated con-

version efficiency (equation (3.49)) as a function of distance corresponding

to these parameter sets.

Ref. EF (meV) |χ(3)| (m2

V2 ) γ ( 1
m W ) αf (dB

cm ) αTH (dB
cm )

Jiang et al. [42] † -250 2 · 10−19 0.0449 0.0338 0.012

Jiang et al. [42] † -500 6 · 10−19 0.1347 0.0013 0.012

Soavi et al. [43] ‡ -250 5 · 10−18 1.1224 0.0338 0.012

Soavi et al. [43] ‡ -500 1 · 10−17 2.2450 0.0013 0.012

Table 3.1: Rough estimates of |χ(3)|-values measured using third harmonic gen-
eration for fundamental wavelengths in the vicinity of 1550 nm, from different
sources and with different Fermi energies.
† Measurements performed with a fundamental wavelength of 1300 nm, values
estimated from figure 4c in reference [42].
‡ Measurement performed with a fundamental wavelength of 1738 nm for a Fermi
energy of about 250 meV. The value at higher doping is rough estimate assuming
a 4-fold enhancement of the χ(3)-parameter.

As can be seen on figure 3.24 there is a large uncertainty given the

different susceptibilities published in literature. In order to measure con-

version efficiencies of these orders of magnitude, pulsed sources with high

peak powers will probably have to be used.
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Figure 3.24: Simulated third harmonic conversion efficiency for a waveguide of
thickness 300 nm and width 1400 nm, with nonlinear susceptibilities taken from
different references.

3.7 Conclusion and future outlook

In this chapter, different experimental results obtained on graphene-covered

waveguides were discussed. Where possible they were interpreted using

relevant theoretical models.

In the first experiment (Section 3.2), gate-tunable saturable absorption

in graphene-covered silicon waveguides was demonstrated. This was the first

demonstration on integrated waveguides and can form the basis of studies

of integrated lasers using graphene as a saturable absorber. Especially in

light of a recent demonstration in which the properties of gate-tunable gra-

phene are exploited to adjust the operational regime of a fiber modelocked

laser [14], this idea can be promising. A simple model for saturable absorp-

tion was fitted to the measurements and saturation intensities in reasonable

comparison of what has been measured by other groups were obtained.

These measurements also show that when measuring the nonlinearities in

a graphene-covered silicon waveguide, the nonlinear effects of the graphene

and the silicon both play a significant role. From a practical point of view,

this can be unwanted, the absorption saturation in the graphene for example

competes with the two-photon absorption in the silicon, which could be an

issue for modelocked lasers. Also, from a characterization perspective this

is undesirable, as the nonlinearity in the silicon obscures the contribution

of the graphene.

Therefore we developed a platform in which we incorporated graphene on

silicon nitride waveguides. The details of this platform are given in Section

3.3. Gate-tunability of graphene was also achieved on these samples, using
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a polymer electrolyte. The experimental results obtained on gate-tunable

graphene-covered SiN waveguides are discussed in Sections 3.4 and 3.5, re-

spectively a four-wave mixing and a cross-modulation experiment. In the

four-wave mixing experiment (Section 3.4) the magnitude of the nonlinear

waveguide parameter |γ| ∝ |σ(3)
s | is measured. This experiment shows that

the nonlinear conductivity of graphene has a sharp resonance as a function

of signal-pump detuning. By tuning the Fermi energy a broad asymmet-

ric resonance shape in the vicinity of the absorption edge |EF| = ~ω/2 is

observed. Through the cross-modulation experiment (Section 3.5), a simul-

taneous measurement of both the nonlinear phase and amplitude response

of the graphene-covered waveguides was possible. These results show that

both the nonlinear refraction of graphene (quantified by the imaginary part

of its nonlinear conductivity Im(σ
(3)
s )), as well as its nonlinear absorption

(quantified by Re(σ
(3)
s )) are vastly dependent on the Fermi level. Apart

from the already observed peak of |σ(3)
s | in the vicinity of the absorption

edge |EF| = ~ω/2, more complex dependencies, including sign changes and

strong resonances in both Im(σ
(3)
s ) and Re(σ

(3)
s ), are uncovered. As opposed

to the four-wave mixing experiments, the measured nonlinear parameter is

not very detuning-dependent, and reasonably large values are measured in-

dependent of pump-probe detuning.

Approximate agreement was obtained between the measurements and

the model introduced in Appendix A, for both the wavelength dependence

and the Fermi energy dependence, for the four-wave mixing as well as the

cross-modulation results. The different behavior as a function of detun-

ing for the four-wave mixing and cross-modulation experiment can also be

understood using this model. For the cross-modulation experiment, the

nonlinear effect occurs as long as the temporal changes in charge carrier

distribution are able to follow the modulation of the pump power, irre-

spective of the probe wavelength. For the four-wave mixing however, the

nonlinear effects are strong as long as the changes in carrier distribution

follow the beat note between pump and signal, which will be too fast for

large detunings. Purely mathematically, we are measuring σ
(3)
s for different

frequency arguments. Qualitative agreement was also obtained between the

four-wave mixing experiment and an adapted version of previously published

theory [29, 30], however quantitatively, there was still a large discrepancy.

The reasons for this discrepancy should be investigated further. Improving

the simple model from Appendix A could also be a future endeavour.

From an application perspective, we have shown that the nonlinear pa-

rameter γ of a graphene-covered waveguide can be both large and tunable.

The magnitude, real part and the imaginary part of the measured nonlinear

waveguide parameter γ can all exceed 5000 m−1W−1 and can be tuned to
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a large extent. Even sign changes in Re(γ) and Im(γ) as a function of gate

voltage were measured, meaning that very different nonlinear regimes can

exist. In terms of sheer strength, |Re(γ)| is more than 3 orders of magnitude

larger than for a standard SiN waveguide [16]. Compared to silicon wave-

guides [44], the improvement is roughly one order of magnitude. Moreover,

silicon suffers from two-photon absorption, effectively limiting the maximum

optical power in the waveguide. As we show here graphene also exhibits

nonlinear absorption, though of the opposite sign for most Fermi energies,

this means that at higher pump powers the effective interaction length will

increase, rather than decrease. The electrostatic tunability of the nonlinear

refraction, absorption and four-wave mixing efficiency of graphene-covered

waveguides indicates that such waveguides can for example be used for all-

optical signal processing, where the tunability could be used for fine-tuning

of the devices. Note that current experiments were performed on wave-

guides with a rather large cross-section, and that the graphene was located

in the evanescent field. By tailoring the waveguide cross-section and going

to more confined structures, the figure of merit γ/α can still be significantly

increased.

There are however also potential obstacles. Firstly, graphene is very

lossy, with crippling waveguide losses of about 0.05 - 0.1 dB/μm. Of course

through electrostatic gating the loss can be significantly reduced, our exper-

iments however show that at such high doping levels the nonlinearities also

strongly decrease. Secondly, the limited bandwidth of the FWM-process

and the good correspondence between the experiments and the model in

Appendix A suggest that the nonlinearities in graphene are closely linked

to the carrier dynamics, and are limited in speed by the carrier lifetime

(probably in the range of 0.1 ps - 1 ps). A third potential problem is satu-

ration of the nonlinear effects, care was taken while doing the experiments

in Sections 3.4 and 3.5 to measure at relatively low powers in order to jus-

tify the use of a third order model. However many nonlinear experiments

make use of notoriously high peak powers, figure 2.3 strongly suggest that

a third order description will not be sufficient and that the nonlinearities

will saturate. Further investigation of high-power effects will be necessary,

the model in Appendix A can be a starting point for this.

In Section 3.6, the potential use of our platform for on-chip third har-

monic generation is considered, be it only in theory. This was inspired by

recent experimental reports of tunable third harmonic generation in gra-

phene [42, 43]. In these papers, the authors show that also the third har-

monic generation efficiency of graphene can be tuned by gating. As opposed

to the effects studied in this chapter, they measure an increase in efficiency

beyond the carrier densities where graphene becomes transparent for the
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fundamental wavelength. This is promising since it means that when the

loss decreases, the nonlinear effects increase. Moreover, we propose a simple

quasi-phase-matching scheme just by periodically patterning the graphene,

which is unique to 2D-materials. Preliminary simulations were done in or-

der to get an idea of the optical powers and detector sensitivity needed to

measure these phenomena on a waveguide. Due to the large variations in

published values of the third order susceptibility for third harmonic gen-

eration, it remains unclear whether this will be possible. The nonlinear

susceptibility also increases for longer wavelengths [43], changing the wave-

lengths might be another possible route.
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Chapter 4

PZT on silicon nitride

The material presented in this chapter has in part been published in reference

[1].

4.1 Introduction

Silicon (Si) and silicon nitride (SiN) platforms are particularly promising

for integrated opto-electronics. The ability to leverage existing CMOS in-

frastructure and the high index contrast between silicon and its oxide, SiO2,

have enabled compact, high yield, low-cost and scalable photonics, and a

route towards co-integration with electronics [2]. Recently, there has been

a drive towards integrating other CMOS-compatible materials in the silicon

photonics platform, with silicon nitride (SiN) at the forefront. SiN-based in-

tegrated platforms offer some added advantages in comparison with silicon-

on-insulator (SOI). These include a broader transparency range [3], lower

propagation losses [3, 4], significantly lower nonlinear losses [3, 5], and a

much smaller thermo-optic coefficient [3].

However, certain functions are not accessible or lack in performance. A

famous example is the lack of efficient light emission or amplification in

these platforms, as both materials have an indirect bandgap. The nonlinear

optical capabilities of these platforms are also limited. The standard ma-

terials, Si, SiN and SiO2 are all centrosymmetric, causing the second order

nonlinear susceptibility χ(2) to be negligibly small [6]. Finally, solutions for

optical modulation are not ideal. State-of-the-art silicon modulators rely

on phase modulation through free carrier plasma dispersion in p-n [7], p-

i-n [8] and MOS [9] junctions. Despite being relatively fast and efficient,

these devices suffer from spurious amplitude modulation and high insertion

losses. On SiN there are currently no solutions (without the introduction of
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other materials, see below), SiN is an insulator so plasma dispersion effects

cannot be used.

To overcome these problems, new materials are being integrated into

these platforms. To tackle the issue of light generation, III-V semicon-

ductors have been integrated through wafer-bonding, transfer-printing and

recently even through monolithic integration [10]. To introduce χ(2)-type

nonlinearities in Si and SiN circuits, they can for example be combined

with III-V materials [11] or highly nonlinear ferroelectric thin films such

as lithium niobate [12]. Recently, solutions where an effective χ(2) is in-

duced in the silicon itself using a DC voltage have emerged as well [13]. For

optical modulation, solutions on silicon are based on heterogeneous inte-

gration with III-V semiconductors [14, 15], graphene [16, 17], electro-optic

organic layers [18], germanium [19] or epitaxial BaTiO3 (BTO) [20–22]. On

SiN photonic integrated circuits, the options for co-integration to enable

modulation are much more limited. The insulating nature of the material

hinders many approaches based on III-V semiconductors, graphene, and or-

ganics, which rely on the conductivity of doped waveguides. The inherent

nature of deposited SiN further excludes solutions using epitaxial integra-

tion. Nonetheless, modulators on SiN exist. Using double-layer graphene,

Phare et al. achieved high speed electro-absorption modulation [23] and

using piezoelectric PZT thin films, phase modulators based on stress-optic

effects [24] and geometric deformation [25] have been demonstrated, albeit

with sub-MHz electrical bandwidth.

In this chapter, we discuss the co-integration of thin film lead zirconate

titanate (PZT) on SiN photonic integrated circuits. PZT is a ferroelectric

material known among others for its high χ(2)-coefficient and, in close rela-

tion to this, for its strong linear electro-optic (Pockels) effect. Co-integration

of SiN with PZT creates possibilities for second order nonlinear optics and

phase modulation on SiN photonic circuits. Moreover, the inherent nature

of the deposition process implies that it can be used on other platforms such

as Si.

In Section 4.2, we introduce the material PZT, and discuss some of its

most interesting properties. In view of the experimental results presented

further in this chapter, we strongly focus on the Pockels effect in PZT,

and the second order nonlinear optical response of the material. These two

effects are closely related but have historically been expressed using different

material parameters. Expressions to relate these parameters are also derived

in this section. In Section 4.3 the deposition method for the thin-film PZT

used here is discussed. As an initial test, second harmonic generation (SHG)

measurements were performed on thin-film PZT deposited on glass. These

results are presented in Section 4.4. The remaining measurements were
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performed on PZT-covered SiN waveguides, the fabrication of such chips,

and the obtained waveguide losses, are discussed in Section 4.5. Also on

these waveguides, second harmonic generation was observed, these results

are covered in Section 4.6. In the remainder of this chapter, the PZT-

covered SiN waveguides are used for optical modulation. In essence these

waveguides modulate phase. Direct measurement of phase modulation is

discussed in Section 4.7. In specific configurations, these phase shifters can

also be used for amplitude modulation. Efficient and high-speed amplitude

modulators on SiN using thin-film PZT are demonstrated in Section 4.8.

Strategies for further improvement of the PZT-on-SiN modulators based on

geometrical optimization are discussed in Section 4.9. In Section 4.10, some

conclusions and potential future steps are discussed.

4.2 PZT

PZT (chemical formula PbZrxTi1−xO3, 0 ≤ x ≤ 1) belongs to the class of

perovskite materials. These are materials with the same crystal structure as

CaTiO3. Perovskites have the chemical formula ABC3, A and B are cations

of typically very different sizes, and X is an anion (often oxygen) [26]. The

crystal structure of PZT becomes tetragonal below the Curie temperature

[26]. The unit cell of this structure is shown in figure 4.1a. The O2– anions

and Pb2+ cations occupy respectively the face-centered and corner positions

of the unit cell, whereas the Ti4+/Zr4+ cations occupy the body-centered

position. The position of the Ti4+/Zr4+ cations is slightly shifted from the

center in the tetragonal phase, giving PZT a spontaneous polarization along

the crystallographic c-axis which lies at the origin of many of its interesting

properties.

The spontaneous polarization of the unit cell leads to a macroscopic

polarization of the crystal, this is called ferroelectricity. By applying a

strong enough electric field, the polarization of the domains can be actively

switched. This can for example be used to encode digital information in

the polarization of these materials, which has enabled the demonstration

of non-volatile random access memories [26]. Closely related are the piezo-

electric properties of PZT. Piezoelectricity means that when the material is

exposed to tensile or compressive stress, the induced strain generates electri-

cal charge separation inside the material. This in turn generates an external

potential difference. The inverse also occurs, an externally applied electric

field induces strain in the material. Piezoelectic materials have many ap-

plications, such as micromotors, acoustic sensors, atomic force microscope

cantilevers or MEMS [26]. Pyroelectricity is yet another property of PZT,

this means that the polarization is dependent on the material temperature
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and finds its applications in for example thermal sensors [26].

Ti4+, Zr4+

2+Pb
2–O

P
 50 nm

a b

c

Figure 4.1: a PZT unit cell with a tetragonal perovskite structure (adapted from
Wikipedia). b STEM image of the cross-section of a PZT thin film, on top of a
La-based intermediate layer. The overlay shows the relative EDX signal intensity
measured along the cross-section, using representative elements La, Pb and Si
(image taken from the PhD thesis of John P. George [26]). c HRTEM image of
the cross-section. The inset shows the FFT power spectrum for the PZT layer
(image taken from the PhD thesis of John P. George [26]).

In this chapter however, the properties of PZT that are of interest are

its strong linear electro-optic response, also called the Pockels effect, and

closely related to that its strong second order nonlinear optical response. In

the case of the Pockels effect, the refractive index of the material changes

as an electric field E is applied. This is usually expressed as a linear change

in the impermeability tensor η = ε−1
r , where εr is the relative permittivity

tensor [26],

ηij(E) = ηij(0) +
∑
k

rijkEk, (4.1)

here ηij(0) is the unperturbed impermeability tensor, Ek is the kth com-

ponent of the electric field and rijk are the Pockels coefficients. This field-
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induced change of the refractive index enables the adjustment of the phase

velocity of electromagnetic waves and lies at the basis of voltage controlled

wave-plates (Pockels cells) and electro-optic phase modulators.

In second order nonlinear optics, the material polarization is quadrati-

cally dependent on the total electric field, and the interaction is mediated

by the second order susceptibility tensor χ(2). When two monochromatic

waves at frequencies ω1 and ω2 interact, then the induced material polar-

ization contains components at the sum- and difference frequencies ω1±ω2

(see equation (2.3) and reference [6]),

P
(2)
i (ω1 + ω2) = ε0

∑
jk

χ
(2)
ijk(ω1 + ω2;ω1, ω2)Ej(ω1)Ek(ω2), (4.2)

P
(2)
i (ω1 − ω2) = ε0

∑
jk

χ
(2)
ijk(ω1 − ω2;ω1,−ω2)Ej(ω1)Ek(−ω2). (4.3)

Note that in the limit ω2 = 0, both these terms just add to the linear

polarization at frequency ω = ω1, which becomes,

Pi(ω) = ε0

∑
j

χ
(1)
ij E(ω) + 2

∑
jk

χ
(2)
ijk(ω;ω, 0)Ej(ω)Ek(0)

 , (4.4)

hence this description is equivalent to a linear susceptibility which changes

linearly with the applied DC electric field E,

χ
(1)
ij (E) = χ

(1)
ij (0) + 2

∑
k

χ
(2)
ijk(ω;ω, 0)Ek. (4.5)

In the limit of small perturbations, εr, ij � |∆εr, ij | and ηij � |∆η| (with

∆εr,ij = 2
∑
k χ

(2)
ijk(ω;ω, 0)Ek and ∆η =

∑
k rijkEk), equations (4.1) and

(4.5) describe the same physical phenomenon, being a linear variation of the

dielectric constant/refractive index as a function of applied electric field.

The relation between the χ(2) and r follows from the observation that by

definition (η + ∆η)(εr + ∆εr) = I, with I the unit matrix. Using ηεr = I

and assuming that the second order term ∆η∆εr is negligible, this leads to

the relation,

η∆εr = −∆ηεr, (4.6)

for the special case of a diagonal permittivity tensor, this eventually be-

comes,

χ
(2)
ijk(ω;ω, 0) = −εr,iiεr,jj

2
rijk. (4.7)
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Material ijk
rijk

(pm/V) [27] n [28]

χ
(2)
ijk(ω;ω, 0)

(pm/V)

χ
(2)
ijk(2ω;ω, ω)

(pm/V) [6]

AgGaSe2 321 6.9 2.22 -84 66

CdS 333 3.2 2.55 -68 153

CdS 311 3.1 2.55 -66 -80

GaAs 321 -1.33 3.50 112 740

LiNbO3 322 28 2.25 -359 -60

Quartz 111 -0.47 1.458 3.3 0.6

Table 4.1: Second order susceptibility χ
(2)
ijk of different materials. Either calculated

from the Pockels coefficient using equation (4.7), or measured using second order
nonlinear processes such as second harmonic generation. n is the refractive index
of the material.

Note that the description borrowed from nonlinear optics using χ(2) is in

a sense more general, since it includes not only the Pockels effect, but also

frequency-mixing effects such as second harmonic generation, sum frequency

generation, optical rectification, etc. [6]. The distinction between these pro-

cesses lies in the frequency arguments of the χ(2)-function. It is also impor-

tant to note that χ(2) and r are expressed in the same units, pm V−1, how-

ever in materials with large dielectric constants they can have very different

magnitudes. Finally, χ
(2)
ijk can be strongly frequency dependent, so differ-

ent values should be expected for different phenomena, such as the Pockels

effect (χ(2)(ω;ω, 0)) and second harmonic generation (χ(2)(2ω;ω, ω)). This

final point is illustrated by table 4.1, which lists Pockels coefficients for

several crystals (obtained at a variety of wavelengths, see reference [27]),

and the corresponding second order susceptibility χ
(2)
ijk(ω;ω, 0). The con-

version was done using equation (4.7), assuming that εr,ii = εr,jj = n2.

On the other hand the nonlinear susceptibility χ
(2)
ijk(2ω;ω, ω) quantifying

second harmonic generation (also obtained at a variety of wavelengths, see

reference [6]) is also given. Clearly these values are in general not the same,

with differences of up to almost an order of magnitude. However a large

Pockels effect and strong parametric second order nonlinear effects seem to

be indicative of each other for most materials.
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4.3 Thin-film PZT deposition

In this chapter, we incorporate thin-film PZT onto integrated SiN-based

photonic chips. This is made possible by recent developments in the thin-

film deposition of PZT by John P. George et al. [26], who also performed

the PZT-depositions for the devices discussed in this thesis.

For the deposition of the PZT, a procedure based on chemical solution

deposition (CSD) is used. This CSD method consists of several steps. First

the precursor solution is prepared. This solution is then deposited onto

the substrate by spincoating or aerosol deposition and dried on a hot-plate

(100-200 ◦C). Then amorphous films are obtained by pyrolysis (“firing”) of

the organic compounds (400-500 ◦C). The amorphous films are thereafter

“annealed” at higher temperatures (600-700 ◦C) to obtain crystalline films

of the desired perovskite phase. CSD deposition of PZT of this kind is not

new and early reports date from the 1980s [29]. However high quality PZT

can only be deposited on specific substrates or intermediate layers [26]. An

intermediate layer has to be both an efficient template which promotes crys-

tal growth with a strong preferential orientation, and at the same time act

as a diffusion barrier. The presence of such an intermediate layer (Pt in

the first reports [29]) poses large restrictions on the applications that can

be envisioned. For nanophotonics, the requirements become very stringent.

Preferably we want a layer with low optical loss and low thickness. For

this work, the intermediate layers consist of lanthanide oxides (La2O2CO2),

which are also deposited through chemical solution deposition and have

good optical transparency, result in highly oriented thin films and can be

deposited as very thin (& 5 nm) layers [26]. Figure 4.1b shows a scanning

transmission electron microscope (STEM) image of the cross-section of a

PZT thin-film on Si, using a La-based intermediate layer. Through com-

bination with energy dispersive X-ray (EDX) spectroscopy, the chemical

composition could be mapped as well. The overlay shows the relative con-

centration of some representative elements for the different layers. Figure

4.1c shows a high resolution transmission electron microscope (HRTEM)

image of the same cross-section, it confirms the crystalline nature of the

intermediate layer and the FFT spectrum on the inset confirms that the c-

axis of the PZT is oriented perpendicular to the interface. For more details

of the deposition process, see the PhD thesis of John P. George [26].
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4.4 Second harmonic generation on thin-film
PZT

4.4.1 Measurement methodology and setup

Laser
 λ=980 nm, Δt=100 fs

λ/2

LP
Stage

Lens
Sample

SP

SP
BP

Voltmeter

Detector

PC

Substrate

χ(2)-thin film

E(ω)

E(2ω)

EpEs

θ

x
y

z

a b

Figure 4.2: a Setup used for the thin-film second harmonic generation experi-
ments. λ/2: half-wave plate, LP: longpass filter, SP: shortpass filter, BP: bandpass
filter. Adapted from reference [30]. b Principle of the thin-film second harmonic
generation experiment.

Before integrating PZT onto nanophotonic waveguides, the potential of the

material was tested using a second-harmonic generation setup designed for

thin-film measurements. Characterization of the second order nonlinear re-

sponse of thin-films is an extensive subject by itself, more information on

the method used here and related methods are summarized by Artur Her-

mans et al. in reference [30]. A schematic representation of the setup is

shown in figure 4.2a. The light-source in these experiments is a commercial

Ti:Sapphire laser (Mai Tai HP, Spectra-Physics). The pulse duration, wave-

length, repetition rate and average power are respectively 100 fs, 980 nm,

80 MHz and 1 W. In the path of the beam, a half-wave plate is first used to

rotate the polarization of the linearly polarized light coming from the laser.

The beam is then focused onto the sample using a parabolic mirror with a

focal length of 5 cm. The original beam diameter and the diameter in the

focal plane (1/e2) are respectively 1.2 mm and 52 μm. The depth of focus

is 4.5 mm, which provides ample tolerance to place the sample close to the

focal plane. Second harmonic light emerging from the sample is collimated

using another identical parabolic mirror and is focused onto a femtowatt de-

tector (Thorlabs PDF10A/M). Several filters are placed in the beam path,



PZT on silicon nitride 4-9

the first longpass filter (cutoff wavelength 800 nm) suppresses all SHG light

generated on the mirrors and elsewhere in the setup, the shortpass and

bandpass filters after the sample suppress the fundamental wavelength.

The setup is designed to measure the second order response of a sample

as a function of incidence angle θ and, if necessary, for different excitation

polarizations. The principle is sketched in figure 4.2b. The sample is ex-

cited at frequency ω, the incident beam can be s(TE)- or p(TM)-polarized,

or a combination of the two, depending on the half-wave plate orientation.

The second harmonic wave is generated in the sample and can be detected

by the detector. The parameter χ(2) in fact is a 3 × 3 tensor, consisting

of 27 elements. Although the number of independent tensor elements can

typically be reduced drastically using symmetry considerations, the SHG

response will depend very strongly on the used excitation polarization and

incidence angle. Using appropriate theoretical models the measured depen-

dencies can then be used to derive the χ(2)-tensor [30]. Note that the sample

in figure 4.2b is just an illustration, samples with much more complex layer

structures can be characterized. Also note that due to momentum conser-

vation in the x-direction, the fundamental and second harmonic will always

exit the sample at the same angle as the incident beam.

4.4.2 Measurement results for thin-film PZT

Glass

PZT (thickness LPZT)ITO (30 nm) Intermediate
layer (10 nm)

V

Figure 4.3: Typical sample used for measuring the second harmonic response of
thin-film PZT.

Here, we measure the χ(2)-tensor of a film of PZT deposited on a glass

substrate. The cross-section of such a sample is shown in figure 4.3. The

deposition method described in Section 4.3 is used, with an intermediate

layer of about 10 nm thick, the PZT layer has variable thickness L. Figure

4.1c confirmed that the c-axis of the PZT crystallites is oriented in the

out-of-plane direction. This however does not mean that the spontaneous

dipole moment of all crystallites (see figure 4.1a) is oriented in the same

direction. The overall second harmonic is the coherent addition of the SH
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generated in the different crystallites, hence we want to be able to pole the

crystal. This is done using a top and bottom electrode of conductive and

transparent indium tin oxide (ITO). The bottom electrode is present on the

original substrate, the top electrode is deposited using e-beam evaporation

and subsequent heat treatment at 300 ◦C [26].
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Figure 4.4: Measurement and fit for a blank BOROFLOATr 33 substrate with
known χ

(2)
s and thickness L ≈ 500 μm. Used as a reference for other measure-

ments.

Reference measurement Before performing the measurement on PZT,
we do a reference measurement on a blank borosilicate glass (BOROFLOATr

33) substrate, which has a known surface nonlinearity χ
(2)
s , and a neg-

ligible bulk response. The surface second order susceptibility tensor of
a simple interface (C∞v symmetry) has only 3 independent components,

χ
(2)
s,xxz = χ

(2)
s,yyz = χ

(2)
s,xzx = χ

(2)
s,yzy, χ

(2)
s,zxx = χ

(2)
s,zyy and χ

(2)
s,zzz. [30]. When

the fundamental beam is p-polarized, the SH will also only contain a p-
polarized component. To good approximation, the second harmonic electric
field strength generated by a glass substrate equals [30],

E2ω,total

=E2ω,front + E2ω,back

=− i ω

2cNglass cos(Θglass)
t2air,glassTglass,airE

2
ω,in[(

χ(2)
s,zxx + 2χ(2)

s,xxz

)
sin(Θglass) cos2(θglass) + χ(2)

s,zzz sin2(θglass) sin(Θglass)
]

[
exp

(
−i2ωNglass cos(Θglass)

c
L

)
− exp

(
−i2ωnglass cos(θglass)

c
L

)]
.

(4.8)

This field is the result of interference between a component generated at

the front (E2ω,front) and back (E2ω,back) interface. Eω,in is the input fun-
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damental field. c, ω and L are respectively the speed of light in vacuum,

the fundamental frequency and the thickness of the substrate. nglass and

Nglass are the glass refractive index for respectively the fundamental and

SH wavelength. θglass and Θglass are the propagation angles of respectively

the fundamental and SH in the glass, which can be calculated using Snell’s

law from the incidence angle. ti,j and Ti,j are the Fresnel transmission coef-

ficients between medium i and j, again for the fundamental and the second

harmonic wavelength, respectively. Note that this formula is approximate.

The index contrast at the interface is relatively small, so reflections and

potential cavity effects are not taken into account. Also lateral beam walk-

off effects between the fundamental and SH due to dispersion in the glass

are considered to be negligible. The model used here has been compared

with more exact models by Artur Hermans et al. in reference [30] and is

sufficiently exact for the current purpose of serving as a reference. For refer-

encing, the χ
(2)
s -values found in reference [31] are used; χ

(2)
s,xxz = 14.6 ·10−22

m2/V, χ
(2)
s,zxx = 7 · 10−22 m2/V and χ

(2)
s,zzz = 93 · 10−22 m2/V. The mea-

surement and corresponding fit for a sample of thickness L ≈ 500 μm are

shown in figure 4.4. The fringes on this plot are due to angle-dependent in-

terference between the light generated at different interfaces, caused by the

difference in refractive index for the fundamental and SH. As these fringes

were first observed by Maker et al., they are often called Maker fringes [32].

0 10 20 30 40 50 60 70 80 90
0

500

1,000

Incidence angle (◦)

S
H

p
ow

er
(a

.u
.)

430 nm - Meas.
430 nm - Fit
645 nm - Meas.
645 nm - Fit

Figure 4.5: Measurements (Meas.) and fits for two different PZT-covered glass
samples after out-of-plane poling using comparable electric fields (≈ 9.3 V/μm),
for two different PZT thicknesses LPZT (see legend).

PZT measurement The PZT-crystallites have a random in-plane ori-

entation (if not poled in-plane, see further). Macroscopically, the thin film

also has C∞v-symmetry with respect to the normal, and the same nonzero
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Figure 4.6: Second harmonic power at a fixed angle (48 ◦). a For two different
PZT thicknesses. The dashed line is a fit based on equation (4.9). The dotted line
is the theoretical curve in the absence of phase mismatch (∆k = 0), essentially a
parabola. b After different poling steps, for LPZT = 645 nm. The arrow shows
the order in which the different poling voltages are applied.

second order susceptibility tensor components as a simple air-glass interface.

For the measurements performed on the PZT-covered samples, reflections

within the different layers will be ignored. Though approximate, this is

common practice in thin-film SHG measurements [33, 34]. Under this as-

sumption and using p-polarized light, the SH electric field can be expressed

as [30, 34],

E2ω,total

=
ω

2cNPZT cos(ΘPZT)

exp(−i∆kLPZT)− 1

∆k
t2air,PZTTPZT,glassTglass,airE

2
ω,in[(

χ(2)
zxx + 2χ(2)

xxz

)
sin(ΘPZT) cos2(θPZT) + χ(2)

zzz sin2(θPZT) sin(ΘPZT)
]
,

(4.9)

NPZT, θPZT and ΘPZT are defined equivalently as for the reference sam-

ple, tair,PZT and TPZT,glass are the full amplitude transmission functions for

respectively the air-ITO-glass stack and the PZT-intermediate layer-ITO-

glass stack. ∆k = 2ω
c (NPZT−nPZT) is the phase mismatch between the SH

and fundamental due to the wavelength dispersion of the PZT. The tensor

components χ
(2)
zxx and χ

(2)
xxz are not observed separately in this measure-

ment, as the second harmonic field only depends on the linear combination(
χ

(2)
zxx + 2χ

(2)
xxz

)
. Two samples with different PZT thickness were poled and

characterized. The respective PZT thicknesses LPZT are 430 nm and 645

nm. To obtain similar poling fields, the samples are respectively poled by ap-
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plying −4 V and −6 V. The SH response is shown in figure 4.5. For the fits,

only the angles beyond 35 ◦ are used, since the alignment of the setup is not

consistent for the whole range of incident angles. The fits result in χ
(2)
zzz = 39

pm/V and
(
χ

(2)
zxx + 2χ

(2)
xxz

)
= −26 pm/V for the 430 nm thick sample, and

χ
(2)
zzz = 42 pm/V and

(
χ

(2)
zxx + 2χ

(2)
xxz

)
= −25 pm/V for the 645 nm thick

sample. The signs of χ
(2)
zzz and

(
χ

(2)
zxx + 2χ

(2)
xxz

)
are relative with respect to

each other, the absolute sign cannot be observed using this method. In figure

4.6a, the SH power is plotted for a single angle (48 ◦), for the measurements

shown in figure 4.6, as a function of PZT thickness. The theoretical fit (us-

ing average values χ
(2)
zzz = 40.5 pm/V and

(
χ

(2)
zxx + 2χ

(2)
xxz

)
= −25.5 pm/V)

is plotted as a dashed line. The theoretical curve in the absence of phase

mismatch ((exp(−i∆kLPZT) − 1)/∆k → −iLPZT) is also plotted, which is

the typical parabola expected for phase-matched second harmonic genera-

tion [6]. Clearly, phase mismatch already reduces the conversion efficiency

for these small thicknesses. In figure 4.6b, the effect of the poling voltage is

shown, for the sample with LPZT = 645 nm, the SH power measured after

each poling step for an angle of 48 ◦ is plotted, the arrow shows the order in

which the voltages are applied, the measurements are performed in absence

of a voltage. There are several notable features about this graph. First of

all, the material has a nonzero response after deposition, meaning that the

crystallites have a preferential orientatiation in the out-of plane direction,

even without poling. Secondly, poling using a negative voltage strengthens

the effect, from this we can conclude that a negative voltage poles more

domains in the already preferred orientation. Using a positive voltage, we

seem to decrease the effect, counteracting the preferred orientation after

deposition. Thirdly, it seems like the voltages used here, in either polariza-

tion, have not yet caused the SH efficiency to reach saturation, so the film is

probably not poled in its most efficient way yet. The reason for these mod-

erate voltages is that electrostatic breakdown had occurred on comparable

samples at higher voltages. In the future, more efficient poling (higher volt-

ages,temperatures) still has to be explored. Since electrostatic breakdown

is facilitated by imperfections in the crystal, this goes hand-in-hand with

optimization of the thin-film quality.

4.5 PZT on silicon nitride waveguides

The remaining experiments presented in this chapter have been performed

in PZT-covered integrated SiN nanophotonic circuits. In this section we

describe the fabrication and losses of PZT-covered SiN waveguides.
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4.5.1 Fabrication
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Figure 4.7: a Fabrication steps for the PZT-on-SiN waveguides, starting from a
planarized SiN chip. b-d Examples of SEM cross-sections of different waveguides.
For b, c the planarization was done through a combination of RIE and BOE
etching (see Section 3.3.1 for a more detailed description) the inset shows the
trench at the waveguide edge with enhanced contrast, caused by nonuniform etch
rates. For d the planarization was performed using CMP.

The first steps of the fabrication process are the same as for the graphene-

covered SiN waveguides introduced in Section 3.3. The waveguides are

patterned using 193 nm deep UV lithography in a 300-350 nm thick layer

of LPCVD SiN on a 3.3 μm thick buried oxide layer, in a CMOS pilot line.

Subsequently, SiO2 (thickness ≈ 1 μm) is deposited over the devices and

planarized.

The planarization is performed in two different ways, either in-house
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using a combination of reactive ion etching (RIE) and buffered oxide etch

(BOE) wet etching (details on this method can be found in Section 3.3), or

by chemical-mechanical polishing (CMP) in the CMOS foundry itself. This

step is performed so that the SiN waveguide top surface and the surrounding

oxide are coplanar.

The remaining steps are summarized in figure 4.7a. First, the La-based

intermediate layer is deposited and the PZT films are deposited using the

CSD methods described before. Since the samples are not always perfectly

flat, relatively thick (20-30 nm) intermediate layers are typically deposited.

Hereafter the PZT is patterned using an RIE recipe based on SF6 if nec-

essary, this is done to remove PZT on top of the grating couplers. Finally,

Ti/Au electrical contacts are patterned in the vicinity of the waveguides,

this is done through a sequence of photolithography (AZ 5214 E resist in

image reversal), thermal evaporation of the metals and lift-off.

Figures 4.7b and c show cross-sections of two waveguides after PZT

deposition, the grainy layer above the PZT is platinum deposited in the

SEM to avoid charging of the sample. Both of these samples were planarized

in-house using a combination of dry and wet etching. Variations in initial

top oxide thickness, etch rates and exact etch times can clearly lead to a

strong variation between different samples. For the case of figure 4.7b, over-

etching results in steps of several tens of nanometers around the waveguides.

Moreover, the etch rates of the deposited oxide depend on the exact nitride

structures underneath. As was already illustrated in figure 3.6 this can lead

to trenches around the waveguides during the planarization procedure. Even

in the case of a seemingly planar surface (figure 4.7c), trenches of several

tens of nanometers can be seen next to the waveguides at enhanced contrast

(see inset). Figure 4.7d however shows a waveguide planarized using CMP.

A buffer layer of 50-100 nm of oxide is left on top of the nitride waveguide,

so the obtained surface is much smoother, though at the expense of a part

of the overlap of the optical mode with the PZT film.

After deposition, the PZT crystallites have one crystal plane parallel

to the substrate, but no preferential orientation in the chip’s plane. To

obtain a significant electro-optic or second order nonlinear response for the

quasi-TE optical mode, a poling step is performed by applying 60-80 V (≈
150 kV cm−1) for 1 hour at room temperature, between contacts at either

side of the waveguide several micrometers apart, followed by several hours

of stabilization time. More details about poling are given in the following

sections.
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Figure 4.8: Loss measurements on samples planarized through RIE and BOE-
etching. a Transmission versus waveguide length for a PZT-covered rib and wire
waveguide, with cross-section similar to figure 4.7b (width = 1400 nm, wavelength
= 1550 nm, PZT thickness ≈ 125 nm). b, c Propagation loss of the respective
rib and wire waveguides versus wavelength, before and after PZT deposition. The
shaded area shows the standard deviation on the fitted slope.

4.5.2 Waveguide losses

In figures 4.8 and 4.9, loss measurements on the different types of PZT-

covered waveguide spirals are shown. These waveguides had no metallic

contacts, which can also change the optical losses. Figure 4.8 summarizes

loss measurements performed on waveguides planarized by etching, these

measurement were moreover done around the C-band (1530 to 1565 nm in

wavelength). As was clear from the previous section and figures 4.7b and c,

this type of planarization typically results in steps and trenches of several

tens of nanometers in the vicinity of the waveguide. Figure 4.8a shows the

transmission versus length of both a set of rib and wire waveguide spirals.
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Figure 4.9: Loss measurements on samples planarized through CMP. a Trans-
mission versus waveguide length for a PZT-covered waveguide, with cross-section
similar to figure 4.7d (width = 800 nm, wavelength = 1310 nm, PZT thickness =
150 nm). Measured on 3 different samples. b Propagation loss versus wavelength
for these waveguide sets, including a sample with no PZT.

The wire waveguides closely resemble figure 4.7b, the rib waveguides were

defined using a partial etch of 220 nm next to the waveguide core, the influ-

ence of this on the propagation loss is only expected to be minor. Figures

4.8b and c show the respective losses of the rib and wire waveguides as a

function of wavelength (red). For reference, the waveguide loss before PZT

deposition is plotted in blue. The shaded zones show the standard devia-

tions of the fit. Estimated losses of about 5 to 7 dB cm−1 are found. Figure

4.9 summarizes loss measurements performed on waveguides planarized by

CMP, with cross-sections similar to figure 4.7d. These measurements were

done around the O-band (1260 to 1360 nm in wavelength). Figure 4.9a

again plots the transmission versus spiral length for 3 different samples,
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and figure 4.9b shows the propagation loss resulting from a linear fit, as a

function of wavelength. The grey line shows the result for a sample without

PZT (and the standard deviation of the fit is plotted in grey). Note that

the propagation losses of these waveguides are in the vicinity of only 1 dB

cm−1. So both the total propagation losses, as well as the increase in prop-

agation loss with respect to waveguides without PZT, are much smaller for

the case of CMP planarization. It is likely that the steps and trenches that

are inherent to the in-house planarization method through etching cause

the thin-film quality to deteriorate and losses to increase significantly!

4.6 Second harmonic generation in
PZT-covered waveguides

In Section 4.4, the second harmonic response of thin-film PZT on a glass

substrate was measured, the conclusion was that the second order nonlin-

ear response of PZT is relatively large. In Section 4.5, we discussed the

fabrication of PZT-covered SiN waveguides. In this section we look at the

combination of the two, we look into whether PZT can be used to achieve

second harmonic generation on SiN chips. Second harmonic generation in

a waveguide is more involved than on a thin-film, since phase matching be-

comes an issue, this is explained first, after which the experiments and some

possible improvements are discussed.

4.6.1 Second harmonic generation in a waveguide

The coupled-wave equations governing second harmonic generation in a

waveguide can be derived analogously to the coupled-wave equations de-

scribing third order nonlinear interactions in Section 2.5. Two optical fre-

quencies should be considered, the fundamental ωf , and its second harmonic

ωSH = 2ωf . Both are in different optical modes with electric field profiles

ef ≡ e(ωf , r⊥) and eSH ≡ e(ωSH, r⊥) and with slowly varying amplitudes

Af(z) ≡ A(ωf , z) and ASH(z) ≡ A(ωSH, z). In most experiments, the sim-

plifying assumption can be made that the fundamental wave carries much

more power than the second harmonic and that the power in the fundamen-

tal only changes because of linear absorption. The equation describing the

second harmonic can be derived from equation (2.31), with a polarization

density PNL(ωSH) = (ε0/2)χ(2)(ωSH;ωf , ωf)
...EfEf , eventually this gives the
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coupled wave equations,

∂Af

∂z
= −αf

2
Af , (4.10)

∂ASH

∂z
= iκei(2βf−βSH)zA2

f −
αSH

2
ASH, (4.11)

where the nonlinear coupling κ is given by,

κ =
ωfε0

4
√

PSHPf

∫∫
A∞

e∗SH · χ(2)(ωSH;ωf , ωf)
...efefdA. (4.12)

From these equations it is clear that not only the overlap between the second

harmonic mode and the nonlinear polarization (the integral in equation

(4.12)) is important, but also that strong conversion can only be achieved

when the fundamental and second harmonic mode are phase-matched. This

means that 2βf = βSH, which is equivalent to having equal effective mode

indices neff, f = neff, SH. For the case of perfect phase matching the power

in both the fundamental and second harmonic mode (Pf(z) ≡ |Af(z)|2 and

PSH(z) ≡ |ASH(z)|2) can be solved as,

Pf(z) = Pf(0)e−αfz, (4.13)

PSH(z) = |κ|2(Pf(0))2

∣∣∣∣∣e−αfz − e−
αSH

2 z

αSH

2 − αf

∣∣∣∣∣
2

. (4.14)

Having phase matching is not trivial, and due to waveguide and material

dispersion will typically not occur between two fundamental (TE00) modes.

Instead the mode in which the second harmonic is generated is typically of

a higher order.

4.6.2 Experimental results

Tunable
laser

EDFA

MM fiber
(50/125)

U-Bench with
shortpass filter 

Femtowatt
photoreceiverV

99/1

Reference photodiode

1

99

Figure 4.10: Setup used for the second harmonic generation measurements on
PZT-covered waveguides. EDFA: erbium-doped fiber amplifier. The shortpass
filter has a cutoff wavelength of 1000 nm.
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Figure 4.10 shows the setup used for characterizing the second harmonic

response of a PZT-covered SiN waveguide. Light from a tunable laser (am-

plified with an EDFA) is coupled into the waveguide through a grating cou-

pler. The second harmonic, if present, can however not couple out through

a grating coupler. Therefore the chip was cleaved and at the output the

light was collected through a multimode fiber with a relatively high numer-

ical aperture. The fundamental was filtered out and the second harmonic

was detected using a Thorlabs PDF10A/M Detector. Second harmonic gen-

eration was observed for a fundamental wavelength near 1550 nm using a

waveguide of width 2000 nm, covered with about 150 nm of PZT. The PZT

was initially poled using 50 V, this step is necessary to give the PZT its

nonzero nonlinear response and is explored further in Section 4.7.2.

Figure 4.11a shows the voltage on the detector, and the correspond-

ing estimated second harmonic power, as a function of wavelength. The

measurement is also performed for different DC voltages applied over the

waveguides (see legend). Firstly, we can conclude from these graphs that

the generated second harmonic only appears over a relatively narrow band-

width, this is due to the phase-matching condition, which will only be valid

within this bandwidth. Secondly, one can see that when tuning the volt-

age, the wavelength at which the conversion is maximum shifts. We believe

that this is due to the electrooptic (Pockels) response, which is discussed

in Section 4.7 and further. The Pockels effect causes the effective indices

of the interacting modes to change with applied voltage. Since the shift is

not expected to be the same for all modes, the phase-matching condition,

neff, f(V ) = neff, SH(V ), will appear at different wavelengths for different

voltages. Figure 4.11b plots the estimated second harmonic power on the

detector as a function of the reference power, the latter is proportional to the

fundamental power in the waveguide. A linear fit on the (dBm-dBm)-plot

shows that the relation is close to quadratic (the deviation can be due to

alignment drift during the measurement, nonlinearities in the photoreceiver

response and other imperfections), which is expected for second harmonic

generation. Note that for the measurements in figure 4.11, mainly qualita-

tive conclusions can be drawn with respect to the optical powers. There is

a large uncertainty on the actual powers, since for example the collection

efficiency of the multimode fiber for the higher-order second harmonic mode

is not exactly known.

Figure 4.12 shows a camera image of the top-view of the chip. One can

clearly distinguish the waveguide in which the second harmonic is generated

since the scattered second harmonic light is picked up by the camera. On

this image, the probe needles for applying the DC bias voltage can also

be seen. The length of the waveguides with electrodes is about 1.8 mm.
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Figure 4.11: a Detector voltage and corresponding estimated second harmonic
power on the detector, as a function of fundamental wavelength, for different
voltages applied over the waveguide. The dotted line shows the dark counts of
the detector. b Estimated second harmonic power on the detector, as a function
of power on the reference photodiode. For a voltage of 10 V and a wavelength of
1540 nm. The solid line represents a fit with slope 2.19.

From this picture, a significant problem becomes apparent. The scattered

SH light is quite intense in the first part of the waveguide, after which it

diminishes towards the end. This is in stark contrast with the z2-behavior

that is expected for SHG in low-loss waveguides! Based on a similar camera

image (although one with less background light), a rough estimate of the

z-dependence of the second harmonic power in the waveguide can be made.

This is done in figure 4.13. For this the assumption is made that the scat-

tering is uniform along the waveguide length and that the camera response

is linear. Then, by integrating the pixels along the waveguide in the image
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Figure 4.12: Top-view of the PZT-covered waveguide in which SHG occurs, the
waveguide lights up due to the scattering of the second harmonic. The probe
needels used to apply the DC voltage can also be distinguished.
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Figure 4.13: Top: camera image showing the SH light scattered from the wave-
guide. Bottom: estimated SH power in the waveguide based on the intensity of
the scattered light observed with the camera (blue line). The dashed black line is
an approximation based on equation (4.14), with αf = 20 dB/cm and αSH = 2000
dB/cm.

and by normalizing with respect to the dark counts of the camera, a very

crude estimate of the power can be made. The blue line in the plot shows

that indeed the SH power seems to rise very quickly over the first 100 - 200

μm, however over the remainder of the waveguide it seems to drop. This

can be caused by very large waveguide losses. To illustrate this, the black

dashed line is plotted, which is proportional to equation (4.14), for αf = 20

dB/cm and αSH = 2000 dB/cm.
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SiO2

SiN
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SiN
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Figure 4.14: a TE00 mode of a PZT-covered waveguide at the fundamental wave-
length (λf = 1550 nm). b Higher-order TE mode at the second harmonic wave-
length (λSH = 775 nm). Both modes have an effective index of ≈ 1.83. The
waveguide width, SiN thickness and PZT thickness are respectively 2000 nm, 335
nm and 150 nm. c Suggested solution to avoid coupling into slab modes.

Especially the loss for the second harmonic mode seems to be extremely

high! We believe that this is not due to material losses, but due to coupling

of the second harmonic to slab-modes in the PZT. This is illustrated in figure

4.14. Figure 4.14a shows the TE00 mode at a wavelength of 1550 nm, the

fundamental mode in our experiment. The effective index of this mode is

approximately 1.83. Hence, efficient SHG will take place to a higher order

mode at about 775 nm with approximately the same index. Such a mode

is given in figure 4.14b, as calculated using COMSOL Multiphysicsr. Note

that this mode is not well confined to the waveguide, the effective index

is so low that there exist slab modes in the air-PZT-lanthanide-oxide stack

with a higher effective index! Hence the generated second harmonic light is

phase-matched to radiating slab modes (under a specific angle) which will

cause enormous loss. Note that the mode in figure 4.14b is just an example

of what the SHG mode could look like, we do not have enough information

on the dispersion of the different materials to calculate the exact mode.

The exact shape of the lobes outside of the waveguide core are moreover an

artifact of the boundary conditions (outside of the plot).

4.6.3 Future work

It should be clear that these results can still be strongly improved. We have

shown that on-chip SHG using PZT is possible, however that in the current

configuration loss into slab modes is detrimental. To address this issue,

an option is to etch a rib into the PZT, see figure 4.14c, below a certain

critical thickness, no slab modes will be present and confined SH modes
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will exist. This is currently being explored. The loss due to radiation into

the slab should then decrease, it is however unclear how the roughness of

the etched surfaces of PZT will affect the mode propagation loss. It is also

important that the PZT is not etched all the way through, since poling would

become very difficult (PZT has a very large dielectric constant and ‘expels’

the poling field when not in direct contact with the electrodes). Another

solution is to use a technique called quasi-phase-matching [6]. This can be

achieved by periodically poling the PZT. For the right poling period, the

TE00 modes of both the fundamental and second harmonic wavelength can

be coupled, avoiding issues due to slab modes. It is however technologically

difficult to achieve QPM on these waveguides since the material has to be

periodically poled with a period of only several micrometers.

4.7 Phase modulation on a PZT-covered
waveguide

4.7.1 Basic theory

PZT

SiO2

SiN

Air

Ti/Au

Figure 4.15: Schematic of the PZT-covered SiN waveguide used as electro-optic
phase modulator, the fundamental TE optical mode at is plotted in red. The
quiver plot shows the applied electric field distribution between the electrodes.
PZT thickness, waveguide width and gap between the electrodes are respectively
150 nm, 1200 nm and 4 μm.

Figure 4.15 shows the cross-section of a typical PZT-on-SiN phase modu-

lator. An electric field is applied between the in-plane electrodes, changing

the refractive index in the PZT and hence the effective index of the wave-

guide mode. This in turn induces an extra phase shift on the optical mode

upon propagation. The PZT thin films exhibit a higher refractive index

(n ≈ 2.3) than SiN (n ≈ 2), so a significant portion of the optical mode is

confined in the PZT. A grating coupler is used for in- and outcoupling, into

the fundamental quasi-TE optical mode.
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Mathematically this is described most intuitively by assuming the change

of the PZT refractive index causes only a small perturbation. The approach

is analogous to the derivation in Section 2.5. However the perturbation in

equation (2.28) now does not come in the form of a nonlinear polarization

density, but as a field-induced change in the dielectric susceptibility, say

∆χ(1),

∇×H =− iωε0n2E− iωε0∆χ(1)E. (4.15)

Doing an analogous derivation, we eventually find a differential equation for

the slowly varying complex amplitude of the waveguide mode A,

∂

∂z
A(z) = i

[
ωε0
4P

∫∫
A∞

e∗ ·∆χ(1)edA

]
A(z) = i∆βA(z), (4.16)

where the power normalization constant P is given by equation (2.20) and

e is the electric field of the optical mode. Equation (4.16) expresses nothing

more than a change in the mode propagation constant, ∆β, and hence an

equivalent change in effective mode index ∆neff = ∆βc/ω.

We will now make the simplifying assumption that the electric field

is applied in the in-plane-(x-)direction. As a consequence the change in

susceptibility, ∆χ(1), only takes place in this direction, ∆χ
(1)
xx = 2χ

(2)
eff E

e
x,

with Ee the applied electric field. We will also assume that PZT is the only

material with a significant Pockels coefficient in the waveguide cross-section,

∆neff =
cε0χ

(2)
eff

∫∫
PZT
|ex|2EexdA∫∫

A∞
Re(e× h∗) · êzdA

= −
cε0n

4
PZTreff

∫∫
PZT
|ex|2EexdA

2
∫∫
A∞

Re(e× h∗) · êzdA
,

(4.17)

where nPZT is the refractive index of the PZT and reff the effective Pockels

coefficient. For the final expression the relation between the second order

susceptibility and Pockels coefficient in equation (4.7) was used, in the as-

sumption that εr,xx = n2
PZT. In this context, the concept of a confinement

factor Γ is often used [21, 35, 36] to relate the effective index change with

the index change in the ‘active layer’;

∆neff = Γ∆nPZT = −1

2
Γreffn

3
PZT

V

g
, (4.18)

where we have assumed that the spatial variation in ∆nPZT is negligible

and that the electric field is uniform and equals V/g, with V the voltage

difference and g the gap between the electrodes. The confinement factor is,

Γ =
g

V

cε0nPZT

∫∫
PZT
|ex|2EexdA∫∫

A∞
Re(e× h∗) · êzdA

.1

1Note that in many references, e.g. [21, 35], expressions for the confinement factor of
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A very important figure-of-merit of a phase modulator is the half-wave

voltage-length product VπL. This is the voltage-length product over which

the optical mode acquires an extra phase shift of |∆βL| = |∆neffωL/c| = π

due to the modulation voltage. From equation (4.18) readily follows,

VπL =
λg

n3
PZTΓreff

, (4.20)

where λ is the free-space wavelength.

4.7.2 Preliminary phase modulation and poling

Laser
ESA

99/1
99 %

1 %

50/50

Signal Generator

 

PD
FPC

FPC

Sample

AOM (200 MHz)

Figure 4.16: Setup used for phase modulation measurements. FPC: fiber polariza-
tion controller, AOM: acousto-optic modulator, PD: photodiode, ESA: electrical
spectrum analyzer.

Directly measuring phase modulation is not straightforward, as photodiodes

only measure optical intensity. In order to characterize phase modulators,

it is most convenient to incorporate them into resonators or interferometers.

This is done further in this chapter. It is however not impossible to charac-

terize the phase-modulation efficiency of a simple waveguide. A method to

do this is introduced here, which can be useful to do rapid proof-of principle

measurements of phase modulation and poling of the deposited PZT. The

setup is shown in figure 4.16. A pump laser is split into two paths, one of

which is phase modulated by our device-under-test, at frequency Ω. The

the kind Γ = g
V

∫∫
PZT |ex|

2EexdA∫∫
A∞ |ex|

2dA
, are used. Such an expression stems from two approxi-

mations,

Γ =
g

V

cε0nPZT

∫∫
PZT |ex|

2EexdA∫∫
A∞

Re(e× h∗) · êzdA
≈

g

V

nPZT

∫∫
PZT |ex|

2EexdA∫∫
A∞

n|ex|2dA
≈

g

V

∫∫
PZT |ex|

2EexdA∫∫
A∞
|ex|2dA

,

the first approximation assumes that the fields closely resemble transversal electromag-
netic plane waves, the second that n(r⊥) = nPZT. Both approximations are invalid in
waveguides with sub-wavelength features and with high index contrast.
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other path is frequency-shifted by ∆ω = 200 MHz using an acousto-optic

modulator (AOM). The two paths are then combined and observed using a

photodiode and an electrical spectrum analyzer (ESA). The photodiode now

detects beat notes between the phase-modulated signal and the frequency-

shifted signal, at frequencies ∆ω, ∆ω − Ω and ∆ω + Ω. In the assumption

that the phase modulation is small (� π) the ratio between electrical power

of the beat notes at ∆ω ± Ω and ∆ω will be,

P∆ω±Ω

P∆ω
=

[
π√
2

VRMSL

VπL

]2

, (4.21)

where the square stems from the fact that electrical power scales quadrat-

ically with optical power. VRMS is the root-mean-square of the voltage

applied by the signal generator. This provides a good way of estimating

VπL-values of phase shifters. Preliminary tests on SiN waveguides covered
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Figure 4.17: a Example of an RF power spectrum used for preliminary character-
ization of a PZT-on-SiN phase modulator. b Estimated VπL value while applying
a sequence of different poling voltages. The arrows show the order in which the
voltages were applied. At 42 V the poling voltage is applied for 30 minutes (hence
the two points, before and after). At 0 V, the same is done for 60 minutes. Wave-
guide width = 2400 nm, PZT thickness ≈ 150 μm, wavelength = 1550 nm, phase
shifter length = 165 μm, electrode gap ≈ 6 μm, Ω = 10 MHz.

with ≈ 150 nm of PZT, with gaps between the electrodes of ≈ 5 − 6 μm

have been performed, showing that VπL values in the range of several V cm

can be achieved. Figure 4.17a shows an example of an electrical spectrum

as measured on the ESA, for Ω = 5 MHz. Figure 4.17b shows how the mea-

sured VπL varies when a series of poling voltages is applied (for this a bias-T

is added in parallel with the signal generator). Initially, the modulation is

very inefficient, upon applying increasingly larger poling voltages, the VπL

drops sharply. At 42 V, the poling voltage is maintained for 30 minutes.
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There is a clear drop in VπL over this period. After poling, the voltage is

brought back down to 0 V, and two measurements are performed with a 60

minute delay. A small decrease in modulation efficiency is observed. Upon

applying negative voltages the poling can be undone and the VπL briefly

increases around -20 V, after which it drops again, this corresponds to the

coercive fields at which the poling of the crystals gets reversed. From this

we can conclude that poling voltages of several tens of volts (here limited

by the specifications of the bias-T, however on other devices voltages of

60-80 V have been successfully used) should be used for the poling of the

PZT, and that the voltage should be applied for at least a couple of tens

of minutes. Note that the VπL-values given in this section are only to be

used for order-of-magnitude estimations and relative comparisons between

different measurements, as a relatively large error can be induced by the

nonlinearity of the photoreceiver (Thorlabs PDB480C-AC). The increase of

VπL at 0 V over time will be the subject of the discussion in Section 4.8.3.

4.8 Electro-optic amplitude modulators on
SiN

A phase modulator can be used for amplitude modulation when incorpo-

rated in a photonic resonator or interferometer. Two types of such devices,

ring resonator modulators and Mach-Zehnder modulators, were fabricated,

these devices and their performance are discussed in this section.

4.8.1 Modulator types

In figure 4.18, top views and cross-sections of three different modulators are

shown, in figure 4.19, the transmission curves of these devices are shown.

All these devices are designed for the fundamental TE mode.

Figures 4.18a and b show a ring modulator designed for the C-band

(1530 nm - 1565 nm). A more detailed cross-section of the phase-shifter of

this device can be found in figure 4.7b. The ring radius R, the length of the

phase shifter L and the electrode spacing g are respectively 100 μm, 524 μm

and 4.4 μm. This device is fabricated on a SiN chip which was planarized in-

house, through a combination of dry and wet etching (see Section 4.5). As

discussed before, this can result in significant steps between the waveguide

core and the surrounding oxide, causing the PZT to have slight variations

in thickness. Figure 4.19a shows the transmission spectrum of this device.

The ring has a loaded Q factor of 2230 and a free-spectral range (FSR)

∆λFSR ≈ 1.7 nm. The combined loss of a grating coupler and the transition

loss between a bare and PZT-covered waveguide section is ≈ 12 dB at the
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Figure 4.18: a Top view of a C-band ring modulator. b Cross-section of a C-band
ring modulator. c Top view of an O-band ring modulator. d Cross-section of
an O-band ring modulator. e Top view of a C-band MZI modulator. f Cross-
section of a C-band MZI modulator. The nominal thickness of the intermediate
lanthanide layer (below the PZT) is 24 nm in all devices.

optimum, however this is currently not optimized and can still be improved

by design.

From these numbers, it is possible to estimate the losses in the ring

resonator. Using the expressions in reference [37], and by assuming that

the ring is critically coupled (which is a good approximation considering the

deep resonance dips), we can relate the single pass amplitude transmission

a to the FSR and the Q factor,

Q ≈ πλa

∆λFSR(1− a2)
. (4.22)
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Figure 4.19: Normalized transmission spectra of a C-band ring modulator (a), an
O-band ring modulator (b) and a C-band MZI modulator (c).

The average propagation loss per unit length then equals 20 log10(a)/(2πR) ≈
83 dB cm−1. Notably, this is about an order of magnitude larger than the

propagation losses measured on spirals with no electrical contacts (Section

4.5.2). We believe that this is due to misalignment of the electrodes. Fig-

ure 4.20a shows a microscope image of such misalignment, which can easily

amount to 1 μm or more. In figure 4.20b, the simulated loss contribution

(using Lumerical FDTD) due to the electrodes is plotted, as a function of

misalignment. For a wavelength of 1550 nm, a bend radius of 100 μm, a

waveguide width of 1 μm and a PZT thickness of 120 nm, with an interme-

diate layer of 24 nm thick. Note that the extra losses for electrode spacings

in the range of 4 - 5 μm can be of the order of 100 dB cm−1 or more,

which can easily explain the average loss for the whole ring circumference

to be ≈ 80 dB cm−1. For this ring, the estimated power coupling of the
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Figure 4.20: a Example of a slightly misaligned electrode pattern on a ring mod-
ulator, the misalignment is ≈ 1 μm. b Electrode-induced loss as a function of
electrode misalignment, for different electrode spacings (see legend). For a wave-
length of 1550 nm, a bend radius of 100 μm, a waveguide width of 1 μm and a
PZT thickness of 120 nm, with an intermediate layer of 24 nm thick. Simulated
with Lumerical FDTD.

directional coupler that is estimated based on the transmission spectrum

equals k2 = 1− a2 ≈ 0.7. This explains why we found approximate critical

coupling for rings with relatively small directional coupling gaps (200 nm).

Estimates based on supermode theory have shown that for these gaps power

coupling coefficients on the order of 0.7 - 0.8 are indeed realistic.

Figures 4.18c and d show the respective top-view and cross-section of

a ring modulator designed for the O-band (1260 nm - 1360 nm). A more

detailed cross-section of the phase-shifter of this device can be found in figure

4.7d. For this device, the planarization was done in the CMOS foundry

through CMP (see Section 4.5). Figure 4.19b shows the transmission. The

ring has a Q-factor of 1820 and a FSR of 3.27 nm. The ring radius is 40

μm, with a phase shifter length L of 195 μm.

The second modulator type is a Mach-Zehnder Interferometer (MZI).

For this device, the incoming light is split using multimode interferometer

(MMI) into two different arms, in which the light acquires different phase

delays. The output field is then the result of interference in a second MMI

combining light from these two arms. For an MZI with equal loss over the

two arms, the output power is proportional to 1 + cos (∆ϕ), with ∆ϕ the

phase difference between the two arms. In figures 4.18e and f, such an MZI

modulator designed for the C-band is shown. A more detailed cross-section

can be found in figure 4.7c, the planarization was again done in-house. The
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electrodes have a length of 1 mm. The static transmission spectrum of this

device is shown in figure 4.19d.

4.8.2 Static modulation

The transmission spectra of the modulators can be measured for different

DC-voltages applied across the PZT layer. In figure 4.21a, this is done for

the C-band ring resonator. The voltage-induced change in effective index

clearly shifts the resonance. In figure 4.21b, the resonance wavelength shift

is plotted as a function of voltage, the slope of the linear fit corresponds

to a tuning efficiency ∆λ/∆V ≈ −13.4 pm V−1. From this slope, it is

possible to estimate the VπL of the phase shifter in the ring modulator. We

can do this using the simple observation that when the phase change in the

ring, |π∆V L
VπL
|, equals 2π, that the wavelength shift is exactly |∆λ| = ∆λFSR.

This leads to the relation VπL = |LλFSR∆V/(2∆λ)|. For the C-band ring

modulator, this yields a half-wave voltage-length product of VπL ≈ 3.3 Vcm.

Figures 4.21c and d show the transmission spectra for the O-band ring

resonator for different applied voltages, and the resonance shift as a func-

tion of voltage. The linear fit on figure 4.21c shows a resonance tun-

ing efficiency of ∆λ/∆V ≈ −10 pm V−1. From this we can estimate,

VπL = |LλFSR∆V/(2∆λ)| ≈ 3.19 Vcm.

In figure 4.21e the transmission spectrum of the C-band MZI modulator

is plotted, for different voltages applied to a single arm of the MZI. As was

mentioned before, the transmission spectrum of an MZI is proportional to

1 + cos (∆ϕ), with ∆ϕ the phase difference between the two arms. To good

approximation (assuming that the relative phase difference is linear with the

wavelength), we can fit this sinusoidal function to the curves in figure 4.21e.

The relative phase differences between the fitted curves then correspond to

the relative changes in optical phase along the phase-modulated arm. These

relative phase shifts are plotted in figure 4.21f, as a function of voltage. From

the slope of the linear fit, we can estimate ∂ϕ
∂V = 0.021π rad/V. We can now

estimate VπL = (πL)/( ∂ϕ∂V ) ≈ 4.76 Vcm.

From the measured VπL-values, it is possible to estimate the Pockels

coefficient of the PZT. For this we can use equation (4.20), provided that we

can make a good estimate of the electro-optic confinement factor Γ. This can

be done by calculating the optical mode using a COMSOL Multiphysicsr-

model, using an as accurate waveguide cross-section as possible and equation

(4.19). The used waveguide models are based on the SEM-images of figure

4.7b-d. For the C-band ring, the C-band MZI and the O-band ring, the

respective estimated Pockels coefficients reff are 61, 70 and 67 pm V−1. The

respective simulated confinement factors were 0.27, 0.22 and 0.28.

Variations in the measured VπL values are mainly due to variations in
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Figure 4.21: a Normalized transmission spectra for different DC voltages of the
C-band ring modulator. b Resonance wavelength shift of the C-band ring versus
voltage, including a linear fit. c Normalized transmission spectra for different DC
voltages of the O-band ring modulator. d Resonance wavelength shift of the O-
band ring versus voltage, including a linear fit. e Normalized transmission spectra
for different DC voltages of the C-band MZI modulator. f Optical phase shift as
a function of voltage, including linear fit.
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the waveguide cross-sections, electrode spacings and the used wavelengths

(C-band versus O-band), see equation (4.20). Extracted electro-optic coeffi-

cients reff also vary somewhat, differences can in part be due to variations in

film quality on different samples, but mainly stem from small uncertainties

on the exact cross-section dimensions.

4.8.3 Poling stability
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Figure 4.22: Tuning efficiency (in absolute value) of a C-band ring as a function of
time after poling. The axis on the right shows the estimated corresponding VπL.

It was clear from the preliminary phase modulation measurements discussed

in Section 4.7.2 that the response of the PZT is negligible right after de-

position. To become electro-optically active, the material has to be poled

first. During this poling step, the material is exposed to high voltages (60-

80 V), typically for about an hour. After the poling voltage is removed, the

material (partly) retains its Pockels coefficient. This is advantageous, as for

similar demonstrations, for example using BTO, a constant bias has to be

maintained [20–22].

However, as was already clear from the measurement shown in figure

4.17b, the Pockels-coefficient decreases over time after the poling step. To

investigate this further, a measurement of the tuning efficiency of a ring was

performed over time after the poling step. The results are shown in figure

4.22. The PZT on a C-band ring modulator was poled prior to the mea-

surement, after which no bias voltage was used. The DC tuning efficiency

was periodically measured (sweeping the voltage over [-2,+2] V) over a total

time of almost three days. The resulting tuning efficiency ∆λ/∆V is plot-
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ted as a function of time. On the right-hand axis, the corresponding VπL is

plotted. ∆λ/∆V decays towards a stable value of about -13.5 pmV−1 over

the course of several hours (see the exponential fit). Within the time-frame

of the measurement, the poling stabilized and there have been no indications

of decay over much longer periods of time.

4.8.4 High-speed characterization

 

VNA

Tunable laser Electrical
probe

EDFA OTF

Photodiode

Figure 4.23: Sketch of the setup used for the small signal measurements. VNA:
vector network analyzer, EDFA: erbium-doped fiber amplifier, OTF: optical tun-
able filter.

For many applications, high-speed operation is essential. For this, first the

small-signal response of our devices was characterized. In figure 4.24, the

setup used for the small-signal characterization is shown. Light coming from

a tunable laser is coupled into the modulator. For a ring resonator, the laser

is tuned to the edge of the resonance dip, hence applying a voltage between

the contacts will shift the resonance position (see for example figures 4.21a

and c) and modulate the transmitted laser power. For an MZI, the laser

is tuned to one of the slopes in the transmission curve (figure 4.21e). The

out-coupled light is amplified using an erbium doped fiber amplifier (EDFA)

(only for C-band measurements, not for O-band) to facilitate detection and

the amplified spontaneous emission (ASE) is filtered out using an optical

tunable filter (OTF). The power is then detected using a high-speed photo-

diode (Discovery Semiconductors DSC10H Optical Receiver). The modula-

tor is driven by an Agilent PNA-X N5247A vector network analyzer (VNA)

through a high-speed probe. The VNA measures the S21 parameter of the
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system as a function of modulation frequency. |S21| corresponds the ratio

of the amplitudes of the received and transmitted modulated voltage.

Figure 4.24: Electro-optic small signal (|S21| parameter) measurement of several
modulators.

On figure 4.24, the |S21| measurements for different modulators are plot-

ted. The measured 3 dB bandwidths of both rings are around 33 GHz, the

Mach-Zehnder has a bandwidth of 27 GHz. The bandwidths are not lim-

ited by the intrinsic material response of PZT, but by device design and/or

characterization equipment, as the dominating contributions to the Pockels

effect are expected to have a bandwidth which is almost two-orders of mag-

nitude larger [38, 39]. Note that the plotted S-parameter is a ratio between

the electrical powers. If one would look at the point where the modulation

of the optical power is half of that at low frequencies, one would have to look

at the 6 dB bandwidths (due to the quadratic dependence between electrical

and optical power caused by the photodiode), which lie at approximately

40, 42 and 32 GHz for respectively the C-band ring, the O-band ring and

the C-band Mach-Zehnder modulator.

We furthermore demonstrate that our platform can be used for high-

speed data transmission. In figure 4.25, a setup to measure eye diagrams

is sketched. The setup is very similar to the small signal setup in figure

4.23, however the VNA is now replaced by an arbitrary waveform generator

(AWG - Keysight AWG M8195A) and RF amplifier (SHF S807) to drive the

modulator and an oscilloscope (Keysight 86100D) to detect the modulated

signal. The photodiode used for this experiment is a Discovery Semicon-

ductors DSC-R409 PIN-TIA Optical Receiver. The AWG and RF amplifier

apply a pseudorandom non-return-to-zero (NRZ) binary sequence to the
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AWG Oscilloscope

RF amplifier
Tunable laser Electrical

probe
EDFA OTF

Photodiode

Trigger

Figure 4.25: Sketch of the setup used for the eye diagram measurements. AWG:
arbitrary waveform generator, EDFA: erbium-doped fiber amplifier, OTF: optical
tunable filter.

modulator (about 4.2 V peak-to-peak), the eye diagrams can be visualized

on the oscilloscope.

11.6 mV

23.8 mV

10 Gbps 28 Gbps

40 Gbps

10 Gbps

10 Gbps - DC-coupled

a b

c d

Figure 4.26: a-c Eye diagrams of a C-band ring modulator, measured with a non-
return-to-zero scheme (29−1 pseudorandom binary sequence) and a peak-to-peak
drive voltage of 4.2 V. Using respective modulation speeds of 10, 28 and 40 Gbps.
c Eye diagram at 10Gbps, obtained using a DC-coupled optical receiver.
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In figures 4.26a-c, eye diagrams obtained for the C-band ring modulator

are plotted for different bitrates. The eye remains open up until about 40

Gbps, this is likely limited by the AWG, which has a bandwidth of 25 GHz

and automatically decreases its voltage swing when the bandwidth of the

generated signal exceeds the AWG bandwidth to maintain signal integrity.

The eye diagrams in figures 4.26a-c only show the modulated compo-

nent of the optical power, to estimate the extinction ratio and link this to

the static measurements, a measurement was performed of both the DC and

modulated component. The eye diagram shown in figure 4.26d was obtained

using a DC-coupled Tectronix 80 C02-CR optical receiver with a sampling

oscilloscope (Tektronix CSA 8000). Since the measured voltage scales with

the total optical power, we can estimate the extinction ratio to be about

10 · log10(Pmax/Pmin) dB ≈ log10(23.8/11.6) dB = 3.12 dB. This corre-

sponds well with a simple ball-park estimate based on the observed trans-

mission spectrum and static DC-shift (figures 4.19a and 4.21a, b), since the

extinction ratio in DC can be estimated as ∆T ≈ |
[
dT
dλ

]
max
· dλdV · Vpp| ≈

60 dB nm−1 · 13.5 pm V−1 · 4.2 V = 3.4 dB, where T is the transmission

expressed in dB and
[
dT
dλ

]
max
≈ 60 dB nm−1 is essentially the peak of the

derivative of the transmission spectrum (for example the curves in figure

4.21a). This ball-park comparison shows that the static measurements, and

the measurements performed at high-speed, are quantitatively reasonably

consistent.
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Figure 4.27: Bit error rates estimated on the basis of measured eye diagrams, the
horizontal dotted line represents the HD-FEC limit with 7% overhead.

Finally, the measured eye diagrams can also be used to make a rough

estimate of the bit-error rate (BER). To do this, a sum of two Gaussian

distributions is fitted to the density of points as a function of voltage within

a limited region around the center of the eyes. The Gaussian distributions
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are centered around the top (1) and bottom (0) levels of the eye diagram.

The standard deviations of the distributions are representative for the fluc-

tuations of the measured points around their average values, and can be

linked to how often a 1-bit will be detected as a 0-bit, and vice versa. The

detailed mathematics of this method can be found in reference [40]. The

results of this analysis are plotted in figure 4.27. Note that this is only an

approximate method for estimating the BER, it assumes the noise is Gaus-

sian and the fit is performed on a limited number of points in a chosen ‘time

interval around the center of the eye’. However the trend is clear, as can

be seen on the plot, the estimated BER increases very rapidly with bitrate.

As a reference, the hard-decision forward error coding (HD-FEC) limit with

7% overhead of 3.8 · 10−3 is also shown (an admittedly very forgiving limit,

although commonly used in practice, see for example references [41, 42]).

All measured bitrates give an estimated BER below this limit. It is also

important to note that the BER is not inherent to the platform, if the ex-

tinction ratio of the modulator would for example increase, by using a ring

with a higher Q factor or by applying a larger voltage swing, the BER would

automatically decrease.

4.9 Further optimization of PZT-on-SiN
phase modulators

The devices studied in this chapter were not fully optimized in terms of

electro-optic modulation parameters. For example, the PZT thickness was

rather low in order to reduce deposition times and to limit bend losses

and coupling losses into PZT covered waveguide sections. However such

limitations can be alleviated by design.

In this section, a PZT-on-SiN phase shifter is optimized with respect to

the PZT thickness, the electrode spacing and the width of the waveguide,

all calculations are performed using a COMSOL model of the phase shifter

cross-section. Two important parameters are calculated using this model.

Firstly, the waveguide propagation loss is estimated, the loss is assumed to

consist of two contributions, one caused by the electrodes, αelectrodes, and an

intrinsic contribution, αintrinsic, caused by material/scattering losses in the

remainder of the waveguide cross-section. The electrode contribution can

be estimated by appropriately modelling the metals in the mode solver and

by simply using the imaginary part of the calculated effective mode index

κeff , αelectrodes = 4π
λ κeff . The intrinsic contribution can not be modelled in

a straightforward way, since we do not know to which extent the different

materials and interfaces contribute to the waveguide loss. Hence αintrinsic

is assumed to have a constant value of 1 dB cm−1, a realistic value if the
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Figure 4.28: Simulation of the waveguide loss α (a), the half-wave voltage-length
product VπL (b) and their product VπLα (c) of a PZT-covered SiN waveguide
modulator of the type shown in figure 4.15, for a wavelength of 1550 nm. Wave-
guide height, width and intermediate layer thickness are respectively 300 nm, 1.2
μm and 20 nm. The intrinsic waveguide loss (in the absence of electrodes) was
taken to be 1 dB cm−1, the effective electro-optic Pockels coefficient 67 pm V−1.
The circles show the approximate parameters used in this work, the diamonds
show the optimal point with respect to VπLα.

samples are planarized using CMP. Secondly, the half-wave voltage length

product VπL is estimated, using equations (4.19) and (4.20). In figure 4.28,
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Figure 4.29: Optimization of the waveguide loss times the half-wave voltage-length
product VπLα of a PZT-covered SiN waveguide modulator as a function of wave-
guide width. a For each waveguide width VπLα is minimized as function of both
electrode spacing and PZT thickness (blue line). The red line plots the calculated
VπL at this optimum. b Electrode spacing (blue) and PZT thickness (red) at the
optimum. The light blue area shows the waveguide width/PZT thickness combi-
nations for which the waveguide only supports a single TE mode. Wavelength,
SiN height and intermediate layer thickness are respectively 1550 nm, 300 nm and
20 nm. The intrinsic waveguide loss (in the absence of electrodes) was taken to
be 1 dB cm−1, the effective electro-optic coefficient 67 pm V−1.

the results of such a simulation are plotted as a function of the PZT layer

thickness and of the electrode spacing. The waveguide height, width and

the wavelength are respectively 300 nm, 1.2 μm and 1550 nm. Figure 4.28a

shows the estimated waveguide loss. Intuitively, the dependence of the loss
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on the electrode spacing can be understood as follows, the loss converges to

the intrinsic loss of 1 dB cm−1 when the electrodes are far away, when they

come closer, the overlap of the optical mode with the metal exponentially

increases, adding a strongly increasing term to optical loss with decreasing

spacing. The loss also increases with PZT thickness, this is due to the in-

creasing overlap of the mode with the PZT, rather than with the SiN and

oxide underneath. As a result of this, the lateral index contrast decreases

and the mode expands towards the electrodes. Figure 4.28b shows the sim-

ulated VπL. With increasing PZT thickness, the VπL decreases due to the

increasing confinement Γ of the mode in the PZT. VπL also increases with

electrode spacing, due to the decrease in electric field for a given voltage.

From figures 4.28a and b, one can see the the loss α and the modulation

efficiency characterized by the VπL can not be both optimized at the same

time. In fact the very change in parameters that would decrease the loss

(increase in electrode spacing and/or decrease in PZT thickness), would

make the modulator less efficient, and vice versa. These are however not

the only relevant figures of merit. Arguably the most important figure of

merit for many applications is the product VπLα [25], which expresses a

trade-off between the necessary drive voltage and total optical loss that has

to be tolerated (VπL rather represents a trade-off between drive voltage and

device footprint). The simulated values for VπLα are plotted in figure 4.28c.

As opposed to α and VπL, VπLα does have a minimum for the parameters

space that was investigated, of ≈ 2 VdB, approximately for a PZT thickness

of 300 nm and an electrode spacing of 7 μm (see the diamonds in figure 4.28).

The circles in figure 4.28 represent the approximate geometrical parameters

used in the experiments discussed before.

In the simulations in figure 4.28, a sweep of the electrode spacing and

PZT thickness was performed, since these can be easily tailored in post-

processing. This was done for a fixed waveguide width of 1.2 μm. One

can however also optimize the waveguide width, such an optimization is

given in figure 4.29. At each width, a sweep of VπLα as a function of PZT

thickness and electrode gap of the kind shown in figure 4.28 was performed.

Figure 4.29a shows the values of VπLα and the VπL at the optimum (where

the VπLα reaches a minimum). Figure 4.29b shows the PZT thickness and

electrode spacing corresponding to this optimum. The light blue area shows

the waveguide width/PZT thickness combinations for which the waveguide

only supports a single TE mode. In figure 4.28, a width of 1.2 μm was chosen

in order to minimize min(VπLα) whilst still having single-mode behavior at

the optimal point.

Note that some of the assumptions made in these simulations are op-

timistic, especially an intrinsic loss value of 1 dB cm−1 assumes that the
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planarization is performed through CMP. For the current devices planarized

through CMP, a residual oxide thickness of 50-100 nm is present (see figure

4.7d). This is not taken into account in our simulations in the assumption

that the process can get optimized. The electrode alignment is also assumed

to be perfect, in the current devices extra losses are induced due to mis-

alignment of the electrodes (see figure 4.20). On the other hand, values such

as the PZT Pockels coefficent are based on current measurements, it is not

unrealistic to think that this parameter can still be improved, for example

when poling at higher temperatures or changing the PZT composition.

4.10 Conclusions and future prospects

To conclude, we have explored some promising possibilities of thin film lead

zirconate titanate (PZT) on photonic integrated circuits, for nonlinear op-

tics and electro-optic modulation. The material itself was introduced in

Section 4.2. PZT has very interesting properties, such as ferroelectricity,

piezoelectricity and pyroelectricity. However for the applications discussed

here, the strong Pockels effect and second order optical nonlinearity are of

most interest. The specific thin-film deposition method used in this thesis,

chemical solution deposition with an intermediate lanthanide layer, is in-

troduced in Section 4.3. This method is absolutely crucial for the optical

applications pursued here, as both the PZT layer and the intermediate layer

are of high quality and are, most importantly, transparent over a large wave-

length range. PZT and the intermediate layer are both transparent beyond

≈ 370 nm [43, 44]. This enables us to bring the thin-film in close proxim-

ity of integrated optical waveguides without significantly compromising the

loss.

In Section 4.4, a second harmonic generation experiment on thin-film

PZT on glass was discussed. This experiment gave an initial idea of the

strength of the second order nonlinearity of PZT. Out-of-plane second order

susceptibility components on the order of χ
(2)
zzz ≈ 40 pm/V were measured,

however due to breakdown issues the samples were probably not poled to

their full extent. More efficient poling of these films is something that can be

investigated further. The ultimate goal is to harness the properties of PZT

on an integrated photonic platform. Hence the other experiments in this

chapter were performed on PZT-covered SiN waveguides. The fabrication

of these waveguides is discussed in Section 4.5. Waveguide losses can be as

low as ≈ 1 dB/cm. This however strongly depends on the way the chips

are planarized before thin-film deposition and low losses are only achieved

on samples planarized by CMP in the CMOS foundry. Using in-house pla-

narization methods, the losses are rather on the order of ≈ 6 dB/cm. In
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Section 4.6, we demonstrated that also in these waveguides second har-

monic generation can be observed. These measurements are preliminary

and can still be heavily improved. Although some assets of the platform

are immediately clear, despite the high losses and poor collection, the sec-

ond harmonic can clearly be observed, moreover by applying a DC voltage

across the material we can fine-tune the phase-matching wavelength using

the Pockels effect. Strategies for moving forward are also discussed, in the

near future, a ridge can be etched in the PZT layer to confine the second

harmonic mode and decrease its losses. On the longer term, strategies for

periodic poling of the PZT can be explored. Periodic poling is difficult from

a fabrication perspective since very small poling periods would be required,

however it would enable us to do efficient SHG between two TE00 modes

which could be used for optical parametric amplifiers or oscillators, quan-

tum applications (parametric downconversion for photon pair generation),

etc.

Electro-optic modulation is the application in which the PZT-on-SiN

platform has truly started to show its colors. In Section 4.7, we discussed

the basic theory behind phase modulation in these waveguides. In sum-

mary, two parameters are important, the Pockels coefficient of the material,

as well as the confinement of the optical mode within the PZT. Further-

more a method for basic characterization of phase modulation in a simple

PZT-covered waveguide is introduced. These measurements indicate that

efficient modulation is possible, and also give an idea of the poling voltages

needed to induce a nonzero electro-optic response in the thin-film PZT.

In ball-park a voltage of about 50 V for an electrode spacing of about 5

μm, applied over 30 minutes to one hour, should be sufficient. Voltages

exceeding 100 V have lead to electrical breakdown for such electrode spac-

ings. When used in a Mach-Zehnder interferometer, or in a ring resonator,

PZT-covered SiN waveguides can be used for amplitude modulation. This

is demonstrated in Section 4.8. In this section we demonstrated efficient

and high-speed modulation, in the absence of a bias voltage, both in the O-

and C- telecommunication bands. Our static measurements show half-wave

voltage-length products VπL down to 3.2 Vcm and stable poling of the mate-

rial for periods of at least several days. Our high-speed measurements show

modulation bandwidths exceeding 33 GHz in both the O- and C-bands, and

data rates up to 40 Gbps using C-band ring modulators. The modulators

on which the modulation experiments were performed were moreover not

fully optimized. In Section 4.9, a simple optimization already shows that

significant improvements are possible. Our approach is also unique in its

versatility, as the PZT film can be deposited on any sufficiently flat surface.

This could enable the incorporation of the electro-optic films onto other
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guided-wave platforms.

The modulation results are very promising, though future work is still

required. Firstly, other platforms such as SOI are currently also being inves-

tigated. On silicon also phase modulation can be achieved, however some

things are quite different. For example the ratios between the different re-

fractive indices, SiN has a smaller index than PZT (≈ 2 versus ≈ 2.3), this

implies that when depositing increasingly thicker PZT layers on the wave-

guides, the mode will be significantly more confined into the PZT itself.

This leads to some subtle dependencies (see Section 4.9). On one hand the

increased confinement in the active material is good for the overall electro-

optic effect, on the other hand the lateral index contrast also decreases, and

the interaction of the mode with the electrodes causes more and more loss.

For Si, this is not true, the silicon has a significantly higher index (≈ 3.4)

and the PZT can be considered a cladding layer within the evanescent field

of the optical mode. Secondly, the poling and poling stability is explored

to a certain extent in this thesis, but further tests are needed, such as tests

for longer periods of time and under harsh environmental conditions. Also,

the Pockels coefficients measured here (reff ≈ 60−70 pm/V) are lower than

the ones measured in the thesis of John P. George (230 pm/V) through

ellipsometry on thin-films [26] . This is not too surprising, since the mea-

surements by George et al. are performed on samples poled using ITO

electrodes below and above the PZT film. Hence the poling is performed

along the c-axis of the PZT crystallites after deposition. In this work, the

PZT is poled in-plane, which is likely much more inefficient. This means

that improving the poling efficiency is a potential avenue to improve our

modulators. For example poling at elevated temperatures should be inves-

tigated. Thirdly, the modulator design can be improved significantly. In

Section 4.9, we demonstrate that by numerical optimization of the cross-

section, figures of merit like VπL and VπLα can be significantly reduced.

The current amplitude modulators can also be improved by for example re-

ducing the losses and increasing the Q factors of the rings, this can increase

the extinction ratio and reduce bit-error rates. On the longer term, MZI

modulators with longer phase shifters can be developed. The design of such

modulators is quite involved since phase matching between both the optical

and the RF wave has to be considered. Optical losses in the transition sec-

tions between PZT-covered and bare waveguides can be reduced by clever

design. An example of how this can be done by tapering the waveguides

can be found in reference [45]. Finally, the performance of this platform at

other wavelength ranges can still be explored.
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Chapter 5

Nonlinear optics in MoS2

5.1 Introduction

In this chapter we take a look at second order nonlinear optics in molyb-

denum disulfide (MoS2). MoS2 is a 2D material belonging to the class of

the transition metal dichalcogenides (TMDCs or TMDs). Also being two-

dimensional, these materials are in a sense structurally similar to graphene

(Chapters 2 and 3). However as opposed to graphene, TMDC monolayers

are not centrosymmetric. Hence they have a nonzero second order nonlinear

susceptibility, which means that we can expect nonlinear optical phenom-

ena similar to the ones observed in PZT (Chapter 4). In this chapter we

will explore second order nonlinear optical effects in TMDCs, borrowing

concepts from both these parts of the thesis.

In Section 5.2, TMDCs and some other notable 2D materials beyond

graphene are introduced. The focus of this chapter lies on second harmonic

generation in MoS2. The fundamentals and state-of-the-art of nonlinear

optics in MoS2, and by extension the whole family of TMDCs, are discussed

in Section 5.3. Section 5.4 talks about the actual SHG experiment. The goal

is to combine these materials with integrated optics for on-chip nonlinear

applications. Section 5.5 focuses on some initial steps in this direction.

5.2 2D materials beyond graphene

In Chapter 2, the increasingly important role of graphene in photonics and

optoelectronics was discussed. The first isolation of single layer graphene

was however not only the start of an enormous amount of graphene research,

it was also the start of the broader field of 2D material research in general.

Some of the other 2D materials, such as MoS2, were already known in
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their many-layered bulk form, and were for example used as dry lubricants,

however the advent of graphene science triggered scientists to isolate and

study also monolayers of these materials [1].

All 2D materials have some common qualities. The quantum confine-

ment in the direction perpendicular to the 2D crystals leads to interesting

electronic properties such as strong excitonic effects and light-matter inter-

action. The surfaces of a 2D crystal are also intrinsically passivated, with

no dangling bonds. This facilitates integration with photonic and electronic

structures [1, 2].

Despite these common features we can find 2D materials with very

different properties. The most prevalent example, graphene, is a gapless

semimetal. It is very conductive and interacts strongly with electromag-

netic radiation with wavelengths ranging from the microwave to the ultra-

violet. Though the absence of a bandgap makes it unsuitable for light emis-

sion. Another class of 2D materials are the transition metal dichalcogenides

(TMDCs), which have the chemical formula MX2, with M a transition metal

(Mo, W...) and X a chalcogen (S, Se...) [1, 2]. Monolayer TMDCs possess

direct band gaps in the visible to near-IR wavelength range [1]. These ma-

terials are candidates for future detectors and light sources, such as LEDs,

low-threshold lasers or even single-photon emitters [2]. Lack of inversion

symmetry in TMDC monolayers also gives rise to direct bandgaps at two

different corners of the Brillouin zone (K and K’) [1]. Carriers in these val-

leys have for example different orbital angular momentum and can be selec-

tively pumped using circularly polarized light, this has lead to the emerging

field of “valleytronics” [1]. Hexagonal boron nitride, hBN, is yet another 2D

material with a very large bandgap (≈ 6 eV), hBN makes an excellent di-

electric. As a final example there is black phosphorus (BP), a material with

a direct bandgap which is strongly correlated to the number of layers (0.3

eV for bulk to 2 eV for the monolayer) [1]. This “library” of 2D materials

opens up the door to many new applications. The study of heterostructures,

where 2D crystals are stacked to make junctions and engineer the overall

electronic and optical properties, opens up the design space even more.

5.3 Nonlinear optics in TMDCs

Apart from the potential applications mentioned before, TMDCs have also

been investigated for their nonlinear properties. Namely, the second order

nonlinear susceptibility of monolayer MoS2 was first reported on in 2013

by Kumar et al. [4]. In this first work, a second order bulk susceptibility

χ
(2)
b ∼ 10−7 m/V (corresponding to a sheet susceptibility on the order of

χ
(2)
s = χ

(2)
b δ ∼ 10−16 m2/V, with δ ≈ 0.62 nm [5] being the thickness
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Figure 5.1: a Structure of a monolayer TMDC, side view and top view. From the
top it looks like a honeycomb structure with broken inversion symmetry (adapted
from reference [2]). b Schematic of the side-view of 2H-MoS2, adjacent layers
have antiparallel orientations, restoring the inversion symmetry. The second order
polarizations generated in different layers in a SHG experiment will destructively
interfere (adapted from reference [3]).

of the monolayer) was reported. This is between three and four orders

of magnitude higher than some popular bulk materials for nonlinear optics,

such as LiNbO3 [6]. Even considering the sub-nanometer thickness of MoS2,

such a value would imply tremendous potential for nonlinear applications,

Pockels modulation, etc. Other publications followed within months [5, 7–9],

however these works consistently report respective peak bulk and surface

second order susceptibilities on the order of χ
(2)
b ∼ 10−10 m/V and χ

(2)
s ∼

10−19 m2/V, none of them confirming the large values reported by Kumar

et al. [4]. It was moreover quickly experimentally confirmed that the second

harmonic generation efficiency is strongly wavelength dependent, showing

strong peaks when the second harmonic is in the vicinity of one of the

excitonic resonances (A-, B- and C-excitons at respective wavelengths of 675

nm, 625 nm and 440 nm in monolayer MoS2) [7, 10]. All the aforementioned

values were measured in the vicinity of the C-exciton. From the perspective

of potential applications these resonantly enhanced values are not the most

interesting, since they occur at wavelengths with strong reabsorption of

the generated SH. Clark et al. reported off-resonant values (fundamental

wavelength of 1600 nm) of χ
(2)
b ≈ 7 · 10−12 m/V or χ

(2)
s ≈ 4.3 · 10−21 m2/V,
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Woodward et al. reported slightly higher values of χ
(2)
b ≈ 3.2 · 10−11 m/V

or χ
(2)
s ≈ 2 · 10−20 m2/V, for a pump at 1560 nm [11]. Reports on the

second order susceptibility of other TMDCs (MoSe2, WS2 and WSe2) have

lead to the similar conclusions with respect to resonant enhancement and

similar order-of magnitude values for the nonlinear parameters. Seyler et

al. moreover demonstrated that the strength of the SH in the vicinity of

the A-exciton of WSe2 can be tuned strongly by electrostatic doping in a

field-effect transistor [12].

Figure 5.1a schematically shows the atomic structure of a monolayer of

a TMDC, both from the side and from the top. The material consists of

a single layer of transition metal atoms, between two layers of chalcogen

atoms in trigonal prismatic structure [2]. The monolayer has D3h symme-

try, and lacks inversion symmetry. This lack of inversion symmetry lies

at the core of the second order nonlinear response of these materials, as

centrosymmetric materials have no second order response [6]. Figure 5.1b

shows the most common arrangement of TMDC layers in bulk or few-layer

materials, the 2H polytype [3]. In this arrangement, adjacent layers have

antiparallel orientiation, restoring the overall inversion symmetry. The bulk

material has D6h-symmetry and has a negligible second order response, this

is illustrated by the second order polarizations PSH in figure 5.1b, which

cancel each other out. For few-layer TMDCs, a nonzero response is only

expected for an odd number of layers [3, 5]. Recently, several groups have

studied arrangements of TMDCs where the layers are stacked with identical

orientation, this is called the 3R polytype and is equally stable but less com-

monly studied [3, 13]. In these materials, constructive interference of the

second harmonic dipoles leads to much stronger second harmonic powers

when going from monolayer to bulk.

5.4 Second harmonic generation in
MOCVD-grown MoS2

We have access to large area MoS2, synthesized at imec (Leuven, Belgium)

using metal-organic chemical vapor deposition (MOCVD) on a sapphire

substrate. MOCVD growth of TMDCs is not a self-limiting process, so

having control over the deposited number of layers is hard [14]. In general

samples are covered with a patchwork of areas with a different number of

layers (for example monolayer, bilayer and trilayer). However significant

steps toward having more control of the layer number have been made re-

cently by Chiappe et al. [14], who provided the samples used in this work.

For the samples used here, a combination of MOCVD deposition with a
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thermal etching step to remove bi- and trilayer patches was used to ob-

tain a monolayer. One potential application of this material is to use it

for on-chip nonlinear optics or electro-optic modulation. As a first step,

we investigate the second order nonlinear material response of the avail-

able material transferred to an unprocessed substrate, and compare it with

literature values. The transfer was done by first spin-coating poly(methyl

methacrylate) (PMMA) on the MoS2-covered sapphire substrate and using

thermal tape to transfer the PMMA-MoS2 stack to the target substrate [14].

Figure 5.2a shows the setup used for the MoS2 SHG measurement. This

is in essence the same setup used for the measurements on thin film PZT

layers, see figure 4.2a. However two features are added, firstly, the half-wave

plate is mounted on a rotating stage, connected to the computer. Through

this, we can automatically sweep the polarization angle ϕ of the fundamental

beam. A second added feature is the analyzer, which is a polarizer either

selecting the horizontally or vertically polarized component of the generated

second harmonic. On figure 5.2b, the measurement on an MoS2 covered

substrate is sketched. The incidence angle θ is 0 ◦ (perpendicular incidence),

but the polarization direction of the linearly polarized beam is rotated using

the half-wave plate. The second harmonic generated in the MoS2 is passed

through the analyzer, either passing the vertically polarized light (polarized

along y), or the horizontally polarized light (polarized along x). For this

measurement, the MoS2 was transferred to a SiO2-on-Si substrate. The SiO2

has a thickness of approximately 85 nm. It is also important to note that

the second order susceptibility tensor χ
(2)
s is defined within the reference

frame of the crystal. For the MoS2 sample provided, this reference frame

is typically not aligned with the ‘lab’ frame of reference. Figure 5.2c shows

how the two relate, X and Y are respectively defined as the ‘armchair’ and

‘zigzag’ directions of the MoS2-crystal [7]. The angle between the x-axis of

the lab frame and the armchair direction of the crystal is defined as α.

Based on its symmetry, it is known that the second order scuspetibil-

ity tensor of MoS2 has only a single nonzero tensor element: χ
(2)
s, MoS2

≡
χ

(2)
s, XXX = −χ(2)

s, XY Y = −χ(2)
s, Y Y X = −χ(2)

s, Y XY [7]. Hence the second har-

monic field can be expressed as,

E(2ω) = Cχ(2)
s : E(ω)E(ω)

= Cχ
(2)
s, MoS2

[
(E2

X(ω)− E2
Y (ω))êX − 2EX(ω)EY (ω)êY

]
,

(5.1)

where ω and 2ω are the fundamental and SH frequency. C is a propor-

tionality constant determined by the local dielectric environment and êX, Y
are unit vectors in the respective directions. When changing between ref-

erence frames by using the substitutions EX(ω) = |E| cos(ϕ− α), EY (ω) =
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Laser
 λ≅1550 nm, Δt≅70 fs

λ/2
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BP
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x
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a

Figure 5.2: a Setup used for the second harmonic generation experiments. λ/2:
half-wave plate, LP: longpass filter, SP: shortpass filter, BP: bandpass filter.
Adapted from reference [15]. The half-wave plate is mounted on a rotating stage
in the vertical direction, the sample is mounted on a horizontally rotating stage. b
Sketch of a measurement on an MoS2 monolayer transferred to a silica-on-silicon
substrate. c Sketch of the orientation of the MoS2 monolayer on the substrate,
x, y and z represent the ‘lab’ reference frame, X, Y and Z = z the conventional
reference frame of the MoS2.

|E| sin(ϕ − α), êX = êx cos(α) + êy sin(α) and êY = êy cos(α) − êx sin(α),
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this eventually yields,

E(2ω) = Cχ
(2)
s, MoS2

|E|2 [cos(2ϕ− 3α)êx − sin(2ϕ− 3α)êy] . (5.2)

Hence the detected powers for respectively the vertically and horizontally

polarized components of the SH scale as sin2(2ϕ− 3α) and cos2(2ϕ− 3α) 1.

The exact calculation of the proportionality factor C is rather complicated

for a multilayered substrate of the kind used here (see figure 5.2b). Due to

the large index of silicon multiple reflections and resonance effects should

be included, both for the fundamental and the generated SH. D. S. Bethune

has developed a transfer matrix method for the general problem of harmonic

generation in multilayer media, in this method, the linear problem for the

fundamental wave is solved first, hereafter the nonlinear polarization and

generated nonlinear fields are calculated [16]. For our measurement, this

method was implemented in MATLAB by Artur Hermans. The measure-

ments shown here were referenced using a Barium Borate sample, using the

second order susceptibility measured by Shoji et al. [17].
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p
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.u
.)

Analyzer orientation: vertical
Analyzer orientation: horizontal

Figure 5.3: Measured SH power for the MoS2-covered substrate, for respectively
the analyzer selecting the s-(blue) and p-polarizations (red). The solid lines are
the theoretical fits.

In figure 5.3, the measurement results are shown, for the analyzer select-

ing either the vertically or horizontally polarized component of the SH. Note

that there is an offset between the two measurements, this indicates that

there is a change in the alignment and the collection efficiency of the setup

1Note that in most other experimental works, the detected SH scales as cos2 [3(ϕ− α)]
this is because generally the analyzer and the incident polarization are aligned in parallel,
here the analyzer orientation is fixed for a single measurement.
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when rotating the analyzer. The solid lines on the plot represent the theo-

retical fit. The fitted surface second order susceptibilities for the respective

vertical and horizontal orientations of the analyzer are χ
(2)
s = 4.0 · 10−21

m2/V and χ
(2)
s = 5.4 ·10−21 m2/V. Note that despite the large difference in

detected powers, the difference in the fitted susceptibilities is still acceptable

(due to the square relation between the two). For both measurements, the

fitted angle α is about 28 degrees.

These values are reasonably close to what was reported by Clark et al.

(4.3 · 10−21 m2/V) and Woodward et al. (2 · 10−20 m2/V) for similar wave-

lengths. Using a thickness of 0.62 nm, we can estimate the corresponding

bulk susceptibilities to be χ
(2)
b = 6.5 ·10−12 m/V and χ

(2)
b = 8.7 ·10−12 m/V

for the respective fits. This is not exceptionally large compared to typical

bulk nonlinear crystals, and comes with the additional caveat that we are

limited to subnanometer thick monolayers. Note that in our setup, we focus

the fundamental beam with a 1/e2-beam waist of 52 μm. This means that

we probe the average value of the second order response of the film within

this spot 2. As was mentioned before, MOCVD processes do not result in

perfect monolayers, rather in a patchwork of monolayers, bilayer islands and

maybe even uncovered areas [14]. This is another possible reason of a re-

duced χ(2)-value, and improving layer-number control is a potential way of

getting more control over the second order nonlinear response. In the next

sections we will assess some of the possibilities of MoS2-covered integrated

waveguides.

5.5 MoS2 on integrated SiN waveguides

100 μm  

Patterned MoS2

MoS2

SiO2

SiN

a b

Figure 5.4: a Sketch of the cross-section of an MoS2-covered SiN waveguide. b
Microscope image of a set of waveguides covered with MoS2 after patterning. The
contrast was enhanced to make the MoS2-patches clearly visible.

2Most of the cited references use a second harmonic microscope setup which can probe
a spot smaller than a single monolayer flake.
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In analogy to the graphene-covered silicon nitride waveguides first intro-

duced in Section 3.3, we covered similar waveguides with MoS2. A typical

cross-section of such a waveguide is shown in figure 5.4a. Up until the trans-

fer of the 2D material, the sample preparation is identical to the fabrication

of graphene-covered waveguides, see figure 3.5. The top oxide is etched

back using both reactive ion etching and HF wet etching. Then the MoS2 is

transferred to the sample using the same tape-assisted transfer method de-

scribed above, and patterned using optical lithography and CF4 reactive ion

etching for 60 seconds (at a power of 25 W, flow of 50 sccm and pressure of

50 mTorr). Figure 5.4b shows the top view of the sample after patterning,

the MoS2-patches of different length are clearly visible.

5.5.1 Optical losses

Using the waveguides covered with different lengths of MoS2, we performed

cut-back loss measurements. The results are summarized in figure 5.5, for 3

different waveguide widths (1200 nm, 1600 nm and 2400 nm), the thickness

of the SiN is approximately 300 nm. Figure 5.5a shows the overall fiber-to-

fiber loss between for the different waveguide widths and for a wavelength

of 1550 nm. A linear fit to these measurements can be used to estimate the

coupling loss (grating coupler loss) and the propagation loss of the MoS2-

covered waveguide sections. In figure 5.5b, the thus estimated waveguide

propagation losses are plotted as a function of wavelength. The estimated

grating coupler losses are plotted in figure 5.5c. It is clear from the figure

that the propagation losses are quite high, within the range of 20-25 dB/cm.

This is about an order of magnitude larger than for similar SiN waveguides

without MoS2, see for example figure 4.8c (blue plot). The high loss here is

not fully understood, and might be linked to quality of the MoS2-film, for

example through the presence of grain boundaries or bilayer areas. Further

improving the deposition process of the material might strongly reduce these

losses. Other groups have reported on similar TMDC-covered (using WS2)

waveguides with losses below 6 dB/cm [18]. Hence this is a property which

still can be optimized.

5.5.2 SHG on MoS2-covered SiN waveguides

Here, we will use the measured second order susceptibility and waveguide

losses from the previous sections to assess whether large-area TMDCs can

be used for on-chip second harmonic generation when combined with inte-

grated SiN waveguides, and to which extent the platform still needs to be

improved.
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Figure 5.5: a Fiber-to-fiber loss for the MoS2-covered waveguides, for different
lengths of MoS2. The measurements were performed on waveguides of different
widths, see legend. The dashed lines show the linear fits. The wavelength is 1550
nm. b Estimated propagation loss of the MoS2-covered section as a function of
wavelength, from the linear fits. c Grating coupler loss as a function of wavelength.
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For second harmonic generation, the equations (4.10), (4.11) and (4.12)

derived for bulk materials such as PZT can be rewritten for 2D materials.

The coupled-wave equations for the fundamental and second harmonic am-

plitude (Af and ASH) are still (in the assumption that downconversion from

the second harmonic back to the fundamental can be ignored),

∂Af

∂z
= −αf

2
Af , (5.3)

∂ASH

∂z
= iκei(2βf−βSH)zA2

f −
αSH

2
ASH, (5.4)

where the nonlinear coupling κ is given by,

κ =
ωfε0

4
√

PSHPf

∫
2D

e∗SH · χ(2)
s : efefd`, (5.5)

where the line integral is taken over the intersection between the 2D-material

and the waveguide cross-section. ef, SH is the electric field profile of the

respective optical mode and Pf, SH are normalization constants calculated

using equation (2.20). From equation (5.4) it is clear that phase-matching

is an important issue for on-chip second harmonic generation. A possible

way to tackle this is quasi-phase-matching, where the nonlinear response

of the waveguide is modulated along its length with a period Λ [6]. With

K ≡ 2π/Λ = |2βf − βSH|. In that case the nonlinear coupling κ(z) can be

written as a Fourier series [6]:

κ(z) =

∞∑
m=−∞

kme
imKz. (5.6)

Equation (5.4) can be directly solved as Af(z) = Af,0e
−αfz

2 , after which the

solution of equation (5.4) becomes (with ∆β ≡ 2βf − βSH),

ASH(z) =

∞∑
m=−∞

ikmA
2
f,0e
−αSH

2 z

∫ z

0

e[ 1
2 (αSH−2αf )+i(∆β+mK)]z′dz′

=

∞∑
m=−∞

ikmA
2
f,0

e[−αf+i(∆β+mK)]z − e−
αSH

2 z

1
2 (αSH − 2αf) + i(∆β +mK)

.

(5.7)

Most of the terms in this series expansion will oscillate with a period com-

parable to or smaller than Λ. Only one term, with m = −1 or 1 (depending

on the sign of ∆β), will grow coherently.

We propose the phase-matching scheme illustrated by figure 5.6, half of

each period is covered with the 2D material, and the other half is not. This

can be achieved by patterning the monolayer of the TMDC using optical
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MoS2

SiO2

SiN
w

h

SiO2

SiN

Λ
Cross-section: Side-view:

Figure 5.6: Proposed waveguide structure for on-chip quasi-phase-matched second
harmonic generation using MoS2 and other TMDCs.

lithography. For this case the first order terms of the Fourier expansion

become k±1 = κmax/π. With κmax calculated using equation (5.6). For this

scheme the power conversion from fundamental to SH will be, if we ignore

all the fast oscillating terms in equation (5.7),

PSH(L)

Pf(0)2
≈ |κmax|2

π2

∣∣∣∣∣e−αfz − e−
αSH

2 z

αSH

2 − αf

∣∣∣∣∣
2

. (5.8)

Based on these equations, we can make some initial estimates of what would

be the nonlinear conversion efficiency of the phase-matching scheme. The

results are summarized in figure 5.7. Figure 5.7a shows the simulated phase

matching period for different waveguide widths w and thicknesses h. The

necessary period is always in the vicinity of 3 μm. This means that fea-

ture sizes on the order of 1.5 μm are necessary. This can be achieved with

optical lithography. Figure 5.7b displays the calculated nonlinear coupling

κ, calculated using equation (5.6). The dotted lines represent the currently

available waveguide parameters. The diamonds represent the waveguide pa-

rameter with the highest calculated κ (0.173 m−1W−
1
2 ). in figure 5.7c the

calculated nonlinear conversion PSH(L)
Pf (0)2 is plotted. The blue line uses values

roughly in line with what we currently measured, κ = 0.1 m−1W−
1
2 and

αf = αSH = 1
2 · 25 dB/cm. The factor 1

2 in the loss comes from the fact

that only half of the period is covered with the monolayer. The loss for the

second harmonic was taken identical to the loss for the fundamental, this is

somewhat of a stab in the dark. However one should note that the overlap

of the second harmonic mode with the 2D monolayer is significantly smaller

than for the fundamental mode, since it is much more confined within the

waveguide core, if the material loss at the second harmonic wavelength is

not significantly larger than for the fundamental, this guess should be quite

safe. The green line represents a calculation for more optimistic parameters

(κ = 0.17 m−1W−
1
2 and αf = αSH = 1

2 · 5 dB/cm, in line with the loss

measured for WS2-covered waveguides by Datta et al. [18]). The optimal

conversion efficiencies range from 10−9 to just over 10−7 W−1. These values
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Figure 5.7: Simulation results for quasi-phase-matched second harmonic gener-
ation using an MoS2-covered SiN-waveguide, see figure 5.6. a Phase matching
period for a fundamental wavelength of 1550 nm, as a function of waveguide
thickness h and width w. b Calculated nonlinear coupling κ (using equation
(5.6)), as a function of waveguide thickness h and width w, for χ(2) = 5 · 10−21

m2/V. The dotted lines on figures a and b represent the approximate parame-
ters of the currently available waveguides, the diamonds represent the point with
optimal κ. c Calculated nonlinear conversion PSH(L)

Pf (0)
2 , for the values in line with

what was measured (κ = 0.1 m−1 W−
1
2 , propagation losses of 12.5 dB/cm for

both fundamental and second harmonic) and for more optimistic values (κ = 0.17

m−1W−
1
2 , propagation losses of 2.5 dB/cm), respectively in blue and green. d

Nonlinear coupling κ versus relative orientation of the MoS2 crystal with respect
to the waveguide, α is the angle between the waveguide cross-section plane and
the ‘armchair’ (X) direction of the MoS2 (see figure 5.2c), for w = 1.65 μm and
h = 190 nm.
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are measurable using low repetition rate pulsed sources3. However they are

not practically useful, for example for efficient frequency doubling. Figure

5.7d shows another potential complication. It is a simulation of the non-

linear coupling as a function of the MoS2 crystal orientation, with α being

the angle between the waveguide cross-section plane and the ‘armchair’ (X)

direction of the MoS2. Due to the symmetry of the crystal, the nonlinear

conversion will change significantly with this angle as well.

5.6 Conclusions and future prospects

In this chapter we discussed some preliminary measurements on MoS2, a

2D material belonging to the class of the transition metal dichalcogenides

(TMDCs). First (Section 5.2) we introduced TMDCs, with a strong focus on

second harmonic generation in these materials. In Section 5.4 we character-

ize the second harmonic response of large area MoS2 grown through metal-

organic chemical vapor deposition. We measure values in line with what has

been reported in literature for similar wavelengths. Our second harmonic

measurements are performed for a fundamental wavelength around 1550

nm. As a result the value of the nonlinear susceptibility is lower than what

some groups have reported, since those measurements typically take place in

the vicinity of an excitonic resonance. The wavelength we used is more rele-

vant when working towards nonlinear applications. In Section 5.5, we show

some initial measurements on MoS2-covered waveguides. Waveguide losses

exceeding 20 dB/cm are measured. This is relatively high and should be

further investigated. An estimate of conversion efficiencies for on-chip sec-

ond harmonic generation is done, based on theoretical simulations. For this

a quasi-phase-matching scheme unique to 2D materials is proposed. Our

conclusion is that this type of SHG can probably be demonstrated, however

that the conversion efficiencies would not be of an order of magnitude which

is useful. Other options, such as the use of optical resonators to enhance the

effects, should be investigated in the future. Improvement of the material

quality by improving the growth process can also still have a big impact.

Another interesting avenue that can be explored, is to bring the electrostatic

tuning of the nonlinear response of TMDCs, as first demonstrated by Seyler

et al. [12], to a chip.

3Assume for example a pulsed source generating 1 mW of average power on-chip, with

a pulse duration of 1 ns and a repetition rate of 10 MHz, for
PSH(L)

Pf (0)
2 = 10−7 W−1 this

gives an on-chip avarage SH power of 1 nW.
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Chapter 6

Conclusions and future
perspectives

6.1 Conclusions on the presented work

The goal of this work was to look for ways of enhancing the nonlinear optical

functionality of CMOS-compatible nanophotonic platforms, mainly focusing

on silicon nitride and to a lesser extent on silicon. The motivation for this

was that these platforms are in many respects superior for the fabrication of

integrated photonics circuits. Especially silicon nitride stands out from the

crowd, being a CMOS-compatible platform with low linear and nonlinear

losses, a relatively high index contrast, large transparency range, etc. How-

ever despite this, active functions such as light generation, detection and

manipulation are only partly (on silicon) or not at all (on nitride) avail-

able. Integrating other materials onto these platforms is an attractive way

of improving the functionality. In this work, we specifically looked into the

integration of materials which have (or are expected to have) strong optical

nonlinearities. Nonlinear optical effects can pave the way to several applica-

tions, such as light generation at specific wavelengths, electro-optical phase

modulation, or more exotic things like all-optical signal processing and en-

tangled photon pair generation. Several materials were considered, in the

choice of which we focused on materials which were expected to show high

optical nonlinearities and could be integrated in a relatively straightforward

and cheap way onto chips fabricated in the CMOS fab.

Graphene Graphene was initially considered because of several reasons.

Firstly it is these days quite readily available and can easily be integrated

onto nanophotonic structures. Secondly some studies on graphene nonlinear

optics that were around when this project started were very optimistic, and
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stated very high values for its third order optical nonlinearity. In Chapter 2,

a short review of some experimental studies available at the time of writing

(August 2018) is given. Here it becomes clear that the situation is quite a

bit more complicated and nuanced. The general conclusion is that the field

of graphene nonlinear optics is very scattered, both in terms of the different

descriptions used to quantify the optical nonlinearity as well as in terms

of the vastly different nonlinear coefficients that have been published. In

Chapter 3, this is investigated experimentally. In a first experiment, sat-

urable absorption is measured on graphene-covered silicon waveguides (Sec-

tion 3.2). This is a well-known property of graphene and we demonstrate

that the saturation of the absorption is strongly dependent on the Fermi

energy. For a second experiment (Section 3.4), we integrated graphene onto

silicon nitride waveguides and measured degenerate four-wave mixing. We

conclude that also this nonlinear phenomenon is strongly dependent on the

Fermi energy |EF|. The nonlinear response has a strong peak around the

absorption edge (|EF| = ~ω/2), and for higher doping the nonlinear re-

sponse drops sharply. Another observation is that the four-wave mixing

response is relatively narrow-band, decreasing drastically when the pump

and probe are detuned by even a couple of nanometers. Finally, a cross-

modulation experiment was conducted on graphene-covered silicon nitride

waveguides (Section 3.5). The cross-phase and cross-amplitude modulation

between a pump and a probe were measured. This measurement revealed

even more complex dependencies of the third order nonlinear optical re-

sponse of graphene. With very strong resonances and even sign changes of

both the real and imaginary part of the third order optical conductivity in

the vicinity of the absorption edge. We moreover matched the four-wave

mixing and cross-modulation experiments with a simple phenomenological

model based on heating of the charge carrier distribution under strong illu-

mination (Appendix A). In conclusion, these experiments have given more

insight in some of the nonlinear optical processes that occur in graphene.

The correspondence with the simple model shows that these phenomena

are mainly induced by carrier heating, and not by the electronic contribu-

tions which dominate in dielectrics [1]. The strong dependencies on Fermi

energy and wavelength can also in part explain the discrepancies between

different values of the third order nonlinear coefficients published elsewhere.

From an application perspective, one has to note that under specific circum-

stances the measured nonlinear coefficients are indeed very large. However

the carrier-based nature means that these effects are relatively narrow-band,

and that they occur when the linear absorption of the material is also very

high. Another potential problem is the saturation of the nonlinear response.

A noteworthy advantage of graphene is however the demonstrated tunabil-



Conclusions and future perspectives 6-3

ity of the nonlinearity, which could enable electrically tunable nonlinear

devices, or be used as a tool to achieve phase-matching, etc.

PZT Lead zirconate titanate (PZT) is the material with which perhaps

the most promising results were obtained in terms of applications. One of

the motivations for studying this material were the known strong electro-

optic response and second order optical nonlinear response. Though the

main reason was the thin-film deposition method developed in the Depart-

ment of Electronics and Information Systems at our university. We are in

a unique position in that we can deposit high quality thin films on top of

any sufficiently flat surface using an optically transparent intermediate layer.

This enabled us to perform measurements of second harmonic generation on

thin film PZT-on-glass substrates, and later on PZT-covered silicon nitride

waveguides using modal phase-matching. Despite the preliminary nature of

the latter experiment, and the issues of high loss of the second harmonic due

to coupling to slab modes, this seems to be very promising. Even more sig-

nificant are the demonstration of high-speed modulation using the Pockels

effect in PZT-covered silicon nitride waveguides. Using ring resonators and

Mach-Zehnder interferometers, we showed bias-free modulation in both the

C-band and the O-band, with bandwidths beyond 33 GHz and data rates

of 40 Gbps. We also showed low propagation losses (down to 1 dB/cm) and

a half-wave voltage-length product of the phase shifters as low as 3.2 Vcm.

A simple optimization of the waveguide cross-section also showed that the

modulation efficiency still can be improved.

Transition metal dichalcogenides (TMDCs) Finally, we studied

some properties of MoS2, a 2D-material of the family of the TMDCs. Through

our collaborators in imec (Leuven, Belgium), we have access to large area

monolayer MoS2. For TMDCs, relatively large values values of second order

optical nonlinearities have been published (with one excessively large value

which no one has reproduced [2]). Similar to graphene these materials are

relatively easy to integrate on nanophotonic chips, which was a strong trig-

ger to look in to their nonlinearity. Using a setup dedicated to measuring

the second harmonic response of thin films, we measured the surface sec-

ond order susceptibility for a fundamental wavelength of 1550 nm. Since

most literature values are obtained with the second harmonic frequency

in the vicinity of an excitonic resonance, we measured values which were

significantly lower. As a matter of fact, when expressed as a bulk nonlin-

ear susceptibility the value was lower than in for example lithium niobate,

with the added caveat that the high nonlinearity is only present in a sub-

nanometer thick monolayer. As a second experiment we covered silicon

nitride waveguides with the MoS2 monolayers. The optical loss of the cov-

ered waveguides was relatively high and should still be further investigated.
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Finally, a quasi-phase-matching scheme which involves periodic patterning

of the 2D material is proposed. Our conclusion is that for the current loss

and nonlinearity values on-chip SHG can probably be demonstrated, how-

ever that the conversion efficiencies would not be of an order of magnitude

which is useful.

6.2 Future perspectives

While this work contains several new insights and results concerning non-

linear optics in graphene, TMDCs and PZT, this is not the end of the road

and many avenues are left to explore.

Graphene The results on gate tunable saturable absorption could be

a valuable starting point for the design of integrated mode-locked lasers

using graphene as a saturable absorber. Recently, similar gate-tunability of

graphene was used to adjust the operational regime of a modelocked fiber

laser [3], such opportunities can also be explored for integrated lasers. When

it comes to Kerr-like phenomena, or four-wave mixing, the gate-tunability

and potentially very high optical nonlinearities are strong advantages. On

the other hand, there are some concerns that need to be sorted out. The

high linear loss seems for example to be hard to avoid. Saturation of the

optical nonlinearity seems to be another major concern which was not yet

addressed in detail in this work [4]. Having the nonlinearity decrease at high

illumination intensities is commonly recognized as a strong disadvantage. In

a recent publication, Vermeulen et al. describe a similar saturation process

in the context of picosecond pulse broadening [5]. The authors however

inverse the argument and argue that a higher nonlinear optical response

at a low power (read: saturation at higher powers) is an advantage and

leads to “exponential-like bandwidth growth” [5] of pulses. However in

the current demonstration, the spectral broadening is still very limited and

the exponential-like growth (as a function of waveguide length) is achieved

due to a particular interplay between the pulse spectral shape, the high

absorption of graphene and the waveguide lengths used in the experiment.

In the current incarnation of this experiment, neither increasing the pulse

power, nor the interaction length is expected to further increase the spectral

broadening significantly, so there is no evidence pointing in the direction of

“frequency-comb and supercontinuum generation at record-low input power

levels”, as envisaged in reference [5]. Some other recent studies however

show that third harmonic generation in graphene can also be tuned by

gating [6, 7]. As opposed to Kerr-like effects and four-wave mixing, the

efficiency of this effect increases when graphene becomes transparent for

the fundamental wavelength. This means that when the loss decreases, the
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nonlinear response increases, which is definitely a reason to look further

into this. We also propose a simple quasi-phase-matching scheme just by

periodically patterning the graphene, which is unique to 2D materials.

PZT In terms of on-chip second harmonic generation, efforts are ongo-

ing to improve the efficiency by reducing the loss of the second harmonic.

This would be done by etching a ridge in the PZT-layer, so that both the

fundamental and second harmonic optical mode are properly confined. On

the longer term it seems best to explore periodic poling of the PZT for

quasi-phase-matching. This is difficult in terms of fabrication since rela-

tively small poling periods would be required, but it would enable coupling

between the TE00 modes of the fundamental and of the second harmonic

frequency. This is far more convenient than modal phase matching and can

for example lead to optical parametric amplifiers or oscillators, quantum

applications (parametric downconversion for photon pair generation), etc.

For optical modulation, still quite some work can be done. For example,

the potential improvements to the waveguide cross-section suggested in this

thesis are not yet tested experimentally. The poling also remains stable for

at least a couple of days at room temperature, as was demonstrated in this

thesis. However more extensive reliability tests should still be done. Effec-

tive Pockels coefficients extracted from the measurements in this work are

still much lower than values measured through ellipsometry on thin-films

(in reference [8]). This means that by improving the poling procedure, for

example by going to higher temperatures, the modulation efficiency might

still significantly increase. The phase-shifters used in the modulators here

are all quite short. If one wants to go to lower drive voltages longer Mach-

Zehnder-type modulators will have to be used. The design of such modu-

lators is quite involved since phase matching between both the optical and

the RF wave has to be considered. A key advantage of the Pockels effect is

its optically broadband nature. Hence another future direction can be the

demonstration of efficient modulation at other wavelengths, from the visible

to the mid infrared. Yet another future avenue worth exploring is the use

of PZT on other integrated platforms, such as silicon, since one of the main

advantages is the versatility of the deposition process. Finally, some recent

reports have shown that other ferroelectric materials, such as BaTiO3, can

have higher Pockels coefficients than PZT [9]. It has been demonstrated

that also this material can be deposited through a similar method as is

used for our thin-film PZT [8], which is also worth exploring.

Transition metal dichalcogenides As was clear from the previous

section, the results of the preliminary measurements were not spectacular.

However some future avenues can still be explored. First en foremost un-

derstanding the optical losses, and hopefully reducing them, is something
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that should be looked into, also in vue of other potential applications such

as luminescence or even lasing. Secondly, a strong wavelength dependency

of the nonlinear effects has been demonstrated by other groups. Maybe

it’s worth the effort looking into other wavelengths, or other materials of

the TMDC class. Another interesting path that can be explored, is to look

into bringing the electrostatic tuning of the nonlinear response of TMDCs,

which was demonstrated in reference [10], to a chip.
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Appendix A

Phenomenological model
for graphene nonlinear
optics

A.1 Introduction

In order to explain the observed dependencies of the third order conductivity

σ(3)( = σ
(3)
s , we will drop the subscript ‘s’ in this appendix for convenience)

values measured in the four-wave mixing experiment in Section 3.4 and the

cross-modulation experiment in Section 3.5, we apply a simple phenomeno-

logical model which takes into account the heating of the electron-hole gas

by the incident electromagnetic radiation and its cooling due to interaction

with the environment. In Section A.4, we also use this model to assess

within which range of intensities a third-order description of the optical

nonlinearity in graphene is valid, the limited validity of such a description

has been subject of recent experimental investigations [1].

The derivation below is based on the stringent assumption that, at all

times, the carrier distribution in the graphene can be described by a Fermi-

Dirac distribution. This limits the applicability of this approach to exper-

iments where variations in the total optical intensity are slower than the

typical time-scales needed to reach such an equilibrium (several 100s of

femtoseconds [2–7]). In practice this limits this model to self- and

cross-modulation experiments using CW sources or pulses of ps

or longer durations, and to four-wave-mixing experiments where

the signal-pump detuning is limited to a couple of nanometer.

This model was devised by Sergey A. Mikhailov and Nadja A. Savos-

tianova in the context of the cross-modulation experiment described in Sec-
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tion 3.5. The expansion to include four-wave mixing and the calculations

in Section A.4 were done by myself.

For completeness, we start by giving the expressions for the linear con-

ductivity of graphene.

A.2 Linear conductivity of graphene

The linear conductivity of graphene, assuming chemical potential µ and elec-

tron temperature T , is given by σ(1)(ω, µ, T ) = σ
(1)
intra(ω, µ, T )+σ

(1)
inter(ω, µ, T ).

It consists of the intra- and inter-band contributions [8–10]. For the intra-

band conductivity we use the standard Drude formula,

σ
(1)
intra(ω, µ, T ) =

e2

4~2

i

πkBT

∫ ∞
0

EdE

ω + iγintra(E)

 1

cosh2
(
E−µ
2kBT

) +
1

cosh2
(
E+µ
2kBT

)
 ,

(A.1)

with kB the Boltzmann constant and γintra the intraband scattering rate1

For the inter-band conductivity we use the expression (see for example ref-

erences [8–10]),

σ
(1)
inter(ω, µ, T ) =

e2

4~
−i
π

∫ ∞
0

dE
sinh(E/kBT )

cosh(µ/kBT ) + cosh(E/kBT )

~(ω + iγinter)

E2 − [~(ω + iγinter)/2]2
,

(A.2)

and assume that the inter-band scattering rate is negligibly small, γinter → 0;

a finite γinter does not influence the final result under the condition ~γinter �
kBT which is typically satisfied in experiments.

A.3 Nonlinear conductivity of graphene

In equilibrium (without irradiation and at room temperature T0) the elec-

tron/hole distribution over quantum states in the conduction and valence

bands is described by the Fermi-Dirac function f0(E,µ0, T0), where the

chemical potential µ0 = µ(T0) is determined by the equilibrium electron

1It has been demonstrated that the scattering γintra is energy-dependent and follows

the relation ~γintra(E) = E2
i /E, for E & Ei, with Ei ≈ 0.36 e

2

κ

√
πNi, where Ni is the

density of impurities and κ is the dielectric constant of the environment [11]. In our
simulations we use the value Ei ∼ 0.1 eV, however the exact value has only a minor
influence on the outcome.
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or hole density controlled by the gate voltage. Under strong irradiation,

electrons are excited from the valence to the conduction band and their

distribution function changes. The relaxation processes taking place after a

strong short excitation of electrons have been studied in many papers, e.g.

references [2–7]. It was shown that, due to the very frequent (τee ' 10− 20

fs) electron-electron intra-band and inter-band scattering processes, quasi-

equilibrium Fermi-Dirac-type electron distributions are established in the

conduction and valence bands shortly after the pulse excitation, with a new

electron temperature T and new chemical potential(s) which may in general

be different for electrons (µe) and holes (µh). We assume here for simplicity

that in our case the electron distribution can be described by the formula

f(E,µ, T ) =
1

1 + exp
(
E−µ
kBT

) , (A.3)

with a single chemical potential µ 6= µ0 and temperature T > T0.

In order to find the quasi-equilibrium distribution parameters µ and T

we use two equations. The first one,

nh(µ, T )− ne(µ, T ) = − sgn(EF)E2
F

π(~vF)2
, (A.4)

is the electroneutrality condition, in which the 2D densities of holes

nh and electrons ne are calculated with the electron distribution, equation

(A.3), EF = µ(T = 0) is the Fermi energy and vF ≈ 106 m/s is the Fermi

velocity. The carrier densities can be calculated as

ne(µ, T ) =

∫ ∞
0

f(E,µ, T )ρ(E)dE, (A.5)

nh(µ, T ) =

∫ 0

−∞
[1− f(E,µ, T )] ρ(E)dE, (A.6)

where ρ(E) = 2|E|/π(~vF)2 equals the density of states in graphene [12].

The second equation is the energy balance condition. It expresses

how the total energy E(µ, T ) = Ee(µ, T ) + Eh(µ, T ) of the electron and hole

gasses evolves over time,

∂E(µ, T )

∂t
= −E(µ, T )− E(µ0, T0)

τE
+ Pabs, (A.7)

the first term on the right-hand side expresses the rate at which energy

relaxes to the environment, τE is the phenomenological energy relaxation

time. The second term expresses the rate at which wave energy gets ab-

sorbed, which typically can be expressed as Pabs = 1
2Re{σ(1)(µ, T )}|Eopt|2,
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with |Eopt| the optical field strength. The total energy in the electron and

hole gasses is given by

Ee =

∫ ∞
0

Ef(E,µ, T )ρ(E)dE, (A.8)

Eh =

∫ 0

−∞
(−E) [1− f(E,µ, T )] ρ(E)dE. (A.9)

It is clear how this model can describe optical nonlinearities in the system.

Enforcing the energy balance and electroneutrality condition for different

optical intensities ∝ |Eopt|2 (and optical frequencies), will yield intensity

dependent chemical potentials µ and electron temperatures T . These in

turn change the optical response quantified by the linear conductivity σ(1),

resulting in optical nonlinearities.

Cross-modulation

In the cross-modulation experiment (section 3.5), a strong modulated pump

and a weaker probe were used, respectively at frequencies ωpump and ωprobe.

Moreover, the pump is modulated at GHz frequencies, much slower than the

relaxation rate 1/τE . Hence the energy balance condition (equation A.7)

yields,

E(µ, T ) ≈ E(µ0, T0) +
τE
2

Re{σ(1)(ωpump, µ, T )}|Epump|2. (A.10)

Numerically solving equations (A.7) and (A.10) we obtain the chemical

potential µ and the electron temperature T as functions of the field Epump.

After µ(Epump) and T (Epump) have been found we consider the linear re-

sponse of the system to the weak probe wave. It is determined by the

conductivity σ(1)[ωprobe, µ(Epump), T (Epump)].

At sufficiently low local intensities we can use the Taylor expansion,

σ(1)[ωprobe, µ(Epump), T (Epump)] ≡σ(1)(ωprobe, |Epump|2)

=σ(1)(ωprobe, 0)

+
∂σ(1)(ωprobe, 0)

∂|Epump|2
|Epump|2

+
1

2

∂2σ(1)(ωprobe, 0)

∂(|Epump|2)2
|Epump|4

+ . . .

(A.11)

In order to find the higher order conductivity functions (σ(3), σ(5), σ(7),

etc.) we equate the expansion (equation (A.11)) with the following power
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series:

jωprobe, x =σ(1)
xx [µ(Epump), T (Epump)]Eprobe

≡σ(1)
xx (ωprobe, µ0, T0)Eprobe

+
3

2
σ(3)
xxxx(ωprobe;ωprobe, ωpump,−ωpump, µ0, T0)|Epump|2Eprobe

+
15

8
σ(5)
x...x(ωprobe; . . . , µ0, T0)|Epump|4Eprobe

+
35

16
σ(7)
x...x(ωprobe; . . . , µ0, T0)|Epump|6Eprobe

+ . . .

(A.12)

We assume the fields to be linearly polarized in the x-direction. The higher

order conductivities can then be found as:

σ(3)
xxxx(ωprobe;ωprobe, ωpump,−ωpump) =

2

3

∂σ
(1)
xx (ωprobe)

∂(|Epump|)2
, (A.13)

σ(5)
xxxxxx(ωprobe;ωprobe, ωpump,−ωpump, ωpump,−ωpump) =

4

15

∂2σ
(1)
xx (ωprobe)

∂(|Epump|2)2
,

(A.14)

σ(7)
x...x(ωprobe; . . .) =

8

105

∂3σ
(1)
xx (ωprobe)

∂(|Epump|2)3
, (A.15)

. . . ,

where we omitted the µ0 and T0-arguments for clarity. Note that follow-

ing the conventions used in nonlinear optics [13], the degeneracy factors for

cross-modulation and self-modulation are different. Hence for the degener-

ated case where ωprobe = ωpump = ω, the prefactor 3/2 in equation (A.12)

becomes 3/4. Yielding a nonlinear conductivity of

σ(3)
xxxx(ω;ω, ω,−ω) =

4

3

∂σ
(1)
xx (ω)

∂(|Eω|)2
. (A.16)

Four-wave mixing

In the four-wave mixing experiment (section 3.4), nonlinear frequency mix-

ing was considered between two wavelengths, the pump and signal, respec-

tively at frequencies ωp and ωs with electric fields Ep and Es. We specif-

ically look at the generation of light at a third frequency, called the idler
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ωi = 2ωp − ωs. To take into account frequency mixing, we have to look at

the beat note between the pump and the idler. The absorbed power is now:

Pabs(t) =
1

2
Re{σ(1)(µ, T )}{|Ep|2 + |Es|2 +

2EpE
∗
s e
−i∆ωt + c.c.

2
}, (A.17)

where c.c. stands for ‘complex conjugate’, we assume that the detuning

∆ω = ωp − ωs is small, so that σ(1)(µ, T ) = σ(1)(ωp, µ, T ) ≈ σ(1)(ωs, µ, T ).

To solve equation (A.7), we propose the following solutions for the total

energy E and σ(1):

E(t) ≈ Econst. +
∆Ee−i∆ωt + c.c.

2
, (A.18)

σ(1)(t) ≈ σ(1)
const. +

∆σ(1)e−i∆ωt + c.c.

2
. (A.19)

The constant (const.) terms can be found by solving the elecroneutrality

condition (equation (A.4)) and the energy balance condition for the constant

term in equation (A.17).

Substituting equations (A.17 – A.19) into the energy balance condition

(equation (A.7)) and isolating the terms with time-dependence e−i∆ωt,

(τ−1
E − i∆ω)∆E = Re(σ

(1)
const.)EpE

∗
s +

1

2
Re(∆σ(1))(|Ep|2 + |Es|2)

≈ Re(σ
(1)
const.)EpE

∗
s .

(A.20)

For the last equation we have assumed that ∆σ(1) � σ
(1)
const., which is re-

alistic in the limit of weak illumination (well below the saturation power).

Using the same assumption, we can now approximate ∆σ(1),

∆σ(1) ≈ ∂σ(1)

∂E
∆E ≈ ∂σ(1)

∂E
Re(σ

(1)
const.)

τ−1
E − i∆ω

EpE
∗
s . (A.21)

The current density, j(t) = σ(1)(t) · (Epe
−iωpt +Ese

−iωst + c.c.)/2, now

contains a frequency component at frequency ωi, with complex amplitude,

jωi
=

1

2
∆σ(1)Ep

≈ 1

2

∂σ(1)

∂E
Re(σ

(1)
const.)

τ−1
E − i∆ω

E2
pE
∗
s .

(A.22)

Equating the last term to the expression using the nonlinear conductivity,

(3/4)σ(3)(ωi;ωp, ωp,−ωs)E
2
pE
∗
s , we get,

σ(3)(ωi;ωp, ωp,−ωs) ≈
2

3

∂σ(1)

∂E
Re(σ

(1)
const.)

τ−1
E − i∆ω

. (A.23)
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On the other hand, equation (A.16) yields the nonlinear conductivity

expressing self-modulation at frequency ω (with field ampitude Eω),

σ(3)(ω;ω, ω,−ω) =
4

3

∂σ(1)(ω, µ0, T0)

∂(|Eω|)2

=
4

3

∂σ(1)(ω, µ0, T0)

∂E
∂E

∂(|Eω|)2

=
2τE
3

∂σ(1)(ω, µ0, T0)

∂E
Re[σ(1)(ω, µ0, T0)].

(A.24)

where for the last step we have used equation (A.10). If we assume the

perturbation caused by the irradiation is small, σ
(1)
const. ≈ σ(1)(ωp, µ0, T0),

from equations (A.23) and (A.24) we get,

σ(3)(ωi;ωp, ωp,−ωs) ≈ σ(3)(ωp;ωp, ωp,−ωp)
τ−1
E

τ−1
E − i∆ω

. (A.25)

This implies that the four-wave mixing efficiency, which scales as |σ(3)|2,

has a Lorenzian lineshape with damping rate τ−1
E .

A.4 High intensity behavior

In the above section, the assumption was made that the linear conductivity

σ(1) can be expanded as a Taylor series as function of the optical intensity

(expressed as the square of the electric field magnitude). Interpreting the

experiments in Sections 3.4 and 3.5, we also assumed that the third-order

nonlinearity is dominant, this is a common approach in literature. One

might question what the limits are of this assumption. We can calculate

σ(1)(|Eω|2) as a function of optical field strength Eω. For this we solve the

time-independent energy balance condition (equation A.10) and electroneu-

trality condition (equation (A.4)) for a range of field strengths. Note that if

we take τE |Eω|2 to be an ‘effective’ power, there are no fitting parameters in

our equations. Figures A.1a and A.1b show respectively the calculated real

and imaginary parts of the intensity-dependent linear conductivity σ(1), the

dashed lines show the approximation σ(1)(|Eω|2) = σ(1)(0) + 3
2σ

(3)|Eω|2.

From these figures it is very clear that the third order approximation,

which is essentially a linearization of the linear conductivity as a function

of optical intensity, is only valid at low intensities. From figure A.1 it is

hard to judge what the limits are of this approximation. Figure 2.3 of

the main text shows the variation in linear conductivity as a function of

electric field strength. From these figures it is clear that the linearized σ(3)-

based model is a reasonably good representation for τE |Eω|2 . 1 sV2/m2,
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Figure A.1: a Real part of the intensity-dependent linear conductivity σ(1), as a
function of τE |Eω|2. The dotted lines represents the approximation using only the
third order conductivity σ(3); σ(1)(|Eω|2) = σ(1)(0)+ 3

2
σ(3)|Eω|2. b Imaginary part

of the power-dependent linear conductivity σ(1), the dotted lines again express the
σ(3)-based approximation.

for increasing intensities, the linearization starts to deviate strongly from

the exact calculations, for τE |Eω|2 > 10 sV2/m2, even order-of-magnitude

estimates become problematic.

For the experiments performed in Sections 3.4 and 3.5, on-chip input

pump powers were kept below ≈ 10 mW, for this power, mode profile calcu-

lations show that the average electric-field squared in the graphene is on the
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order of 1012 V2/m2, yielding τE |Eω|2 . 1 (sV2/m2) for realistic τE -values

in the range of 0.1-1 ps.

In many experiments in literature however, high optical powers are used,

while at the same time still using a model based on the third order conduc-

tivity. Approximately, τE |Eω|2 = 1 sV2/m2 corresponds to an intensity of

I = n
2 ε0c|Eω|2 ≈ O(1010) Wm−2, with n the material refractive index [13].

As can be seen in table 2.1, many experiments are using peak powers that

are orders of magnitude higher. Note that these conclusions are only fair for

cross-and self-phase modulation experiments (labeled in green in table 2.1),

as well as four-wave mixing experiments (labeled in red in table 2.1) with

small signal-pump detuning. The model developed here is unable to make

any predictions for other experiments such as third harmonic generation

(blue in table 2.1), for these experiments using high peak powers might not

cause any problems.
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