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viii

2.8 Example 2.6.1. The mean and mean ± 3 times of standard devia-
tion of the voltage at port P5 obtained by means of MC analysis
(full black line), based on 10000 (w1, w2, w3, w4) samples, and a
single time-domain simulation of the state-space model of SPC
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Y11 obtained by Y PC , Ŷ PC and MC. Bottom: std of the real part
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Samenvatting

Tegenwoordig spelen elektronische geı̈ntegreerde circuits (ICs) een onvervangbare
rol in bijna elke tak van de industrie vanwege hun hoge performantie en alsmaar
kleiner formaat. Een groot nadeel van ICs is echter de hoge kost van ontwerp en
de productie van de nodige lithografische maskers, en van het complexe productie-
proces. De kost van één chip kan enkel voldoende gedrukt worden om competitief
te zijn wanneer deze in massa worden geproduceerd gedurende 24u per dag. Het
is dus cruciaal om deze circuits te kunnen ontwerpen vóór de productie. Het ri-
sico van mislukte ontwerpen kan drastisch worden gereduceerd door enerzijds het
gebruik van circuitsimulatoren, die de performantie schatten, en anderzijds verifi-
catie in gesofisticeerde electronic design automation (EDA) software. De nauw-
keurigheid van de simulatie hangt vooral af van de modelleringstechnieken van de
verscheidene componenten in ICs.

Terwijl de integratie en miniaturisatie van ICs continu verbeterd zijn, hebben
de productietoleranties van geometrische en elektrische parameters steeds meer
een niet-verwaarloosbare invloed op de werking van ICs, vooral in de sub-100nm
schaal. In dit scenario, varieert de performantie van chip tot chip en is deze niet in
overeenstemming met het originele ontwerp. Als resultaat degradeert de werking
door variaties in het productieproces wat zich kan uiten in een onverwacht yield
loss, zelfs wanneer deze ICs werden geverifieerd met behulp van EDA software.
Het is dus cruciaal om deze toleranties reeds in rekening te brengen gedurende de
ontwerpfase, en ontwerpen op te stellen die minder gevoelig zijn aan deze toleran-
ties.

In de meeste situaties waar men toleranties in rekening wil brengen, gebruikt
men Monte Carlo (MC) methoden om de variaties in het productieproces te schat-
ten. Dit vooral omdat deze methoden robuust, accuraat en simpel te implementeren
zijn. Een groot nadeel van deze methoden is dat ze een groot aantal simulaties no-
dig hebben door hun trage convergentie, en simulaties van huidige ICs dikwijls
computationeel intensief zijn.

Hoofdstuk 2 en 3 van deze doctoraatsthesis stellen nieuwe en efficiënte aanpak-
ken voor macromodelleren van elektronische circuits voor, onderhevig aan fabri-
cagetoleranties. Hierbij wordt een stochastisch macromodel gedefinieerd als een
wiskundig model van een algemeen systeem die het gedrag van het echte systeem
beschrijft in de vorm van input/output (I/O) poorten, terwijl een of meerdere van de
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systeemparameters onderhevig zijn aan variaties. De voorgestelde aanpak begint
van het bouwen van stochastische modellen van alle lineaire en niet-lineaire com-
ponenten om deze modellen vervolgens te connecteren met als doel het extraheren
van stochastische informatie van het volledige circuit via één enkele simulatie. In
vergelijking met MC methoden, is de voorgestelde aanpak efficiënter terwijl ze
een vergelijkbare accuraatheid bereikt.

De tweede uitdaging die deze thesis bestudeert is het macromodelleren van
lineaire en passieve geı̈ntegreerde fotonische circuits in silicium. Om de toene-
mende vraag naar snelle transmissie en verwerking van grote volumes aan data
tegemoet te komen zijn fotonische circuits belangrijk. De drijvende kracht die
achter silicium fotonica chips zit, is de mogelijkheid om CMOS-compatibele pro-
ductieprocessen aan te wenden, resulterend in hoog volume en lage kost; meer nog,
het hoge contrast in refractieve index tussen het geleidende silicium en de cladding
laat golfgeleiders op sub-micron schaal toe en een hoge integratie densiteit.

Vergelijkbaar met het design van elektronische ICs, maakt de hoge fabricage-
kost het essentieel om het design vooraf correct te kunnen vastleggen. Echter, in
tegenstelling tot elektronische circuits, dewelke al extensief bestudeerd zijn in de
laatste decennia, staat de ontwikkeling van fotonische circuits nog steeds in zijn
kinderschoenen, en zijn er nog veel uitdagingen om te komen tot een hoge integra-
tiegraad en massaproductie. Een van de uitdagingen is het definiëren van geschikte
modellering en simulatie technieken voor fotonische circuits. Deze dissertatie fo-
cust op lineaire passieve fotonische componenten en circuits wiens functie ruwweg
in twee categorieën vallen: het distribueren/transporteren van licht (e.g. wavegui-
des), en het filteren van optische golflengten voor applicaties in de spectroscopie,
golflengtemultiplexing (WDM) of fotonica op microgolfschaal.

Een veelgebruikte aanpak is het berekenen van analytische modellen, die steu-
nen op de kennis van de werkprincipes van de beschouwde component. Echter,
in de praktijk kunnen analytische modellen enkel opgesteld worden voor simpele
fotonische systemen en is hun accuraatheid beperkt in het geval van complexe
niet-ideale karakteristieken. Daarenboven worden de meeste systemen beschreven
als frequentiedomein modellen, terwijl tijdsdomein modellen nodig zijn wanneer
het tijdsgedrag in grotere systemen wordt bestudeerd (e.g., transient, bit error, eye
diagram).

Een nieuwe modelleringstechniek voor lineaire fotonische circuits beschreven
door scattering parameters wordt gepresenteerd in Hoofdstuk 4. Het modellerings-
proces is gebaseerd op de robuuste Vector Fitting (VF) techniek en laat efficiënte
en accurate tijdsdomein simulatie van algemene, lineaire en passieve fotonische
circuits via geschikte complexe toestandsvergelijkingen toe. De voorgestelde tech-
niek wordt basisband modelleren genoemd. Echter, de complexwaardige modellen
kunnen enkel gesimuleerd worden in simulatoren die complexe getallen aankun-
nen. Om deze reden breidt Hoofdstuk 4 de basisband modellering uit en wor-
den reëelwaardige basisband modellen afgeleid, dewelke alle voordelen van hun
complex-waardig equivalent bezitten. In de praktijk wordt deze methodologie
meer geschikt voor simulaties die beide het optische en elektronische eigenschap-
pen gedrag bestuderen. In Hoofdstuk 5 wordt een alternatieve basisband modelle-
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ring besproken voor lineair, fotonische circuits die op het Complex Vector Fitting
(CVF) algoritme gebaseerd is. Vergelijkbaar met de aanpak in Hoofdstuk 4, kan
deze methode modellen construeren die slechts de helft in grootte zijn, en vormt
dus een grote verbetering in efficiëntie voor simulaties in het tijdsdomein. Het is
belangrijk om op te merken dat stabiliteit en passiviteit van de modellen bij alle
basisband gebaseerde aanpakken, gegarandeerd worden.

Een andere uitdaging voor fotonische circuits is dat de performantie degra-
deert door fabricagefouten, nog meer dan in het elektronische geval. Doordat de
propagatie van licht volledig afhangt van de geometrie en van de materialen zijn
fotonische componenten heel gevoelig aan variaties in geometrische parameters en
de omgeving. Het hoge contrast in brekingsindex van silicium-op-isolator (SOI) in
silicium gebaseerde fotonicachips laten een hogere confinement toe en een grote
integratiedensiteit, maar maken de component ook gevoeliger aan fabricagefouten.
Het is dus cruciaal om in het ontwerpstadium de degradatie door productiefouten
te kwantificeren, zoals voor elektronische circuits. Hoofdstuk 6 stelt een aanpak
voor accurate en efficiënte tijdsdomein variabiliteitsanalyse van algemene, lineaire
fotonische circuits voor, gebaseerd op expertise vergaard tijdens mijn studie van
macromodellering en basisband modellering.

Zoals hierboven beschreven werden accurate, efficiënte en robuuste technie-
ken voor tijdsdomeinmodellering ontwikkeld voor simulatoren voor lineaire en
passieve fotonische circuits. Daarenboven zijn efficiënte, stochastische technieken
voor macromodellering ontwikkeld voor variabiliteitsanalyse in het tijdsdomein
van elektronische en fotonische circuits die onderhevig zijn aan productietoleran-
ties.





Summary

Nowadays, electronic integrated circuits (ICs) play an irreplaceable role in almost
every industrial field in the society due to their high performance combined with
a miniaturized size. However, the main disadvantage of ICs is the high cost to de-
sign them and fabricate the required photomasks, and of the complex manufactur-
ing process. Indeed, the cost of a single chip can be driven down to a competitive
price only by mass production and a 24-hours production cycle. Hence, it is cru-
cial to design the circuits to be as close to the intended specifications as possible
before they are fabricated. The risk of failed designs can be largely reduced by cir-
cuit simulations which provide circuit performance estimation and verification in
sophisticated electronic design automation (EDA) tools. The accuracy of the sim-
ulation mainly depends on the accuracy of the modeling techniques for different
components in ICs, which are well established and highly standardized.

However, while integration and miniaturization level of ICs has been continu-
ously improved, the fabrication variations of geometrical or electrical parameters
impose a considerable influence on the performance of ICs, especially in sub-100
nm technologies. In this scenario, the behaviors of the fabricated ICs vary from
chip to chip, and are not consistent with the original designs. As a result, even if
the ICs are correctly designed and verified by EDA tools, the performance degra-
dation due to the fabrication variations could still cause unexpected yield loss.
Hence, it is crucial to take into account the fabrication variations when estimat-
ing the performance of ICs during the design phase, thereby generating optimum
designs which are more robust.

In this framework, the Monte Carlo (MC) method is considered the standard
approach to estimate the effects of the variations of the manufacturing process
(also referred to as variability analysis), since it is robust, accurate, and easy to
implement. However, it requires a large number of simulations to obtain reliable
results, due to its slow convergence rate, and the simulations of modern ICs are
often computationally expensive, which, in practice, constitutes a severe limitation
for designers.

Chapters 2 and 3 of this PhD thesis propose novel and efficient stochastic
macromodeling approaches for electronic circuits subject to manufacturing vari-
ations. In this PhD thesis, a stochastic macromodel is defined as a mathematical
model of a generic system which describes the system behavior as seen from its
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inputs/outputs (I/O) ports, while one or more of the system parameters are sub-
ject to fabrication variations. The proposed approach starts with building suitable
stochastic models of both linear and nonlinear systems and then properly connects
these models for extracting stochastic information of the overall circuit via a single
simulation. Compared to the MC method, the proposed approach is much more
efficient while providing comparable accuracy.

The second challenge this thesis addresses is the macromodeling of linear
and passive silicon photonic integrated circuits. To deal with the increasing de-
mand of fast transmission and processing of large volume data, silicon based pho-
tonic integrated circuits (referred to as silicon photonics) is widely accepted as a
key technology in the next-generation communications systems and data intercon-
nects. The key driving force behind silicon photonics is the ability to use CMOS-
compatible fabrication processes, resulting in a high-volume production at low
cost; furthermore, the high material index contrast between the guiding silicon and
the cladding permits sub-micron waveguides and a high integration density.

Similar to the design of electronic ICs, the high manufacturing cost makes it
essential to guarantee first-time-right design. However, unlike electronic circuits,
which have been extensively studied and developed in the last several decades, sil-
icon photonics is still at early development stage and there are many challenges
on the way heading to high integration and mass production. One of these chal-
lenges is defining suitable modeling and simulation techniques for photonic cir-
cuits, which are still not well established. This work focuses on linear passive
photonic devices and circuits whose functions roughly fall into two categories:
distributing/transporting light (e.g. waveguides), and optical wavelength filtering
for applications such as spectroscopy, wavelength division multiplexing (WDM)
or microwave photonics (MWP) applications.

A common approach is to compute analytic models, which rely on the knowl-
edge of the working principles of the device under study. However, in practice, an-
alytic models can be derived only for simple photonic systems and there is a limit
in their accuracy when describing complex non-ideal characteristics of the system
under study (i.e. backscattering and undesired dispersion effects). Furthermore,
most of these models are generally described as frequency- (wavelength) domain
models, whereas time-domain models are needed when used in a larger system to
evaluate the time-domain behaviors, such as transient, bit error rate (BER) and eye
diagrams.

A novel modeling approach for linear photonic circuits described by scatter-
ing parameters is presented in Chapter 4. The modeling process leverages on the
robust Vector Fitting (VF) technique and allows for efficient and accurate time-
domain simulations of general, linear and passive photonic circuits via a suitable
complex-valued state-space representation. The proposed technique is referred to
as the baseband modeling approach. However, the complex-valued models can
only be simulated in simulators able to handle complex numbers. Note that cir-
cuits simulators can often not handle complex numbers. Hence, Chapter 4 then
extends the baseband modeling approach and derives real-valued baseband mod-
els, which inherit all the advantages of their complex-valued counterparts and can
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be simulated in a broad range of simulators. In particular, this novel methodology
becomes more suitable for optical-electronic co-simulations. Chapter 5 presents an
alternative baseband modeling technique for linear photonic circuits which lever-
ages on the Complex Vector Fitting (CVF) algorithm. Compared to the modeling
approach in Chapter 4, the novel method is able to generate half-size models for
the same applications, thereby achieving a major improvement in the efficiency of
the time-domain simulations. It is important to remark that stability and passivity
of the models computed with all the proposed baseband approaches, which are
fundamental properties for time-domain simulations, can be guaranteed.

Another challenge for silicon photonic circuits is that the performance degra-
dation due to fabrication variations is even more critical than the electronic case.
Since the propagation of light is entirely determined by the geometry for certain
materials, photonic devices on a chip are very sensitive to variations in geometri-
cal parameters and environment. The high refractive index contrast of silicon-on-
insulator (SOI) platforms for silicon photonics allows for tighter confinement of
light and a high integration density, but also makes the device more sensitive to
process variations. Hence, it is crucial to quantify in the design stage the perfor-
mance degradation due to fabrication process, as it is done for electronic circuits.
Chapter 6 proposes an accurate and efficient time-domain variability analysis ap-
proach for general, linear photonic circuits, which leverages on the expertise in
both stochastic macromodeling and baseband modeling techniques built up during
my research.

To conclude, accurate, efficient, and robust time-domain modeling approaches
are proposed for circuit simulations of linear and passive photonic circuits. Fur-
thermore, efficient stochastic macromodeling techniques are developed for time-
domain variability analysis of electronic and photonic circuits subject to fabrica-
tion variations.





1
Introduction

1.1 Stochastic macromodeling of electronic circuits

Integrated electronic circuits (also referred to as ICs, or chips) were born thanks
to the mid-20th-century technology advancements in semiconductor device fab-
rication. Since their birth, driven by continuous technical advances, chips have
progressed enormously in terms of circuit size, speed and capacity: a modern chip
may have many hundred million of transistors in an area the size of a human fin-
gernail.

Nowadays, many electronic design automation (EDA) tools (e.g. Mentor, Ca-
dence, ADS, Synopsys) have been developed and are widely used in the industry
for ICs design. One of the major functions that EDA tools provide is design verifi-
cation and performance estimation via circuit simulations, which confirm that the
functionality of a designed circuit conforms to the intended or specified behavior.

There are two essential requirements to run circuit simulations: accurate mod-
els for each device in the circuit and a suitable software platform where these mod-
els can be connected and computed, and a great deal of effort has been invested
in this direction by the research community in the past half century. The most
well known and sophisticated platform is SPICE (abbreviation for Simulation Pro-
gram with Integrated Circuit Emphasis), which was developed by Laurence Nagel
in 1970s at the Electronics Research Laboratory of the University of California,
Berkeley [1]. As an open-source electronic circuit simulator, SPICE was widely
distributed, improved, and used in both academia and industry. Nowadays, simu-



1-2 CHAPTER 1

lating integrated circuits with SPICE-like programs is the industry-standard way to
verify circuit operation at transistor level before committing to manufacturing an
integrated circuit. Meanwhile, SPICE-compatible models for different IC compo-
nents have also been developed and included in SPICE, which range from basic el-
ements (such as resistors, capacitors and inductors), to independent and controlled
sources, ideal transmission lines and MOSFET models. In order to standardize
these models so that a set of model parameters may be used in different SPICE-
like circuit simulators, an industry working group was formed: the Compact Model
Council (now the Compact Model Coalition) [2], aiming to choose, maintain and
promote the use of standard models. The standard models today include BSIM4,
BSIMSOI, PSP, HICUM, and MEXTRAM [3].

Nowadays, for electronic ICs, the attention of the research community is fo-
cused on new challenges, such as quantifying the degradation of IC performance
due to manufacturing variations. In the past decades, the steady down-scaling
of device dimensions along with the integration of more components on a single
chip have been the major sources of growth for modern integrated electronic cir-
cuits. This growth is in adherence to the Gordon Moore prediction, also known as
Moore’s Law, stating that the available memory and calculation speed of micro-
processors would have an exponential growth doubling every year [4], and it still
stands with the correction of doubling every 18 months [5]. However, in sub-100
nm technologies, it is becoming increasingly difficult for the device tolerances to
track the scaling rate of the minimum feature sizes [6]. The impact of geometrical
or electrical parameters variability on the performance of modern ICs is becom-
ing increasingly problematic [7–9]. There are different sources of variability, like
routing/layout uncertainties and changes of the devices operation conditions due
to temperature fluctuation, but the manufacturing variations rank among the ma-
jor ones. Moreover, different manufacturing phases introduce process variations,
such as etching, lithography and polishing [10]. As a result, mismatches are in-
troduced between the fabricated ICs that are designed to be the same, which can
significantly degrade the performance of both digital and analog circuits [10, 11].
Therefore, it is critical to estimate during the design phase of ICs the effect of
the variations of the manufacturing process on the circuit performance, in order to
avoid that a large amount of fabricated ICs fail to satisfy the design specifications.

A traditional approach to address this challenge is corner analysis. The idea is
to first simulate the circuit under study at all the worst-case parameter corners (e.g.
±3 sigma of the parameters), and then obtain the worst corners of the performance
measures. For example, conventionally, four worst-case performance corners are
typically evaluated for ICs: slow NMOS and slow PMOS (SS), fast NMOS and
fast PMOS (FF), fast NMOS and slow PMOS (FS), slow NMOS and fast PMOS
(SF), with regard to multiple parameters [12]. The corner analysis gives pass/-
fail results of a design, depending that if the obtained worst corners still satisfy
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Figure 1.1: Example of the effect of parameters variations on a circuit response. In the pres-
ence of variations, the response to a deterministic stimulus is not deterministic anymore:
the red line denotes the nominal response, while the pink area indicates its fluctuation.

the design specifications. However, given the continuously decreasing minimum
feature sizes, corner analysis has been considered as inadequate, since reliance on
corner analysis is usually based on overly pessimistic assumptions and could end
up rejecting a valid design [12, 13].

Alternatively, statistical analysis has been proposed as a new family of design
techniques. In this framework, the response of modern ICs is considered as a
stochastic process with regard to the parameters affected by fabrication process,
as shown in Fig. 1.1. While the corner analysis only makes binary decision by
evaluating the corners of the parameter space, statistical analysis can estimate the
likelihood of circuit response and predict the yield (the percentage of chips that
can function correctly) at a expense of evaluating more samples in the parameter
space.

The standard approach for statistical analysis is the Monte Carlo (MC) method,
which is widely used, robust and easy to implement, but very time consuming. It
is essentially a sampling-based approach: first a large set of samples is drawn
for the electrical and geometrical parameters under stochastic effects, then a cir-
cuit simulation is performed for each sample obtained. Finally, relevant statistical
matrix is computed using all the simulation results. However, due to its slow con-
vergence rate, thousands of simulations are usually required for the MC method
to give accurate results [14]. Since circuit simulations are time consuming, given
the complexity of modern ICs, this method can hardly be applied to large and
complex designs or when computationally expensive analysis (such as full wave
electromagnetic simulations) are required.

More recently, there has been an increasing interest in applying stochastic
spectral methods as an efficient alternative to the computationally cumbersome
MC-based techniques for variability analysis of electronic circuits: such as the
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polynomial chaos (PC) expansion [15, 16], stochastic collocation (SC) methods
[17, 18], and stochastic reduced order models (SROMs) [19, 20]. Among the
different techniques presented in the literature, PC-based methods have attracted
great interest in the research community for three main reasons [21]:

• the capability to tackle variability analysis problems defined in the frequency
and time domain considering different types of systems (i.e., linear and non-
linear ones), and involving random variables of different distributions, even
in the presence of correlation;

• the efficiency in estimating stochastic moments (i.e., the mean and standard
deviation can be computed via suitable analytical formulas);

• the ease of integration in modern EDA tools via non-intrusive approaches or
via the calculation of suitable equivalent circuits describing the variability
of the system under study.

In this thesis, novel PC-based stochastic macromodeling approaches will be pro-
posed to characterize the variations in the time domain efficiently, which are elab-
orated in Chapters 2 and 3.

1.2 Compact macromodeling of photonic circuits

1.2.1 The rise of silicon photonics

With the boom of internet and smartphone usage, our society has entered into the
“big data” era and massive amount of data is generated each day via social media,
online business, digital content (e.g. photos and videos), internet of things, etc. It
is expected that the amount of the data will continuously and more rapidly increase
in the future, which defines a new challenge to transmit and process these data with
the current electronic circuits.

The solution to increase data process capability is to improve system perfor-
mance, which depends on either raising clock frequencies or on increasing instruc-
tion, thread, and program parallelism [22]. While clock rate speedup has reached
power and complexity limits, an increase in parallelism require a corresponding
increase in the number of transistors to enable heavily cached, speculative, mul-
ticore and/or multithreaded architectures. However, increasing transistor counts
by simply assembling multiple chips together on a printed circuit board does not
efficiently improve performance, because connecting different chips presents fun-
damental performance bottlenecks, even when used with high-speed and high-
power serializer-deserializer (SerDes) circuits. In particular, transmission of such
high speed signals in copper faces two main problems: first, the high speed os-
cillating signal induces stray currents in the printed circuit boards conductors that
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increase the power consumption; second, induced currents inside the wire itself
push electrons to the surface of the metal, reducing the effective cross-section of
the wire and thus raising its resistance, leading to raising the losses incurred in the
data transmission. For example, approximately 50% of microprocessor power was
consumed by the interconnect at the 130 nm technology node, and this is expected
to rise to 80% [23]. The higher the operating frequency, that is the clock rate of
the signal, the greater the losses will be. When linking together the multiple multi-
processing modules of a massively parallel computer across boards or racks, the
copper bandwidth and power dissipation bottleneck becomes particularly severe.

In this scenario, photonic integrated circuits (PICs), which integrate multiple
photonic function blocks on chips, are expected to address this challenge. The
major difference between PICs and electronic ICs is that the former process sig-
nals at optical wavelengths typically in the visible spectrum or near infrared (cor-
responding to a wavelength of 850 nm - 1650 nm). The PICs market today is
shared by different materials, such as group IV semiconductors (silicon and ger-
manium) [24, 25], compound III-V semiconductors (indium phosphide and gal-
lium arsenide) [26, 27], silica planar lightwave circuits [28], silicon nitride (with
flavors such as TriPlex) [29], different polymers [30], and more exotic materi-
als [31]. Among these, group IV semiconductor-based photonics, often called
silicon photonics, has become a prominent technology for PICs since its poten-
tial was recognized in the first studies of waveguides in silicon-on-insulator (SOI)
wafer structures in 1985 [32–34]. Silicon photonics enables high density PICs
by means of CMOS-compatible fabrication process technology in a CMOS fab,
resulting in complex optical functionality on a compact chip at low cost. Note
that the high material index contrast between the guiding silicon and the cladding
permits sub-micron waveguides and a high integration density. The SOI structure
and a typical fabricated silicon waveguide are illustrated in Fig. 1.2. The top sur-
face of the waveguide can be either left uncovered and exposed to air (e.g. for
sensing applications), or covered with a cladding, typically made of silica. Now,
silicon photonics is widely accepted as a key technology in the next-generation
communications systems and data interconnects [34].

Silic
on

Silicon dioxide

Silicon substrate

(a) (b)

Figure 1.2: (a) The SOI structure; (b) The cross section of a fabricated silicon waveguide.
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1.2.2 Challenges in photonic circuit simulation

Similar to the design of electronic ICs, the high manufacturing cost makes it essen-
tial to guarantee first-time-right design. However, unlike electronic circuits, which
have been extensively studied and developed in the past several decades, silicon
photonics is still at early development stage and there are many challenges on the
way heading to high integration and mass production [35]. One of these chal-
lenges is photonic circuit simulation, which is essential to integrate a large number
of complex photonic function blocks into a single chip. Circuit simulations always
rely on models and simulators. So far, the modeling and simulation techniques for
photonic circuits are far from well established.

Intuitively, the methodologies and even the circuit simulators used in electron-
ics field could be adopted in the photonics field as well. However, several issues
appear when it comes to circuit modeling and simulations of photonic systems.
Indeed, electronic circuit simulators, such as SPICE, are based on the modified
nodal analysis (MNA) method to determine suitable circuit equations by leverag-
ing on the circuits models and Kirchhoff’s circuit laws. Both the node voltages
and branch currents of the circuit under study can be determined by solving the
obtained circuit equations with respect to the time. However, photonic systems are
physically described by using wave propagation and scattering formalism (such as
bidirectional forward and backward waves). Hence, a MNA-based approach can-
not be directly applied to photonic circuits simulations unless the optical waves are
converted into a corresponding voltage and current representation. Furthermore,
photonic circuits operate at optical frequency range: for example, the bandwidth
[187; 200] THz, corresponding to a wavelength of [1.5; 1.6] µm, is commonly
used for telecommunication applications. Performing time-domain simulations on
signals defined at such high frequencies is impractical since extremely small time
steps have to be used and lead to a high computational cost. Indeed, considering
that a sequence signal of 1000 bits with a bit rate of 25 Gbps is modulated on a
optical carrier with wavelength 1.55 µm, the total time samples will be 80 mil-
lion (1000×40 ps/0.5 fs) when a time step of 0.5 fs is adopted. One bit of such
modulated optical signal is illustrated in Fig. 1.3. These issues suggest that pho-
tonic circuits have to be modeled and simulated in a different way compared to
electronic circuits.

A lot of effort has been invested by the research community into developing
circuit models for non-linear photonic devices, such as for lasers [36–38], modu-
lators [39–41], photodiodes [42–45]. However, there are very limited existing cir-
cuit modeling techniques for linear passive devices and systems, whose functions
roughly fall into two categories: distributing/transporting light (e.g. waveguides),
and optical wavelength filtering for applications such as spectroscopy, wavelength
division multiplexing (WDM) or microwave photonics (MWP). Especially in the
last two applications, an efficient modeling approach of the filters, which is able
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Figure 1.3: A modulated optical signal with carrier wavelength 1.55 µm and a 25 Gbps
modulation sequence.

to take into account imperfections such as higher-order dispersion, wavelength-
dependent loss, and imperfections in coupling coefficients, is urgently needed.

A common approach is to compute analytic models (or “white box model”),
which rely on the knowledge of the working principles of the device under study.
Such models are useful in the design phase, because the geometrical or optical
parameters (such as length, coupling coefficient, effective index, etc.) are directly
related to the performance measures of the device considered. However, in prac-
tice, analytic models can be derived only for simple photonic systems and there
is a limit in their accuracy when describing complex non-ideal characteristics of
the system under study (i.e. backscattering and undesired dispersion effects). Fur-
thermore, most of these models are generally described as frequency- (wavelength)
domain models, whereas time-domain models are needed since time-domain simu-
lations are required to evaluate the performance of photonic circuits in a larger sys-
tem, such as bit error rate and eye diagrams [35, 46]. Actually, for passive devices
and circuits, their scattering parameters data are more accessible (e.g. via electro-
magnetic simulations or measurements) than accurate analytic models. Hence, it
is convenient to conduct time-domain simulations starting from the scattering pa-
rameters. A typical example is given by the finite impulse response (FIR) modeling
technique [47], which is based on the scattering parameters representation and is
adopted in the photonic simulators Lumerical INTERCONNECT [48], VPIpho-
tonics [49] and PICWave [50]. The built model can be considered as a “black box
model” since it only mimics the input and output behaviors and does not reveal
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the actual working principle of the circuit under study. The accuracy provided by
FIR-based models substantially depends on the design methodology employed and
it inherently degrades near the edges of the simulated signal bands [47].

Therefore, to address this problem, novel and accurate macromodeling and
simulation techniques for passive photonic circuits have been proposed in this
work, which satisfy four requirements:

• the models can be represented in the frequency and time domain;

• the modeling process should be robust;

• the models should be accurate enough with regard to the behaviors of the
actual devices, and eventually generate valuable information to guide circuit
designs;

• the models must be “compact” to make sure that the circuit simulation is
efficient and they should have the potential to be implemented in electronic
simulators, such as SPICE and Verilog-A.

This last requirement is important, since there is a dire need of co-simulation of
electronic and photonic circuits considering that in some applications they are
closely integrated and interact with each other. For example, optoelectronic de-
vices such as detectors, amplifiers, lasers and modulators have both electrical and
optical behaviors, and therefore must be simulated in both domains, especially if
there are electrical controls or feedback loops.

Another challenge for photonic circuits is to estimate the effect of the manu-
facturing process variations, since the associated performance degradation is even
more problematic than the electronic case [51]. For the best-in-class 193 nm im-
mersion deep ultraviolet (DUV) lithography, the observed waveguide linewidth
fluctuations are in the order of 5 nm (as shown in Fig. 1.4) and silicon layer thick-
ness fluctuations of state-of-the-art SOI substrates are in the order of 1 nm [52].

To illustrate this more clearly, let us look at a ring resonator (in Fig. 1.5 (a))
where the resonance condition depends on the optical roundtrip length of the ring
waveguide, and this in turn depends on the actual geometry of the waveguide.
Small width or height variations will induce a significant shift in the resonance
wavelength: for a width change of 1 nm, the wavelength will shift approximately
1 nm (roughly about 130 GHz), which can span more than one channel in a WDM
system [53], as shown in Fig. 1.5 (b). Indeed, given that the propagation of light
is entirely determined by the geometry for certain materials platform, photonic
devices on a chip are very sensitive to variations in geometrical parameters and
environment condition. This sensitivity also depends on the materials platform
adopted, especially the refractive index contrast between the materials used for
waveguide cores and the surrounding cladding. Higher index contrast allows for
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Figure 1.4: Contour map of the widths of a fabricated 100-nm-wide waveguide at 84 points
on a 300 mm SOI wafer. The measured widths vary with the locations and have a mean and
3σ (standard deviation) of 100.6 and 5.3 nm, respectively , according to the study in [52].
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Figure 1.5: (a) Structure of a five-ring resonator. (b) Response of the five-ring resonator.
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tighter confinement of light, but this also make the device more sensitive to varia-
tions. The issue is particularly prominent in silicon photonics because of its sub-
micron waveguides and extremely large index contrast between the guiding layer
and the claddings [35].

Hence, variability analysis is a fundamental tool for photonic circuits design.
Recently, variability analysis techniques proposed for electronic circuits have been
applied to photonic circuits [54–58]. Most of these works are conducted to quan-
tifying the variations of coupling coefficients [54, 55], 3-dB bandwidth [57, 58],
transmission or scattering matrices [56], but no time-domain variability analysis
has ever been carried out on the system level, which is crucial for evaluating the
overall performance of a photonic circuit (i.e. bit error rate, eye diagrams). In this
framework, an accurate and efficient time-domain variability analysis approach
for linear photonic circuits is presented in Chapter 6. It leverages on the exper-
tise in stochastic macromodeling and time-domain baseband modeling techniques
developed during my entire research.

1.3 Contributions and outline of the thesis

The main contributions of the thesis can be grouped into two parts:

• stochastic macromodeling for electronic circuits (Chapters 2 and 3) and lin-
ear photonic circuits (Chapter 6) to quantify the effect of fabrication varia-
tions on the time-domain performance;

• compact macromodeling of linear passive (deterministic) photonic circuits
for time-domain simulations (Chapters 4 and 5).

Note that the macromodeling techniques of deterministic photonic circuits serves
as a foundation for the stochastic ones. The structure of the thesis is illustrated in
Fig. 1.6, and the contribution of each chapter is briefly described in the following.

Chapter 1 of this PhD thesis introduces the motivation of variability analysis
for both electronic and photonic circuits and the challenges in time-domain mod-
eling and simulation of photonic circuits.

Chapter 2 focuses on linear electronic multiport systems subject to manufac-
turing variations. Stochastic macromodels are built for linear electronic systems
described by different transfer functions: scattering parameters, impedance pa-
rameters, and admittance parameters. The physical properties, such as stability
and passivity, for the stochastic models are rigorously defined and studied, which
is very important for time-domain simulations for the models. Then a parame-
terized stochastic modeling technique is proposed to deal with linear electronic
system with both deterministic parameters and stochastic parameters.
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Chapter 3 is for variability analysis of electronic circuits containing both linear
and nonlinear devices. Stochastic models can be built for both linear and nonlin-
ear devices separately and then connected in SPICE. Only a single time-domain
simulation is required to obtain the stochastic information of outputs of the circuit
under study.

While Chapters 2 and 3 study electronic circuits, Chapters 4-6 focus on pho-
tonic circuits. As aforementioned, unlike the electronic circuits, which in general
already have sophisticated circuit models, photonic circuits are still in the early
stage of developing accurate circuit models for time-domain simulations. Espe-
cially for the linear devices, they are normally studied in frequency domain and do
not have accurate time-domain models which can take into account the nonideali-
ties, such as higher-order dispersion and wavelength-dependent losses. Therefore,
time-domain modeling technique of linear (deterministic) photonic circuits are ex-
plored in Chapters 4 and 5, and then Chapter 6 performs time-domain variability
analysis of photonic circuits subject to fabrication variations.

Chapter 4 proposes an accurate and efficient baseband modeling approach for
linear photonic circuits described by scattering parameters. The modeling pro-
cess leverages on the Vector Fitting (VF) technique which is robust and can build
time-domain state-space models from scattering parameters. The built models rep-
resent complex-valued systems and can be simulated in the baseband rather than
at optical frequency, which dramatically improves the efficiency of time-domain
simulations. Since the built models are complex-valued and non-physical, and pas-
sivity conditions for physical systems are not applicable, new passivity conditions
and fast passivity assessment method are derived for the built non-physical mod-
els. Considering the complex-valued models can only be simulated in complex
number supported simulators, Chapter 4 then extends the baseband modeling ap-
proach and derives real-valued models which not only inherit all the advantages of
the complex-valued models but also maintain all properties of linear physical sys-
tems. It is more suitable for optical-electronic co-simulations. Chapter 5 presents
a novel baseband modeling technique for linear photonic circuits which can build
more compact models. Compared to modeling approach in Chapter 4 based on
the VF technique, the new modeling approach introduces a novel Complex Vector
Fitting (CVF) technique. It can generate a half-size model for the same appli-
cation, thereby achieving a major improvement in efficiency of the time-domain
simulation.

In Chapter 6, time-domain variability analysis of linear photonic circuits sub-
ject to manufacturing variations is conducted by leveraging on the stochastic mod-
eling technique in Chapter 2 and baseband modeling technique in Chapters 4 and
5. In future work, the stochastic modeling techniques of Chapters 3 and 6 can be
applied to photonic circuits consisting of both linear and nonlinear devices.

Finally in Chapter 7, overall conclusions are drawn and opportunities for future
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research directions are briefly described.
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V. Fernández, “Parametric macromodeling of integrated inductors for RF
circuit design,” Microwave and Optical Technology Letters, vol. 59, no. 9,
pp. 1207-1212, Mar. 2017.

• Y. Ye, D. Spina, P. Manfredi, D. Vande Ginste, and T. Dhaene, “A com-
prehensive and modular stochastic modeling framework for the variability-
aware assessment of signal integrity in high-speed links,” IEEE Transactions
on Electromagnetic Compatibility, vol. 60, no. 2, pp. 459-467, Apr. 2018.

• Y. Ye, D. Spina, Y. Xing, W. Bogaerts, and T. Dhaene, “Numerical model-
ing of linear photonic systems for accurate and efficient time-domain simu-
lations,” Photonics Research, vol. 6, no. 6, pp. 560-573, Jun. 2018.

• Y. Ye, D. Spina, W. Bogaerts, and T. Dhaene, “Baseband modeling of lin-
ear photonic circuits for time-domain simulations,” Journal of Lightwave
Technology, vol. 37, no. 4, pp. 1364-1373, Feb. 2019.

• Y. Ye, D. Spina, G. Antonini, and T. Dhaene, “Passivity study on polynomial
chaos-based stochastic macromodeling of linear multiport systems,” Under
review.

• Y. Ye, D. Spina, D. Deschrijver, W. Bogaerts, and T. Dhaene, “Compact
baseband modeling of linear photonic circuits via complex vector fitting,”
Under review.

• Y. Ye, M. Wang, D. Spina, W. Bogaerts, and T. Dhaene, “Time-domain char-
acterization of photonic integrated filters subject to fabrication variations,”
Under review.

1.4.2 International conferences
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Abstract

In this chapter, a novel polynomial chaos-based stochastic macromodeling tech-
nique for the frequency- and time-domain variability analysis of general linear and
passive systems is presented. It can be applied to systems whose transfer func-
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tion is described by different representations (namely scattering, impedance and
admittance parameters). The properties of the proposed methodology and the re-
lations between stochastic macromodels computed for different transfer function
representations are discussed in details. In particular, the passivity conditions for
the stochastic macromodels are rigorously derived. Three suitable numerical ex-
amples validate the accuracy and efficiency of the proposed technique.

2.1 Introduction

The performance degradation of integrated circuits (ICs) due to manufacturing
variations on high frequency designs has arisen as a crucial problem, due to the
increasing integration and miniaturization of modern ICs, which makes it critical
to estimate the influence of the inherent parameters variability on the ICs perfor-
mance, often referred to as variability analysis. The standard variability analysis
approach is represented by the Monte Carlo (MC) method; however, due to its slow
convergence rate, its computational cost becomes prohibitive when studying com-
plex ICs, especially if electromagnetic (EM) simulations are required to describe
the distributed elements in the circuit.

The polynomial chaos (PC) expansion [1, 2] has attracted great attention in
recent years as an alternative approach to this problem, thanks to its ability to
perform variability analysis of complex ICs with high accuracy and efficiency
as compared to MC-based methods [3–14]. In particular, the PC-based tech-
niques presented in the literature are tailored for a specific class of circuits, like
lumped-element circuits [3], transmission-line circuits with different types of ter-
minations [4–6], general passive linear systems [7–10] or nonlinear circuits de-
scribed by means of modified nodal equations [11–14]. Especially, the PC-based
approach proposed in [9, 10] allows one to compute a suitable macromodel for the
time-domain variability analysis of generic linear multiport systems which often
involves EM full-wave simulation. Such technique is based on the PC expansion
of the scattering parameters of the system under study, and employs the Galerkin
projection (GP) method and the Vector Fitting (VF) algorithm to compute a deter-
ministic, stable and passive state-space model describing the relation between the
PC coefficients of the system port signals. Pertinent statistical information of the
entire system can be computed by means of only one time-domain simulation of
such model, which can be readily converted into an equivalent SPICE-compatible
circuit, thanks to suitable macromodeling synthesis techniques [15–17]. In the PC
jargon, models of such type are usually referred to as “augmented”, since their
number of ports is higher with respect to the corresponding system under stochas-
tic variations.

However, the macromodeling approach presented in [9, 10] can be applied only
to linear systems described by their scattering parameters for time-domain analy-
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sis. In Section 2.2, we overcome this limitation via generalizing the technique
in [9, 10] to linear passive stochastic systems represented by their impedance, ad-
mittance parameters, and present a detailed breakdown of the computational cost
of the modeling technique. Section 2.3 presents a rigorous study on the passivity
definition and condition for such “augmented” macromodels for admittance and
impedance representations. Then the relations between such “augmented” macro-
models computed for different transfer function representations of the same system
is derived in Section 2.4. In Section 2.5, we demonstrate an approach to param-
eterize the augmented systems with regard to design parameters and stochastic
parameters, which is very useful when time- or frequency-domain variability anal-
ysis of the system under study must be repeated for different nominal values of the
random parameters considered, such as designing systems robust to manufacturing
variations. The validation of the proposed methods in this chapter is performed in
Section 2.6, while conclusions are presented in Section 2.7.

2.2 Stochastic macromodeling for general linear and
passive multiport systems

In the following, we will assume that the linear system under study is subjected
to the effect of stochastic variations: suitable geometrical or electrical parameters
can be considered as random variables, collected in the vector ξ in the stochastic
space Ω. As a result of this variability, both the transfer function and the voltages
and currents at the input/output ports of such system are random quantities, which
can be described by means of the PC expansion as:

H(s, ξ) ≈
MH∑
j=0

Hj(s)ϕj(ξ) (2.1a)

v(t, ξ) ≈
Mv∑
j=0

vj(t)ϕj(ξ) (2.1b)

i(t, ξ) ≈
Mi∑
j=0

ij(t)ϕj(ξ) (2.1c)

where the vectors v and i collects the ports voltage and currents, respectively, the
matrix H represents the system transfer function expressed by means of the cho-
sen representation (scattering, impedance or admittance parameters), ϕj are the
PC basis functions, which depend on the joint distribution of the random param-
eters considered, Hj , vj and ij are the corresponding PC coefficients with the
total numbers MH + 1, Mv + 1, and Mi + 1 respectively, s = 2πf is the Laplace
variable and t the time. Note that, in general, different stochastic quantities in a
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system may require different number of PC coefficients (and basis functions) to
achieve the PC models (2.1a) - (2.1c) with acceptable accuracy. But in practice
same number of PC coefficients can be chosen for simplicity, which would be
max(MH +1,Mv+1,Mi+1) in this case. The main feature of the PC expansion
is the efficient representation of the variability of the quantity under study [1, 2]:
for example, stochastic moments such as mean and variance of the impedance
matrix can be analytically computed from its PC coefficients. More complex sta-
tistical functions, such as the probability density function (PDF) or the cumulative
distribution function (CDF), can be calculated via the (inexpensive) sampling of
(2.1a) - (2.1c).

The interested reader may consult [1–14] for an extensive reference to PC the-
ory. Note that only the case of independent random variables will be discussed in
the rest of the contribution, for simplicity, even though the novel method presented
is general and can be extended to correlated random variables. Indeed, correlation
among the random parameters considered does not influence the proposed model-
ing framework, but has only an impact on the calculation of PC expansion in the
form (2.1a) - (2.1c) [1, 2], which is the starting point of our stochastic modeling
technique. Without loss of generality, the discussion in this chapter is limited to
the case of linear terminations only, as for [9, 10], while the general circuits con-
taining both linear and nonlinear devices will be studied in Chapter 3. Finally,
throughout this chapter, PC models in the form (2.1a) - (2.1c) will be based on
orthonormal PC basis functions ϕj which has the property

〈ϕi(ξ), ϕj(ξ)〉 =

∫
Ω
ϕi(ξ)ϕj(ξ)W (ξ)dξ = δij (2.2)

where δij is the Kronecker delta while W (ξ) is a weighting factor corresponding
to the normalized joint PDF of ξ. In the following sections, the superscript T de-
notes transpose, while ∗ stands for complex conjugate, and H represents transpose
conjugate.

2.2.1 Calculation of augmented systems based on impedance
and admittance parameters

A stable, passive and linear macromodel describing the stochastic variations for
systems represented by admittance or impedance parameters can be obtained by
following a similar procedure as the one presented in [9, 10]. In the following,
such methodology is described in details for the impedance representation only,
since the corresponding procedure for admittance parameters is straightforward.

When a generic linear system described by its impedance representation com-
puted over suitable frequency values fr for r = 1, . . . , R (or Laplace variable
sr = j2πfr) is subjected to stochastic effects, the following relation holds:

V (sr, ξ) = Z(sr, ξ)I(sr, ξ) (2.3)
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where Z is the impedance parameter matrix of the stochastic linear system under
study, V ∈ CN×1 and I ∈ CN×1 are the frequency-domain port voltages and
currents, respectively, and N is the number of ports of the linear system. Note that
any existing frequency sampling technique valid for deterministic systems can be
adopted to choose the element sr, for r = 1, . . . , R, such as linear, logarithmic or
adaptive sampling, and even measured transfer function data can be used.

As mentioned before, the PC model of such impedance matrix can be written
as:

Z(sr, ξ) ≈ Z̃(sr, ξ) =

M∑
j=0

Zj(sr)ϕj(ξ) (2.4)

where the basis function ϕj(ξ) are orthonormal polynomials depending only on
the joint distribution of the random variables ξ, while Zj(sr) for j = 0, . . . ,M

are the corresponding PC coefficients which must be computed. Note that the
PC coefficients in (2.4) can be obtained via any non-intrusive PC-based approach,
such as linear regression-, numerical integration- [2], or stochastic testing (ST)-
based techniques [11].

Now, by expressing the elements in (2.3) by means of the corresponding PC
models leads to

M∑
j=0

V j(sr)ϕj(ξ) =

M∑
j=0

M∑
k=0

Zj(sr)Ik(sr)ϕj(ξ)ϕk(ξ) (2.5)

where V j(sr) and Ij(sr) are the PC coefficients of V (sr, ξ) and I(sr, ξ), respec-
tively. Projecting (2.5) on the p−th PC basis function via GP [1, 2] gives

V p(sr) =

M∑
j=0

M∑
k=0

Zj(sr)Ik(sr)〈ϕj(ξ)ϕk(ξ), ϕp(ξ)〉 (2.6)

Next, by computing relations in the form (2.6) for each basis functions p =

0, . . . ,M and by organizing the results obtained as shown in [9, 10], it is possible
to describe the relationship between the PC coefficients of the port voltages and
currents as:

V PC(sr) = ZPC(sr)IPC(sr) (2.7)

where the vectors V PC(sr), IPC(sr) ∈ C(M+1)N×1 collect the (determinis-
tic) PC coefficients of the corresponding port voltages and currents, respectively,
whereas ZPC(sr) ∈ C(M+1)N×(M+1)N is a deterministic matrix, obtained by
suitable combination of the PC coefficients of the impedance matrix in (2.4). In-
deed, the block element of ZPC(sr) can be written as:

[ZPC(sr)]ij =

M∑
k=0

Zk(sr)〈ϕk(ξ)ϕj(ξ), ϕi(ξ)〉 (2.8)
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Note that, the symmetry ofZPC(sr) and, therefore, its reciprocity is preserved by
using orthonormal PC basis functions [10].

Now, equation (2.7) describes a new system represented by ZPC(sr), whose
port voltages and currents are the PC coefficients of the port voltage and current
of the original stochastic system: ZPC(sr) is M + 1 times larger than the original
system under study in terms of ports number, and is referred to as the augmented
system. It is important to note that ZPC(sr) can still be seen as an impedance
matrix with respect to the PC coefficients of the port voltages and currents: its
passivity conditions are the same as for deterministic impedance parameters, as it
will be discussed in detail in Section 2.3. At this point, a continuous frequency-
dependent rational model of ZPC(s) can be built by means of the VF technique
[18, 19]

ZPC (s) =

L∑
l=1

Rl

s− pl
+DZPC

(2.9)

where Rl are the residue matrices and pl are the poles. A pole-flipping scheme
allows one to enforce stability, while passivity assessment and enforcement can be
accomplished by using robust standard techniques [20, 21]. Next, it is straightfor-
ward to convert such rational model into a corresponding state-space representa-
tion as 

dxPC(t)

dt
= AZPC

xPC(t) +BZPC
iPC(t)

vPC(t) = CZPC
xPC(t) +DZPC

iPC(t)

(2.10)

where AZPC
, BZPC

, CZPC
, and DZPC

are the state-space matrices of ZPC(s),
and xPC is the corresponding state-vector. Finally, such state-space model can
be converted into a SPICE-like equivalent circuit via suitable synthesis techniques
[15–17]. A flowchart of calculating thus model ofZPC(s) is illustrated in Fig. 2.1.
This procedure can also be applied to admittance parameters Y (s, ξ), deriving the
augmented system Y PC(s).

Non-intrusive calculation PC 

 coefficients of 

GP

Vector fitting

( )PC rsZ 1, ,r R

 State-space model of ( )PC sZ

( , )rsZ ξ 1, ,r R

Figure 2.1: Flowchart of the proposed modeling approach for ZPC(s).
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2.2.2 Extracting frequency-domain stochastic information from
the augmented systems

The augmented systems defined in [9, 10] have been presented only for the vari-
ability analysis in the time domain. In the following, the frequency-domain vari-
ability analysis based on such augmented systems is discussed.

Given that the VF rational model (2.9) are continuous models with respect to
the frequency, it is straightforward to compute the impedance matrix of the aug-
mented system for any value si ∈ [s1, sR]. Note that [s1, sR] is the frequency
range used to compute the PC model of the impedance matrix. However, it is not
intuitive to directly observe the relation between ZPC(s) and the system variabil-
ity in the frequency domain. In this work, it is demonstrated that the first block
row and block column of ZPC(s) are the M + 1 PC coefficients Zj(s) of the
impedance Z(s, ξ), which means the PC coefficients of the impedance parame-
ters can be directly extracted from the augmented system for frequency-domain
variability analysis. Indeed, computing (2.8) for i = 0 gives

[ZPC(s)]0j =

M∑
k=0

Zk(s)〈ϕk(ξ)ϕj(ξ), ϕ0(ξ)〉 (2.11)

Since ϕ0(ξ) is a constant number and equal to 1 for orthonormal basis functions,
equation (2.11) becomes

[ZPC(s)]0j =

M∑
k=0

Zk(s)〈ϕk(ξ)ϕj(ξ)〉 (2.12)

Due to the orthonormality of the PC basis functions, equation (2.12) becomes

[ZPC(s)]0j = Zj(s) (2.13)

which indicates that the first block row elements in ZPC(s) are the PC coeffi-
cients of Z(s, ξ). A similar procedure can be adopted for the first block column
by choosing j = 0 in (2.8). Therefore, the variability analysis of the impedance
matrixZ(s, ξ) of the system under study can be estimated for any frequency value
in the range s ∈ [s1, sR] by first calculating ZPC(s) at the desired frequency val-
ues by means of its rational model (see (2.9)), then collecting the corresponding PC
coefficients in (2.4) from the first block row or block column ofZPC(s). Now, the
frequency-domain variability analysis of the system under study can be performed
with accuracy and efficiency thanks to the properties of the PC expansion [1, 2].
Similar relations hold for the augmented systems SPC(s) and Y PC(s) which are
based on scattering matrix S(s, ξ) and admittance matrix Y (s, ξ) respectively.
Hence, it is always possible to obtain the PC coefficients of the system transfer
function from its corresponding augmented system representation. This property
will be exploited in the numerical examples in Section 2.6.
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2.2.3 Efficiency analysis of the proposed stochastic macromod-
eling method

The proposed modeling framework, shown in Fig. 2.1, offers a high degree of
flexibility, since it can be applied to a large range of microwave systems, differ-
ent non-intrusive PC techniques can be adopted to compute the PC coefficients of
the transfer function of the system under study, and any macromodeling synthesis
technique can be used to import the stochastic macromodel in different SPICE-
like circuit simulators. In the following, a detailed breakdown of the computa-
tional cost of the proposed method will be presented, where the different factors
influencing the modeling efficiency will be discussed.

The starting point of the proposed technique is the calculation of the PC model
of the transfer function of the system under study: the corresponding impedance,
admittance or scattering parameters must be evaluated over a set of points in the
stochastic space ξk for k = 1, . . . ,K. The sampling strategy depends on the
specific non-intrusive method used to compute the PC coefficients, such as linear
regression-, numerical integration- [2], or ST-based techniques [11]: for example,
by using the approach in [11] leads to K = M + 1, where M + 1 is given by
(2.32). Next, for each sample in the stochastic space, the system transfer function
can be evaluated via electromagnetic simulations or measurements, which com-
putational cost is influenced by the number of frequency samples considered and
bandwidth of the system. Note that, the sampling strategy in the frequency domain
depends only on the accurate description of the transfer function behavior in the
chosen frequency range: any existing sampling technique valid for deterministic
systems can be adopted (i.e. equally spaced linear/logarithmic sampling or adap-
tive sampling methods). One requirement is the adoption of the same samples sr
for r = 1, . . . , R for all K points in the stochastic space, in order to obtain the
corresponding PC model by non-intrusive PC techniques [10]. Now, the desired
augmented system (ZPC or Y PC) can be easily computed as shown in Section
2.2.1 for all the frequency values sr considered.

Next, a stable and passive state-space model of the augmented system can be
computed via the VF algorithm, which computational cost depends on the size of
the system, the number of poles needed in the rational model [18] and the specific
passivity assessment and enforcement algorithms used among the ones presented
in the literature, such as [20, 21]. For example, the passivity enforcement via the
approach in [20] has a computational complexity of O

(
n3N3

)
, where n is the

number of poles and N the number of ports of the system under study. Hence,
the passivity assessment and enforcement of the rational model of the augmented
scattering parameters matrix via the VF algorithm can become computationally
expensive, if the microwave system under the effect of stochastic variations has a
high number of ports and depends on several random parameters. Indeed, the size
of the augmented system is (M + 1)N , where the number of PC basis functions
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M + 1 depends on the number of random parameters and on the PC expansion
order as shown in (2.32). A possible solution to reduce such modeling complexity
is to adopt sparse PC expansion [22, 23], leading to augmented matrices with a
high degree of sparsity [10].

Finally, the macromodel obtained so far can be converted into an equivalent
circuit, which can be simulated in any SPICE-like program, via suitable macro-
modeling synthesis techniques, such as [15–17]. Giving a detailed overview of
the different synthesis techniques presented in the literature is outside of the scope
of this contribution; however, adopting methods employing a limited number of
controlled sources (or none) in the equivalent circuit, see for example [16, 17], can
lead to increased efficiency in the corresponding time-domain simulations with
respect to circuit realizations relying on multiple controlled sources, such as [15].

2.3 Passivity study on augmented systems
In Section 2.2.1 the augmented systems ZPC(s) and Y PC(s) are defined as
equivalent impedance and admittance matrices, respectively, with respect to the
port signals formed by the PC coefficients of the port voltages and currents of
the stochastic system under study. Hence, it is possible to compute a stable and
passive macromodel via the VF method as is also the case for their deterministic
counterpart.

In the following, a rigorous definition of the passivity for augmented systems
is given and it is shown under what conditions, starting from a generic linear and
passive system described by its transfer function, the corresponding augmented
system is guaranteed passive as well.

A linear time-invariant system is passive if it absorbs no or more energy than
it can generate at any time: the equivalent mathematical representation is [24]∫ τ

−∞
vT (t, ξ)i(t, ξ)dt ≥ 0 (2.14)

Note that, equation (2.14) must hold in any point of the stochastic space Ω under
study, where ξ ∈ Ω.

Now, the port voltages and currents are exactly represented by their corre-
sponding PC expansions, if such expansions are not truncated to a limited number
of basis function [2] as

v(t, ξ) =

∞∑
j=0

vj(t)ϕj(ξ) (2.15a)

i(t, ξ) =

∞∑
j=0

ij(t)ϕj(ξ) (2.15b)
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Then, replacing v(t, ξ), i(t, ξ) in (2.14) with (2.15a) and (2.15b) gives∫ τ

−∞

∞∑
i=0

vTi (t)φi(ξ)

∞∑
j=0

ij(t)φj(ξ)dt ≥ 0 (2.16)

By integrating (2.16) in the stochastic space Ω leads, after simple manipulations,
to ∫ τ

−∞

∫
Ω

∞∑
i=0

∞∑
j=0

vTi (t)ij(t)φi(ξ)φj(ξ)W (ξ)dξ

 dt ≥ 0 (2.17)

where W (ξ) is the joint PDF of ξ. Now, due to the orthonormality of the PC basis
functions, equation (2.17) can be simplified into∫ τ

−∞

∞∑
j=0

vTj (t)ij(t)dt ≥ 0 (2.18)

By defining the vectors vTPC∞(t) and iTPC∞(t), which collect the PC coefficient
of the voltages and currents, respectively, leads to∫ τ

−∞
vTPC∞(t)iPC∞(t)dt ≥ 0 (2.19)

Now, the non-truncated PC coefficients vj , ij can be considered as the port
signals of a system with an infinite number of ports, and (2.19) indicates that such
system is passive. Hence, despite the PC model of the port signals is a mathe-
matical representation, its coefficients retain a physical meaning. It is important to
remark that this conclusion is general and independent on the proposed augmented
system-based modeling approach. Indeed, equation (2.18) is derived by leveraging
only on the passivity definition and the expression of the port voltages and currents
via a PC expansion with an infinite number of terms.

However, in practice it is not possible to compute an infinite number of PC co-
efficients and (2.15a) must be truncated to a finite number of terms [2, 5, 10, 25].
Given that a truncated PC expansion converges to (2.15a) when a sufficiently high
number of terms is considered, intuitively the corresponding truncated equations
(2.18) and (2.19) can be expected to hold as well. Hence, it is reasonable to as-
sume that, for passive stochastic circuits it is possible to compute a corresponding
passive PC-based augmented system, which can then be used for efficient time-
domain variability analysis [10, 25]. In the following, a rigorous criterion will
be defined to assess the passivity of PC-based augmented systems describing the
variability of general linear and passive circuits.

Given the results obtained so far, ZPC(s) can be considered as an actual
impedance matrix. Hence, the passivity conditions defined in the Laplace domain
for deterministic impedance matrices are applicable to ZPC(s) as well [26]:
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• Each element of ZPC(s) is analytic in Re{s} > 0;

• ZHPC(s)+ZPC(s) is a nonnegative-definite matrix for all s such that Re{s} >
0;

• Z∗PC(s) = ZPC(s∗).

Now, since Z(s, ξ) is passive (impedance matrix of a passive system), its PC
model Z̃(s, ξ) defined in (2.4) always meets the first and third passivity condi-
tions, as well as its PC coefficients Zj(s) for j = 0, . . . ,M . Since ZPC(s)

is constructed via linear combinations of the PC coefficients Zj(s), see (2.8), it
complies with the first and third condition as well. The second condition requires
that

αH [ZHPC(s) +ZPC(s)]α ≥ 0 (2.20)

holds for every non-zero column vector α ∈ C(M+1)N×1. It is important to note
that ZHPC(s) +ZPC(s) is a real symmetric matrix if Z(s, ξ) represents a recipro-
cal system, leading to real-valued α.

By writing (2.8) as

[ZPC(s)]ij = 〈Z̃(s, ξ)ϕj(ξ), ϕi(ξ)〉 (2.21)

allows one to write

αHZPC(s)α =

M∑
i=0

M∑
j=0

αHi 〈Z̃(s, ξ)ϕj(ξ), ϕi(ξ)〉αj

= 〈
M∑
i=0

αHi ϕi(ξ), Z̃(s, ξ)

M∑
j=0

αjϕj(ξ)〉 (2.22)

where αj is the j-th block of vector α. Define

β(ξ) =

M∑
j=0

αjϕj(ξ) (2.23)

which is a non-zero vector given by a suitable linear combination of the basis
function ϕj(ξ). Hence, (2.20) can be written as

〈βH(ξ), [Z̃
H

(s, ξ) + Z̃(s, ξ)]β(ξ)〉 ≥ 0 (2.24)

which is equivalent to∫
Ω

βH(ξ)[Z̃
H

(s, ξ) + Z̃(s, ξ)]β(ξ)W (ξ)dξ ≥ 0 (2.25)

Note that, W (ξ) is a nonnegative value in the entire stochastic space Ω since it is
the joint PDF. Hence, if Z̃

H
(s, ξ) + Z̃(s, ξ) is nonnegative-definite for all ξ in Ω,
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i.e., that the approximation (2.4) preserves the passivity property of the original
system, then it follows

βH(ξ)[Z̃
H

(s, ξ) + Z̃(s, ξ)]β(ξ)W (ξ) ≥ 0 (2.26)

As a result, (2.24) always holds, since the integral of a nonnegative quantity is
always nonnegative. Hence, a sufficient, but not necessary, condition for the pas-
sivity of the augmented system ZPC(s) is that the corresponding PC model of
the impedance matrixZ(s, ξ) is passive over the entire stochastic space Ω consid-
ered. If the latter condition holds, not only the PC coefficients of v(t, ξ) and i(t, ξ)

meet the corresponding passivity condition (2.19), since they are the port signals
of ZPC , but it is also possible to compute them via a single time-domain simula-
tion of a suitable macromodel of ZPC , by following the same approach described
in [10] for scattering parameters representations. Note that, condition (2.24) can
still be satisfied even if Z̃(s, ξ) is not passive for some ξ in the stochastic space Ω

(condition (2.26) is sufficient, but not necessary). Finally, it is straightforward to
verify that the same conclusions can be drawn for Y PC(s), by following a similar
procedure.

2.4 Relations among augmented systems for differ-
ent transfer function representations

At this point, by following the proposed stochastic macromodeling strategy and the
one described in [9, 10], it is possible to compute equivalent matrices and state-
space models describing the relations between the PC coefficients of the signals at
the port of the system under study, in terms of equivalent scattering, impedance and
admittance parameters. In the following, the relations between augmented models
computed for different transfer function representations will be studied. Indeed,
it is possible to convert an augmented system and the corresponding state-space
model computed starting from the PC coefficient of a specific transfer function
representation (i.e. impedance parameters) into the equivalent one for a different
representation (admittance parameters, for example), by using the same relations
valid for their deterministic counterpart. For example the augmented matrix for
the scattering parameters can be expressed as [27]

SPC = (ZPC − ZREFU) (ZPC + ZREFU)
−1 (2.27)

where ZREF is the reference impedance at each system port, which is typically
assumed equal to 50 Ω for all the ports. Furthermore, the transformation can be
performed at state-space level: for example, the state-space representation of the
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impedance matrix can be written as [27]

AZPC
= ASPC

+BSPC
(U −DSPC

)
−1
CSPC

(2.28)

BZPC
= BSPC

(U −DSPC
)
−1
ZREF (2.29)

CZPC
= 2 (U −DSPC

)
−1
CSPC

(2.30)

DZPC
= (U +DSPC

) (U −DSPC
)
−1
ZREF (2.31)

Figure 2.2 shows the relations between the scattering, admittance and impedance
parameters and their corresponding augmented representations.

However, the augmented systems have a unique characteristic: their size de-
pends on the number of PC basis functionsM+1, which is related to the total order
of polynomial basis functions P and the number or random variables Q as [1]:

M + 1 =
(Q+ P )!

Q!P !
(2.32)

Indeed, different representations (S, Y or Z) of the transfer function of the same
system vary differently in the frequency domain with respect to the random vari-
ables, as shown in Section 2.6, Fig. 2.11. Hence, PC expansions of different orders
could be needed for the same frequency value sr to accurately express the variabil-
ity of the corresponding transfer function representation (S(sr), Y (sr) or Z(sr))
leading to PC models with a different number of polynomial basis functions, see
equation (2.32).

It is important to note that, in order for the transformations (between SPC ,
ZPC , Y PC) shown in Fig. 2 to be valid, it is necessary that the corresponding
augmented systems are all passive and computed with the same number of basis
functions. Now, let us assume that a PC model of order PS has been computed
for the system scattering parameters evaluated over the entire frequency samples
of interest sr for r = 1, . . . , R, which gives accurate frequency-domain variability

S

Y Z

SPC

ZPCYPC

State-space SPC

State-space YPC State-space ZPC

Figure 2.2: Transformation between deterministic S/Y /Z and augmented
SPC /Y PC /ZPC , and their state-space models.
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analysis results, and a PC model of order PY is needed instead to compute an accu-
rate PC model describing the variation of the admittance parameters representation
on the same frequency samples, with PS < PY . The corresponding augmented
models are SPC ∈ C(MS+1)N×(MS+1)N and Y PC ∈ C(MY +1)N×(MY +1)N ,
where MS + 1 < MY + 1 according to (2.32). When one augmented system
representation with smaller size is converted to another representation which is
supposed to have larger size, some PC coefficients (in the first row or column block
of the matrix, see (2.13)) are missing, leading to an inaccurate estimation of the
stochastic variations in the frequency domain, such as in our case, the PC coeffi-
cients for polynomials of degree PS < P ≤ PY . Hence, the variability analysis in
the frequency domain of a suitable representation (S, Y orZ) of the system trans-
fer function should be performed by directly computing the augmented system for
the specific representation under study (SPC , ZPC , Y PC) rather via transforma-
tions, to avoid the situation described above, since it is not possible to estimate
upfront if PC models of different transfer function representations need different
PC expansion orders or not.

However, the time-domain variability analysis of the port signals can be per-
formed accurately by transforming PC-based augmented system as described in
Fig. 2.2, by construction. Indeed, augmented systems such as SPC , Y PC and
ZPC are defined as equivalent scattering, impedance or admittance matrices with
respect to the PC coefficients of the system port voltages and currents [10]. Now,
converting an augmented system computed for a particular representation, for ex-
ample SPC , to another one, let us say admittance parameters, means computing
an admittance matrix Ŷ PC giving the same port signals as SPC . Indeed, if a PC
model of order PS gives an accurate representation of the port signals variability,
using a higher order PY will also lead to an accurate estimation of stochastic vari-
ations. Note that all the PC coefficients of the port signals up to order P = PS are
the same for the PC models of order PS and PY , since the PC basis functions are
the same (and orthonormal) [1, 2]. Therefore, the transformations in Fig. 2.2 are
recommended for variability analysis only in the time domain rather than in the
frequency domain.

2.5 Variability analysis via parameterized stochastic
macromodeling

The modeling technique presented so far can efficiently perform the variability
analysis in the time and frequency domain for a specific nominal value of the
random variables in the stochastic space. However, in order to find a design con-
figuration robust to the effects of manufacturing variations, the variability analysis
can be carried out for different nominal values of the chosen random parameters.
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Since the method presented here offers the unique characteristic of describing the
system under study by means of an equivalent augmented transfer function repre-
sentation, it is possible to build a suitable parameterized macromodel describing
the stochastic variations of the system under study for all the possible nominal
values of interest of the random parameters considered.

This possibility is interesting because it allows one to define a unique frame-
work to model deterministic and stochastic parameters altogether, as it will be
shown in the following, and to individuate the area of the design space for the
nominal value of the random parameter under study which are robust to the vari-
ations of the manufacturing process. However, the downside of such a stochastic
parameterized macromodeling approach is that the computational cost to build
the model can be higher than calculating the corresponding augmented system,
described in Section 2.2, only for the nominal values of interest for the specific
problem at hand. Hence, this approach is efficient only if the number of random
parameters considered is limited.

In the rest of the contribution, the parameterized macromodeling approach pre-
sented in [28] together with the sequential sampling algorithm proposed in [29] are
adopted, since they guarantee a high degree of automation in the model building
procedure and the stability and passivity of the parameterized macromodel, fun-
damental properties for time-domain simulations, can be preserved. However, any
parameterized macromodeling technique for deterministic transfer function repre-
sentations can be adopted to model also the corresponding augmented systems de-
scribed in Section 2.2. It is important to note that, since the augmented systems de-
scribed in Section 2.2 can be considered as deterministic scattering, impedance and
admittance matrix, the computational cost of a parameterized stochastic macro-
model is the same as applying the chosen parameterized macromodeling technique
to a deterministic system of size (M + 1)N × (M + 1)N , with one difference:
K evaluations of the system transfer function are now required to compute an aug-
mented system for a specific nominal value of the parameters considered, where
K depends on the particular technique adopted to compute the PC expansion, as
discussed in Section 2.2.3.

In the following, in order to provide a complete characterization of the system
under study, first the parameterized macromodel of the scattering parameters is
built, denoted as PM S, which describes the performance of the system for the
nominal values of the random parameters under study. Next, a parameterized
macromodel of the augmented system SPC , which is denoted as PM SPC, can
be built based on the scattering parameters generated from PM S or EM simula-
tors. Note that building the model PM SPC does not necessarily rely on the model
PM S. Finally, it is important to remark that

• the size of the augmented systems depends on the number of the PC basis
functions as N × (M + 1). Starting from a set of different nominal values
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Figure 2.3: Flow chart of the deterministic (left) and stochastic (right) parameterized
macromodeling technique.

for the chosen random variable in the design space, an accurate PC model
with Mi + 1 basis functions is built separately for each point in the design
space. The highest Mi is chosen to build the corresponding parameterized
macromodel PM SPC.

• if PM S is used as a simulator for building PM SPC, the design space of
PM S should be larger than that of PM SPC by ∆ for each design parameter
since information around the nominal value of the random parameters are
needed to build the augmented system. ∆ depends on the distribution of
corresponding random variable and the method chosen to compute the PC
coefficient (i.e. linear regression, numerical integration), for instance

– Gaussian distribution: N (µ, σ2) : ∆ = 6σ

– Uniform distribution: U(a, b) : ∆ = b− a

Figure 2.3 describes the flowchart of this modeling process. Similar parameterized
macromodeling techniques can be adopted for admittance or impedance represen-
tations.

2.6 Numerical examples

The simulations shown in this section are performed with MATLAB and Advanced
Design System (ADS) on a computer with Intel Core i3 processor and 8 GB RAM.
In the following numerical examples, the total number of samples chosen for the
MC analysis represents a trade off between accuracy and associated computational
cost in estimating not only simple stochastic moments, like mean and standard
deviation, but also complex stochastic quantities like the PDF and CDF.
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Figure 2.4: Example 2.6.1. Geometry of the nonuniform coupled transmission lines.

2.6.1 Multiple coupled transmission lines

In this example, the nonuniform coupled transmission lines shown in Fig. 2.4 are
studied. The width of the four traces (w1 to w4) are assumed as independent Gaus-
sian random variables, having a nominal value 250 µm and a standard deviation
of 25 µm. The center of each trace is assumed to be fixed as result of the man-
ufacturing process, leading to variations in the gaps (g1, g2, g3), which have a
nominal value 250 µm, and can be determined by the trace width values. The
scattering parameters of the transmission lines are evaluated in ADS for 251 fre-
quency points in the range [0 kHz ∼ 4 GHz], 151 of which are used to compute
the desired augmented system. The remaining samples are used for evaluation: to
verify the accuracy of the rational model ofSPC at frequencies not used during the
model building phase. Next, a PC order P = 2 is chosen according to the method
in [8], leading to M + 1 = 15 basis functions according to (2.32). By adopting
the non-intrusive ST technique [11, 13], only 15 samples of the random variables
(w1, w2, w3, w4) are required to accurately compute the PC coefficients of the sys-
tem scattering parameters. Next, the augmented system SPC ∈ C120×120 can be
calculated for each one of the 151 frequency samples considered. A similar ap-
proach can be adopted to compute ZPC and Y PC , starting from the impedance
and admittance parameters of the transmission lines.

To verify the relations illustrated by Fig. 2.2, the augmented systems for the
impedance and admittance parameters obtained by conversion of SPC are denoted
as ẐPC and Ŷ PC , respectively. For comparison, a MC analysis is also performed
by using 10000 samples of the random variables (w1, w2, w3, w4). Figures 2.5
and 2.6 show the standard deviation of the imaginary part of the admittance and
impedance parameters, respectively, computed directly or via conversion, and the
MC method. The results obtained show an excellent agreement between all the
different approaches.

Next, a stable and passive rational model of SPC is computed via the VF
algorithm, by targeting a maximum absolute error threshold of -50 dB, and the
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Figure 2.5: Example 2.6.1. Standard deviation of imaginary part of all upper triangular
elements in Y (ξ) calculated via MC method (full black line), Y PC (green dashed line),
Ŷ PC (red dotted line).
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Figure 2.6: Example 2.6.1. Standard deviation of imaginary part of all upper triangular
elements in Z(ξ) calculated via MC method (full black line), ZPC (green dashed line),
ẐPC (red dotted line).
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model accuracy is verified for all the 251 frequency samples considered. Finally,
the state-space representation of such rational model, computed with 47 poles, is
converted into the corresponding ones for admittance and impedance representa-
tion, as shown in Fig. 2.2. In the time domain, the coupled transmission lines are
excited at port P1 by a smooth voltage pulse with amplitude 1 V, rise/fall times
0.35 ns, width 2 ns, initial delay 6.5 ns and internal resistance RS = 50 Ω, and are
terminated on a RL = 50 Ω resistor. Then, the time-domain variability analysis
is performed by simulating the macromodels obtained for SPC , Ŷ PC and ẐPC .
The mean and mean± 3 times of standard deviation of the voltage at ports P3 and
P5 are shown in Fig. 2.7 and 2.8, respectively, where a comparison with respect
to the MC analysis is presented as well.

Figure 2.9 shows the PDF and CDF of the current at port P2 for the time instant
t=7.51 ns obtained by means of the MC method, and time-domain simulation of
the state-space model of SPC , Ŷ PC , ẐPC : a high accuracy between the different
methods can be observed. Similar results can be obtained for the other port signals
as well. Furthermore, the proposed technique shows a great efficiency when com-
pared to the MC analysis, as indicated in details in Table 2.1. The computational
time of Ŷ PC , ẐPC is similar with that of SPC presented in Table 2.1.
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Figure 2.7: Example 2.6.1. The mean and mean ± 3 times of standard deviation of the
voltage at port P3 obtained by means of MC analysis (full black line), based on 10000
(w1, w2, w3, w4) samples, and a single time-domain simulation of the state-space model of
SPC (red dashed line), Ŷ PC (blue circles), ẐPC (green asterisk).
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Figure 2.8: Example 2.6.1. The mean and mean ± 3 times of standard deviation of the
voltage at port P5 obtained by means of MC analysis (full black line), based on 10000
(w1, w2, w3, w4) samples, and a single time-domain simulation of the state-space model of
SPC (red dashed line), Ŷ PC (blue circles), ẐPC (green asterisk).
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Figure 2.9: Example 2.6.1. PDF and CDF of the current at port P2 for the time in-
stant t = 7.51 ns obtained by means of the MC analysis (full black line), based on 10000
(w1, w2, w3, w4) samples, and the time-domain simulation of the state-space model ofSPC

(red dashed line), Ŷ PC (blue circles), ẐPC (green plus).
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MC computational time
Full wave simulation of 10000

(w1 − w4) samples 18 d 17 h 16 m

Calculation of corresponding state-space models 7 h 49 m
Time-domain simulations 2 h 17 m

PC-based method computational time
Full wave simulation of 15 (w1 − w4) samples 40 m 26 s

Computing augmented system 21 s
Building corresponding state-space model 15 m 55 s

Time-domain simulation 8 m 35 s
Speedup time compared with MC 422

Table 2.1: Example 2.6.1. Efficiency analysis of the proposed technique.

2.6.2 Zigzag filter

A zigzag narrow bandpass filter, based on the design proposed in [30] and shown
in Fig. 2.10, is studied over the frequency range [1 kHz ∼ 4.5 GHz]. The substrate
is 0.5 mm thick with a relative dielectric constant εr = 2.2 and a loss tangent
tanδ = 0.003. The gap G among the horizontal conductor is 0.3 mm, and the
width of the both horizontal and vertical conductors is 0.4 mm. This bandpass
filter has a very narrow-band response around 2.5 GHz, and its passband and center
frequency are very sensitive to its geometric layout. The distanceD and the length
L of the two coupling parts are assumed as Gaussian distributed random variables,
with D ∼ N (0.85 mm, σ2) and L ∼ N (19.2 mm, σ2), where σ is the standard
deviation and equals 60 µm.

With scattering parameters at 49 samples (D,L) chosen over a 7 × 7 reg-
ular grid, the augmented systems SPC , Y PC , and ZPC are built with 15 PC
basis functions, which are sufficient to compute accurate PC models for all the
different representations considered, leading to augmented systems with 30 ports.
In Fig. 2.11, the standard deviation of the real part of S11, Y11, Z11 calculated

G

L

D

G

Port 1

Port 2

Figure 2.10: Example 2.6.2. Geometry of the zigzag bandpass filter.
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from corresponding augmented systems is compared with that from MC analysis
based on 10000 (D,L) samples. Furthermore, the same variability analysis result
computed via augmented models obtained by conversion of SPC , as described in
Section 2.4, are shown and indicated with the symbols Ŷ PC and ẐPC . All the
different stochastic macromodels show a good accuracy with respect to the MC
analysis.

In the time domain, the filter is excited at port one (input) by a smooth voltage
pulse with amplitude 1 V, rise/fall times 0.13 ns, width 1.8 ns, initial delay 3 ns
and internal resistance RS = 50 Ω, while port two (output) is terminated on a
RL = 50 Ω resistor. Then the state-space models of the augmented systems SPC ,
Y PC , andZPC are built with 20, 25, 27 poles respectively. Time-domain simula-
tions with these built models are performed, and the results are compared with the
corresponding MC analysis, as shown in Fig. 2.12. Similar results can be obtained
from the simulation of the macromodels Ŷ PC and ẐPC . In this case, the model
building process and time-domain simulations of SPC , Y PC , and ZPC take 50
min 20.5 s, 50 min 55.5 s, and 50 min 50 s, respectively, while the MC analysis of
10000 samples requires 171 h 27 min.

Next, we will describe how the approach presented in Section 2.5 can tackle
deterministic and stochastic parameters altogether. In particular, the gap is now
assumed as deterministic parameter varying in the range G ∈ [0.3, 0.5] mm, while
the nominal values of the two Gaussian random variables considered are defined
in the rangeD ∈ [0.8, 1.0] mm and L ∈ [19.1, 19.3] mm, respectively. Figure 2.13
shows an example of the filter scattering parameters with respect to (G,D,L).

Following the steps shown in Fig. 2.3, first PM S is built starting from the fil-
ter scattering parameters, computed by ADS over 151 frequency samples ranging
from 1 kHz to 4.5 GHz in the design spaceG ∈ [0.3, 0.5] mm,D ∈ [0.62, 1.18] mm,
L ∈ [18.92, 19.48] mm. The mean absolute value of the difference of scattering
parameters between model and EM simulator is chosen as error measure to build
the parameterized macromodel PM S, due to the sharp variations of the passband
frequency response [29], with -55 dB as error threshold. Next, the parameterized
augmented matrix SPC , based on a PC model with 10 basis functions, is calcu-
lated by using PM S instead of ADS, in order to reduce the stochastic macromodel
computational time. Finally, the desired PM SPC is built by adopting a maximum
absolute error threshold -45 dB for the VF algorithm.

As shown in Fig. 2.14, the frequency-domain accuracy of proposed technique
is validated by comparison with the results of MC analysis over 64 samples for the
nominal values of (G,D,L), computed on a (4× 4× 4) regular grid in the design
space, which have not been used to build the model. In particular, the MC method
results shown in Fig. 2.14 are based on PM S to calculate the scattering parameters
for 10000 (D,L) samples for each of the 64 nominal values considered, due to the
high computational time associated for their computation via ADS.
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Figure 2.11: Example 2.6.2. Top: standard deviation (std) of the real part of S11 calculated
via SPC and MC. Center: std of the real part of Y11 obtained by Y PC , Ŷ PC and MC.
Bottom: std of the real part of Z11 computed via ZPC , ẐPC and MC.
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Figure 2.15: Example 2.6.2. Mean of the filter output current for two samples in the design
space (G,D,L)=(0.475, 0.975, 19.25) mm and (0.325, 0.825, 19.15) mm: the solid lines
are the results from the MC method based on ADS; the marker ◦ represents that from the
built PM SPC; and the dash lines indicate error in between.

Time-domain simulations are performed with the same setting described above
and Fig. 2.15 shows the mean of output current for two (G,D,L) samples in the
design space: the output current is a signal with frequency shifting around 2.5
GHz and its shapes varies in the design space. In Fig. 2.16, the time-domain vari-
ability analysis result of the output current at the sample (G,D,L)=(0.41, 0.92,
19.22) mm is obtained from the proposed method, and compared with the MC
analysis, which shows very good agreement.

Table 2.2 presents the computational cost of the time-domain variability analy-
sis via different approaches for five (G,D,L) values in the design space, namely:
the proposed parameterized stochastic macromodeling technique and the MC anal-
ysis based on ADS and on PM S. Note that, the evaluation of the filter scattering
parameters via ADS is computationally expensive: the MC analysis based on the
EM simulator requires more than 7 days for each of the five (G,D,L) values in
the design space, while the same analysis can be performed more efficiently via
the PM S model, which requires around 1 h and 16 min to perform the same task.
However, since the proposed macromodeling technique directly computes the PC
coefficients of the port signals via a single time-domain simulation, less than 2
min are required for each one of the chosen (G,D,L) values. Finally, one addi-
tional consideration: computing the parametric macromodels PM S and PM SPC

is expensive in this case, since the evaluation of the filter scattering parameters
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Figure 2.16: Example 2.6.2. The mean µ and the range µ ± 3σ of the output current of
the zigzag filter at (G,D,L)=(0.41, 0.92, 19.22) mm: the (solid, dash, dot) lines are the
results computed by the MC method based on ADS; the symbols (×,◦,�) represent the same
quantities obtained from PM SPC.

Models Computational time
PM S 10 h 13 min

PM SPC 6 h 6 min
Computational time of time-domain simulation

Sample MC(EM) MC(PM S) Proposed technique
1 171 h 28 min 1 h 16 min 1 min 3.3 s
2 171 h 27 min 1 h 16 min 1 min 21.3 s
3 171 h 27 min 1 h 16 min 1 min 0.9 s
4 171 h 27 min 1 h 17 min 1 min 1.0 s
5 171 h 31 min 1 h 18 min 1 min 1.5 s

Table 2.2: Example 2.6.2. Efficiency of the parameterized stochastic macromodeling of the
zigzag filter.

via ADS is time-consuming and the filter frequency response is very dynamic. In
particular, the MC analysis based on PM S is more efficient than PM SPC when
less than five (G,D,L) values are considered, since the model building phase
of PM SPC, based on the scattering parameters evaluated through PM S, requires
more than 6 hours. However, when variability analysis information are required in
more than five points in the design space, the proposed parameterized macromod-
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eling approach shows significant efficiency compared with the others. An alterna-
tive approach is to perform the time- and frequency-domain variability analysis by
computing the corresponding augmented system only for the (G,D,L) nominal
values of interest, as described in Section 2.2. Such multi-point variability anal-
ysis approach allows one to avoid the 6 hours long computation of PM SPC, but
it gives relevant statistical information only for specific values of the parameters
considered. Depending on the designer goals, both approaches can represent a
valid methodology.

2.6.3 Microstrip lowpass filter

The microstrip lowpass filter shown in Fig. 2.17 and described in [31] is ana-
lyzed over the frequency range [1− 7] GHz. The filter scattering parameters are
evaluated in Matlab via a quasi-analytical model [32]. The width W of the three
microstrips varies in the range [9 − 15] mm and is assumed as a deterministic pa-
rameter, since the filter performance is not sensitive to its variation caused by the
manufacturing process; the height of the substrate H is considered as a Gaussian
distributed random variable with nominal values in the range [1.5 − 3.5] mm and
standard deviation 75 µm; the relative permittivity of the substrate εr is a Gaussian
random variable with fixed nominal value 4.2 and standard deviation 0.067: once
the substrate material is chosen, the variations of εr only depend on the manufac-
turing process.

Following the approach described in Section 2.2, ten PC basis functions are
used to compute the desired model, leading to twenty-port augmented system.
The non-intrusive ST sampling method [11, 13] is used to minimize the number
of samples required for computing the desired PC coefficients. As a result, the
augmented system can be built by evaluating the scattering parameters at K = 10

samples of the chosen parameters around each nominal value.
Next, a parameterized macromodel PM SPC is built by assuming a maximum

absolute error threshold of -45 dB between the model response and the computed
augmented systems.

Figure 2.18 shows the modeling accuracy in the frequency domain: the results
of the proposed macromodel for 36 points spreading over the design space (not
used to build the model) are compared with the MC analysis performed for 5000
(W,H, εr) samples. The accuracy is good for all the points considered.

Input OutputW W W

Figure 2.17: Example 2.6.3. Geometry of the microstrip lowpass filter under study.
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Figure 2.18: Example 2.6.3. The mean and standard deviation (std) of the magnitude of
S11(s, ξ) for 36 nominal values of (W,H, εr). The blue lines indicate the MC analysis,
the red dash lines are results of the proposed model, while the green dotted lines shows the
corresponding absolute error.

Time-domain simulations are performed with the following settings: the filter
is excited by a source with 50 Ω internal resistance and is terminated on a 50 Ω

resistor. The source generates a windowed sinc function voltage pulse with rect-
angular shape spectrum from DC to 5.2 GHz. Note that the parameterized model
PM SPC is stable and passive: it can be directly adopted for time-domain simu-
lations. Six samples equally spaced along each diagonal of the two dimensional
design space (W,H) are chosen for accuracy assessment of the model (note that
the nominal value of εr is constant), while the time-domain MC analysis at the
same samples is also conducted as a benchmark. In particular, a state-space model
is built via the VF algorithm for each sample used in the MC analysis. The corre-
sponding mean and standard deviation of the output voltage are shown in Figs. 2.19
and 2.20. It is interesting that all the mean values in Fig. 2.19 are quite similar,
while the corresponding standard deviations present noticeable differences, which
indicates that some samples are more robust than others with regard to the varia-
tions of the random parameters. Instead, for the points at the other diagonal both
the mean and standard deviation are quite sensitive to the parameters variations
as Fig. 2.20 shows. These results show the capability of the proposed method
of giving a comprehensive analysis of the filter performance in the entire design
space.

Furthermore, complex stochastic moments such as the PDF and CDF can also
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Figure 2.19: Example 2.6.3. Mean and standard deviation (std) of the output voltage for six
samples equally spaced along one diagonal of the design space: from (W = 9.25, H =
1.55)mm to (W = 14.75, H = 3.45)mm. The blue lines indicate the MC analysis and red
dash lines are obtained via the proposed model.

Figure 2.20: Example 2.6.3. Mean and standard deviation (std) of the output voltage for six
samples equally spaced along one diagonal of the design space: from (W = 14.75, H =
1.55)mm to (W = 9.25, H = 3.45)mm. The blue lines indicate the MC analysis and red
dash lines are obtained via the proposed model.
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be computed via the (inexpensive) sampling of the corresponding PC model in the
frequency and time domain [10].

The model building process is completed in 9 hours and 29 minutes. How-
ever, the frequency- and time-domain variability analysis via the computed model
require 2.5 s and 30 s, respectively, for each nominal value of the parameters con-
sidered. Note that a single time-domain MC analysis requires about 4 hours 30
minutes, on average. Hence, the proposed approach is more efficient than the MC
method if more than two design points are considered.

2.7 Conclusion
The stochastic macromodeling technique presented in this contribution extended
the method presented in [9, 10] to generic linear and passive systems, whose trans-
fer function can be described by means of different representations (namely scat-
tering, impedance and admittance parameters). The passivity of the augmented
macromodels and the relations between such macromodels computed for different
transfer function representations were discussed in details. Furthermore, two pos-
sible approaches were presented when the variability analysis needs to be carried
out for different nominal values of the chosen random parameters, based on the
proposed stochastic macromodeling technique: a multi-point and a parameterized
macromodeling approach. The accuracy, efficiency and flexibility of the proposed
method were validated with three suitable numerical examples where comparison
with the MC analysis was carried out in both frequency and time domain.
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Stochastic Macromodeling of Linear

and Nonlinear Electronic Circuits

Y. Ye, D. Spina, P. Manfredi, D. Vande Ginste, and T. Dhaene, “A comprehensive
and modular stochastic modeling framework for the variability-aware assessment
of signal integrity in high-speed links,” IEEE Transactions on Electromagnetic
Compatibility, vol. 60, no. 2, pp. 459-467, Apr. 2018.

Abstract

This chapter presents a comprehensive and modular modeling framework for stochas-
tic signal integrity analysis of complex high-speed links. Such systems are typi-
cally composed of passive linear networks and nonlinear, usually active, devices.
The key idea of the proposed contribution is to express the signals at the ports of
each of such system elements or subnetworks as a polynomial chaos expansion.
This allows one to compute, for each block, equivalent deterministic models de-
scribing the stochastic variations of the network voltages and currents. Such mod-
els are synthesized into SPICE-compatible circuit equivalents, which are readily
connected together and simulated in standard circuit simulators. Only a single cir-
cuit simulation of such an equivalent network is required to compute the pertinent
statistical information of the entire system, without the need of running a large
number of time-consuming electromagnetic-circuit co-simulations. The accuracy
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and efficiency of the proposed approach, which is applicable to a large class of
complex circuits, are verified by performing signal integrity investigations of two
interconnect examples.

3.1 Introduction

In recent years, a great deal of attention has been devoted to study the effects of
geometrical and/or electrical parameter variations on the performance of various
electronic circuits. Indeed, circuit performance is nowadays largely affected by
the variations of the manufacturing process, due to the increasing integration and
miniaturization. In this context, uncertainty quantification methods become a crit-
ical resource for the signal integrity (SI) assessment of high-speed designs. The
Monte Carlo (MC) method is robust, accurate and easy to implement, and it is
considered as the standard approach for variability analysis. However, its high
computational cost often prohibits its application to the analysis of complex de-
signs. Therefore, more efficient techniques for stochastic simulations are needed.

Many techniques based on the polynomial chaos (PC) method [1, 2] have been
recently developed to tackle this problem [3–14], and are able to perform variabil-
ity analysis with high accuracy and efficiency compared to MC-based approaches.
Each method is tailored for a specific class of circuits, like lumped-element cir-
cuits [3], transmission-line circuits [4, 5], arbitrary passive linear systems [6–8], or
nonlinear circuits [9–14]. However, a general and comprehensive modeling frame-
work, capable of including heterogeneous stochastic components appears yet to be
missing. Indeed, modern interconnect designs consist of a combination of circuit-
level components, behavioral macromodels, and 3D structures. The present chap-
ter aims at covering the aforementioned gap by proposing a comprehensive and
modular approach that allows the inclusion of any linear passive structure (possi-
bly characterized by means of full-wave EM simulations) or nonlinear component
(either at physical or behavioral level). The point of departure is the technique
presented in [8], which was recently proposed to compute a stable and passive PC-
based macromodel of a generic linear, passive and frequency-dependent stochastic
system. It is a flexible and reliable modeling approach, but it is limited to passive
linear systems.

In order to overcome this limitation, we integrate the technique proposed in
[13], which can create a deterministic equivalent circuit model of any stochastic
nonlinear component at both the physical or behavioral level, thus yielding a novel
and powerful framework for the variability-aware SI analysis of complex high-
speed circuit designs. The models for each linear and nonlinear subpart are com-
puted separately, with the desired (or most convenient) level of modularity, and
then connected together in a SPICE-type environment. Within the novel modeling
framework, only a single time-domain simulation of the entire system is required
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to perform the variability analysis, thus avoiding expensive repeated (EM-)circuit
(co)-simulations. As will be shown in Section 3.3, complete interconnect links can
as such be analyzed very efficiently.

The chapter is organized as follows. Section 3.2 describes the novel proposed
approach, while its validation is carried out in Section 3.3 by means of two perti-
nent numerical examples. Conclusions are drawn in Section 3.4.

3.2 Stochastic modeling of complex links
Modern high-speed links consist of a combination of nonlinear, possibly active
components (e.g., diodes, drivers and receivers) and passive linear structures (e.g.,
transmission lines, power distribution networks, vias, packages, etc.). While the
former are defined by nonlinear relations between their port signals, which can be
defined in different ways (for example analytical formulas or behavioral models),
the latter are completely defined by their transfer function, which can be expressed
in several forms (i.e., impedance, admittance or scattering representations) and
may require time-consuming EM simulations to be determined.

In the following, we assume that the linear parts of the system under study de-
pend on some geometrical or electrical random parameters collected in the vector
ξ, while the nonlinear elements are influenced by the vector of random variables
ξ̂. As a result of this variability, the voltages and currents at each port of such
linear and nonlinear components depend on both the random variables ξ̂ and ξ, as
illustrated in Fig. 3.1.

According to the PC theory, such port signals are represented as a truncated
summation of basis functions with suitable coefficients:

v(ξ̂, ξ, t) ≈
M∑
i=0

vi (t)ϕi(ξ̂, ξ) (3.1)

DRV

ˆ( , )inv ξ ξ

ξ̂
ξ

ˆ( , )ini ξ ξ

ˆ( , )outv ξ ξ

ˆ( , )outi ξ ξ

Z

Figure 3.1: Example of a link subject to stochastic variations affecting a (nonlinear) driver
(DRV), a transmission line and a lumped termination.
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where v(ξ̂, ξ, t) denotes a generic voltage within the system (currents are treated
in a similar fashion), the basis functions ϕi(ξ̂, ξ) are orthogonal polynomials de-
pending on the joint distribution of the random variables ξ and ξ̂, and vi (t) are the
corresponding M + 1 coefficients to be determined.

The key idea of the proposed approach is to describe the stochastic variations
of both the linear and nonlinear system subnetworks via suitable PC models, which
will simultaneously account for all the random variables ξ and ξ̂. Specifically, the
procedure foresees the computation of equivalent and deterministic circuit models
describing the time-domain behavior of the PC coefficients of the port voltages and
currents, starting from the original stochastic system, which are then connected to-
gether according to the original circuit topology. In the PC jargon, such models
are usually referred to as “augmented” [8], since their number of ports is higher
with respect to the corresponding stochastic elements. However, as the model is
deterministic, a single transient circuit simulation (e.g., in SPICE) allows deter-
mining all the PC expansion coefficients in (3.1) and hence the desired statistical
information.

At this point, it is important to stress two important features offered by the
advocated modeling strategy to circuit designers:

• The equivalent models can be constructed with the desired level of modular-
ity. For example, subparts that have already a circuit-level description can
still be modeled using the approaches for lumped and distributed elements
in [10] and [4], respectively. However, if the stochastic behavior of their
inner voltages and currents is not of interest, they can be encompassed in a
larger macromodel.

• Circuit-EM co-simulations are avoided, as every block is synthesized into a
SPICE-compatible equivalent circuit network.

The method adopted for the modeling of linear networks is detailed in Sec-
tion 3.2.1, while Section 3.2.2 addresses the modeling of the nonlinear compo-
nents. For the sake of simplicity, in the remainder of this chapter we will describe
only the case of independent random variables, even though it is possible to extend
the proposed method to the case of correlated random variables [1, 2]. Further-
more, only orthonormal PC basis functions will be considered. Please note that
discussing the properties of the PC expansion is outside the scope of this contribu-
tion. The interested reader may consult [1]– [13] for an extensive reference to PC
theory.

3.2.1 Stochastic modeling of general passive linear systems

When a generic linear system is subjected to stochastic effects caused by random
variations of geometric or electrical parameters, here denoted by ξ, the pertinent
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scattering matrix will be ξ dependent. If such a system is embedded in a network
that is also affected by the random variables ξ̂, the incident and reflected waves
will in general depend on both ξ and ξ̂ (see Fig. 3.1). The scattering relations can
therefore be expressed as

b(ξ, ξ̂, s) = S(ξ, s)a(ξ, ξ̂, s) (3.2)

where S is the scattering parameter matrix of the stochastic linear system, s is the
Laplace variable, and a ∈ CN×1 and b ∈ CN×1 are the incident and reflected
waves, respectively, with N the number of ports of the system.

The starting point of the proposed method is the computation of a PC model
of the system scattering parameters over a discrete set of frequency values fl for
l = 1, . . . , L (or the Laplace variable sl = j2πfl) as:

S(ξ, sl) ≈
MS∑
i=0

Si (sl)ϕi(ξ) (3.3)

where MS + 1 is the number of basis functions depending only on ξ. Any non-
intrusive PC-based approach can be used for this purpose: the PC coefficients in
(3.3) can be obtained via linear regression-, numerical integration- [2], or stochas-
tic testing (ST)-based techniques [14], for example.

Now, it is easy to express (3.3) with respect to all the random variables consid-
ered

(
ξ̂, ξ
)

as

S(ξ̂, ξ, sl) ≈
M∑
i=0

Si (sl)ϕi(ξ̂, ξ) (3.4)

since ϕi(ξ) for i = 0, . . . ,MS are a subset of ϕi(ξ̂, ξ) for i = 0, . . . ,M , thanks to
the property that, for independent random variables, the PC basis functions in (3.4)
are the product combination of the basis functions for each random variable con-
sidered [1, 2]. Hence, all the PC coefficients in (3.4) for basis functions depending
on ξ̂ are zero.

Nevertheless, a full expression of the PC expansion in the form (3.4) is re-
quired to properly account for the additional variability introduced by the rest of
the network.

Now, by following the approach presented in [8], it is possible to apply Galerkin
projections (GP) [1] to (3.2) and describe the relationship between the PC coeffi-
cients of the incident and reflected waves as:

bPC(sl) = SPC(sl)aPC(sl) for l = 1, . . . , L (3.5)

where the vectors aPC , bPC ∈ C(M+1)N×1 collect the (deterministic) PC coeffi-
cients of the corresponding incident and reflected wave, respectively, with M + 1

the total number of the PC basis functions, whereas SPC ∈ C(M+1)N×(M+1)N is
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a deterministic matrix, obtained by suitable combination of the PC coefficients of
the scattering matrix in (3.4).

Equation (3.5) describes a new system, whose port voltages and currents are
the PC coefficients of those of the original stochastic system. Note that SPC is
M + 1 times larger than the original system in terms of number of ports. Fur-
thermore, the matrices SPC(sl) for l = 1, . . . , L are sparse by construction [8],
since in (3.4) some PC coefficients are zero, as discussed above. Finally, in [8] it is
proven that SPC can still be regarded as a scattering parameter matrix, now relat-
ing the PC coefficients of the incident and reflected waves: its passivity conditions
are therefore the same as for deterministic scattering parameters.

At this point, a rational model of SPC is built by means of the Vector Fit-
ting (VF) technique [15], where a pole-flipping scheme is used to enforce stability,
while passivity assessment and enforcement are accomplished by using standard
and robust techniques [16]. Then, it is straightforward to convert such a rational
model into a corresponding state-space representation [15], which can be con-
verted into an equivalent circuit via a suitable synthesis technique [17].

A key step in any modeling process is adopting a suitable error measure and
error threshold. The maximum absolute model error (MER) between the ele-
ments of the scattering parameter augmented matrix Si,jPC and the corresponding
VF model responseHi,j

PC in the entire frequency range is chosen in [8] to compute
the desired rational model of SPC :

MER = maxi,j,l

(
|Si,jPC(sl)−Hi,j

PC(sl)|
)

(3.6)

for i, j = 1, . . . , (M + 1)N and l = 1, . . . , L. Note that in [8], the choice of
the MER error threshold was left to the designer’s expertise, by considering that
modeling SPC is similar to modeling a deterministic scattering parameter matrix.
Here, a new criterion is provided based on the unique characteristics of the SPC
augmented system. Indeed, thanks to the properties of the GP method, it is easy to
prove that all the non-null elements of the firstN×(M + 1)N or (M + 1)N×N
block of SPC are, by construction, formed by the PC coefficients of the scattering
parameter matrix in (3.4).

Since the first two stochastic moments, i.e., the meanµ and the standard devia-
tion σ, can be analytically computed from these coefficients [1, 2] in the following
the MER error threshold in (3.6) is chosen such that the differences:{

errormean(sl) = max(|µ(sl)− µH(sl)|)
errorsigma(sl) = max(|σ(sl)− σH(sl)|)

(3.7)

are minimized, where µH and σH are the mean and standard deviation computed
by the VF model of SPC for all the frequency samples considered l = 1, . . . , L.
Hence, the MER error threshold in (3.6) is chosen based on the model capability
of accurately estimating the stochastic moments (3.7).
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Finally, in [8] it is proven that the PC coefficients of the incident and reflected
waves at the k−th port of the system depend only on the corresponding voltage and
current PC coefficients at the same port, as for the original deterministic system.
This property allows one to easily connect the model of SPC to the models of the
other system subparts, as will be discussed in details in the following.

It is important to point out that the modeling approach outlined in this section
readily applies to any general electrical (e.g., circuit or EM) system supporting a
scattering representation like (3.2).

3.2.2 Stochastic modeling of nonlinear components

Nonlinear components affected by random variables ξ̂ are described by suitable
and possibly dynamic relationships between the time-domain counterparts of the
port voltages and currents, here denoted as

i(ξ, ξ̂, t) = F(v(ξ, ξ̂, t), t, ξ̂) (3.8)

where vectors v(ξ, ξ̂, t) and i(ξ, ξ̂, t) collect all port voltages and currents, whereas
F is understood to be a vectorized operator whose k−th row, ik = Fk(v, t, ξ̂),
describes the nonlinear relationship between the k−th port current and (all) port
voltages. This can be either an explicit nonlinear function or an implicit charac-
teristic imposed by a generic nonlinear component or subcircuit (e.g, diode, tran-
sistor, or behavioral model). As already mentioned for the linear components, the
port voltages and currents are stochastic as a result of the variability in both the
linear and nonlinear parts of the network, and F is subjected to stochastic effects,
but only due to ξ̂.

Replacing the port voltages and currents in (3.8) with their PC expansions, and
enforcing the resulting equation to hold for M + 1 values {ξm, ξ̂m}Mm=0 of the
random variables, pre-determined via the ST algorithm [9], yields a deterministic
system ofM+1 equations in the voltage and current PC coefficients. For example,
for the current at the k−th port:

a00ik0(t) + . . .+ a0M ikM (t) = Fk(a00v0(t) + . . .+ a0MvM (t), t, ξ̂0)
...

...
aM0ik0(t) + . . .+ aMM ikM (t) = Fk(aM0v0(t) + . . .+ aMMvM (t), t, ξ̂M )

(3.9)
where ami are mere scalar coefficients obtained by evaluating the i−th PC basis
function at the m−th ST point:

ami = ϕi(ξ̂m, ξm) (3.10)

It is important to note that, while the nonlinear characteristic F‖ in (3.9) itself
depends solely on the ST points ξ̂m, its inputs depend also on the points ξm.
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In general, even for deterministic nonlinear elements, the voltage and current PC
coefficients are coupled, as opposed to the case of deterministic linear compo-
nents [10, 13].

From (3.9), an explicit relation for the coefficients of the port current is ob-
tained by inverting the system (3.9) in matrix form: ik0(t)

...
ikM (t)

 =

 a00 . . . a0M

...
. . .

...
aM0. . . aMM


−1

×

 Fk(a00v0(t) + . . .+ a0MvM (t), t, ξ̂0)
...

Fk(aM0v0(t) + . . .+ aMMvM (t), t, ξ̂M )


(3.11)

The system (3.11) has a SPICE-compatible circuit interpretation, as described
in [13]. It can be inferred from the vector term in the r.h.s. of (3.11) that such
an equivalent circuit requires M + 1 deterministic replicas of the nonlinear com-
ponent, for which the stochastic parameters are evaluated as defined by the corre-
sponding ST points. The general topology of the circuit model is, however, inde-
pendent of the specific type of nonlinear element, as long as it has a description of
the form (3.8).

3.2.3 Overall network model

The augmented deterministic models described in Sections 3.2.1 and 3.2.2 must
be suitably connected together to produce the complete model of the stochastic
network under study. This is done in accordance with the original network topol-
ogy. For example, Fig. 3.2 (a) shows the connection of a 2-port nonlinear device
to a 2-port linear network. The two components are subjected to stochastic effects
due to two random variables ξ̂ and ξ, respectively. For the sake of illustration, we
consider a first-order PC expansion, leading to a total of three basis functions. The
extension to systems with a higher number of ports and/or of PC basis functions is
straightforward.

The SPICE-compatible circuit model for the nonlinear part is shown in Fig. 3.2
(b). It includes three instances F(ξ̂0), F(ξ̂1), F(ξ̂2) of the original stochastic non-
linear component, in which the random parameter ξ̂ is set to values ξ̂0, ξ̂1 and ξ̂2,
respectively. The required voltages at the ports of these instances are produced by
means of controlled voltage sources, with coefficients as in (3.10). Analogously,
the correct expression of the currents in the main circuit (3.11) is reproduced by
means of controlled current sources, with coefficientsb00 b01 b02

b10 b11 b12

b20 b21 b22

 =

a00 a01 a02

a10 a11 a12

a20 a21 a22

−1

(3.12)

The interested readers may consult [13] for more detailed information about this
model.
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Figure 3.2: (a) Connected nonlinear and linear systems subjected to stochastic effects; (b)
and (c) Deterministic equivalent models of the stochastic nonlinear and linear systems.
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The model for the linear system in Fig. 3.2 (c) is synthesized into an equiv-
alent SPICE netlist consisting of lumped elements, which suitably describes the
augmented system SPC that is obtained as described in Section 3.2.1. It is clear
that each port of the original systems is now described by three corresponding ports
in the augmented models, one for each PC coefficient of the port voltages and cur-
rents. The connectivity between the ports remains consistent for the augmented
models, as shown in Fig. 3.2.

The resulting netlist can be readily simulated in a SPICE-type circuit simula-
tor. A single time-domain simulation simultaneously yields all the PC coefficients
of the port voltages and currents, which in turn provide comprehensive statistical
information. The outlined modeling strategy offers circuit designers a modular

Non-intrusive calculation of 

S-parameter PC expansion

GP

Vector fitting

( )PC lsS 1, ,l L

 State space model of PCS

Equivalent circuit 

Evaluating basis 

function at ST points

Equivalent circuit 

Connected circuit

PC coefficients of port signals

Synthesis[17]
[13]

Linear part

Nonlinear part

One single SPICE simulation

Figure 3.3: Flowchart of the proposed statistical simulation framework.

and powerful tool allowing for the stochastic analysis of a system consisting of an
arbitrary combination of passive linear systems and nonlinear components, each
possibly affected by variability. The flowchart of the proposed modeling frame-
work is shown in Fig. 3.3.

3.3 Applications and numerical results

This section discusses two application examples, concerning the SI analysis of
i) an interconnect tree and ii) a nonuniform differential link. All the time-domain
simulations are carried out with HSPICE on a computer with an Intel(R) Core(TM)
I3 Processor running at 2.93 GHz and 8 GB of RAM.
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3.3.1 Interconnect tree

The first application example concerns the interconnect tree depicted in Fig. 3.4,
consisting of both lumped interconnections and microstrip segments, whose cross-
section is also indicated in the figure. The tree is driven at the input port by a
behavioral macromodel of an I/O transceiver of a 512-Mb Flash memory chip,
which produces a pulse with a risetime of 1 ns. The behavioral macromodel is
obtained with the techniques in [18–20]. Each of the four output ports is terminated
by a pair of diodes with saturation current IS = 50 pA, series resistanceRS = 5 Ω,
and junction capacitance CJO = 3 pF. Not shown in Fig. 3.4 is the RL power
supply network for the driver, with supply voltage VDD = 1.8 V, R = 10 mΩ and
L = 2 nH.

The thickness and relative permittivity of the microstrip substrate are assumed
to be affected by process variations and therefore to vary according to a Gaussian
distribution with a relative standard deviation of 5% of their nominal values. More-
over, the operating temperature at the receiver side is considered as an additional
Gaussian random variable with nominal value 60◦C and a standard deviation of
3◦C. This temperature fluctuation affects the operation of the diodes. Hence, there
are three independent random parameters in the entire network, and a second-order
PC expansion is used to describe the variations of the port signals, leading to a to-
tal of 10 PC basis functions. Now, in order to stress the versatility of the advocated
modeling strategy, we consider the following alternative approaches to model the

power supply
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Figure 3.4: Example 3.3.1. Schematic of the interconnect tree, composed of seven identical
lossy microstrip transmission lines, driven by a nonlinear I/O transceiver and terminated
with diodes.
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linear part of the network, based on the procedure outlined in Section 3.2.1:

• the transmission-line elements are modeled as stochastic 2-port devices, the
modeling of the remaining deterministic RLC elements being trivial, as dis-
cussed later;

• the entire linear part is modeled as a 5-port stochastic network.

In either cases, the linear models are complemented with the pertinent models of
the nonlinear (deterministic) driver and (stochastic) diodes to obtain the equiva-
lent PC-based model of the overall network. These two scenarios allow us not
only to highlight the modularity of the proposed technique, but also to assess its
performance for different modeling choices.

The scattering parameters of both the 5-port linear subnetwork and the 2-
port transmission-line elements are evaluated at 561 frequency points in the range
[0 - 3.5] GHz, 188 of which are used to build the corresponding SPC models. The
remaining samples are used for validation, thus verifying the model accuracy at
frequencies that were not used to create the model.

Note that, as a result of the multiplication of the original port numbers by the
number of PC basis functions, the model for the entire interconnection has 50
ports, while the model of each transmission-line segment has only 20 ports (see
Section 3.2.1). However, in the latter case the models for each transmission line
need to be properly connected between each other in order to describe the varia-
tion of the entire interconnection. Therefore, an equivalent model of the lumped
RLC elements must be generated as well. Yet, since these lumped elements are in
this case deterministic, the corresponding model matrix is block diagonal, which
means the transmission line models are interconnected by suitable replicas of the
original RLC elements in Fig. 3.4 [4].

At this point, two alternative deterministic equivalent models describing the
statistical variations of the interconnect in Fig. 3.4 have been computed, one start-
ing from the scattering parameters of the entire interconnection and one from the
scattering parameters of the single transmission-line elements. In the following,
the results obtained using these two models, synthesized into SPICE-compatible
networks, are denoted with “SimuI” and “SimuTL”, respectively.

Now, the performance of the proposed models is compared not only against the
results of a MC analysis, but also with the technique in [4]. Indeed, [4] offers an
accurate and efficient reference approach, which can however be used only as long
as the transmission lines are uniform, as is the case for the network of Fig. 3.4.
On the contrary, the new proposed modeling strategy is applicable to any arbitrary
line layout, as will be shown in the second application example.

Figure 3.5 shows the statistical behavior of the voltage vout at any (due to the
structure symmetry) of the output ports P2–P5 of the interconnect tree of Fig. 3.4.
The thin gray curves are a superposition of 10000 random voltages from the MC
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Figure 3.5: Example 3.3.1. Statistical analysis of the output voltage vout in the circuit of
Fig. 3.4. The thin gray lines represent 10000 samples from MC analysis; the dashed red
lines, and markers ◦, ∗ represent the 0.05%–99.95% quantiles obtained with the technique
in [4], SimuI , and SimuTL, respectively.

analysis, which give a qualitative overview of the spread due to the variability.
The dashed red lines and markers ◦, ∗ indicate the 0.05% and 99.95% quantiles
estimated with the technique in [4], SimuI and SimuTL, respectively.

The PDF and CDF can also be obtained from the PC results. For exam-
ple, Fig. 3.6 shows the PDF and CDF of the output voltage at the time instant
t = 23.08 ns, obtained by means of the MC method, as well as with SimuI and
SimuTL. The good agreement between these techniques demonstrates the accu-
racy and flexibility of the proposed approach. It is interesting to note that these
results are obtained by using PC models of the same order as for the technique
in [4], which relies however on a PC expansion of the transmission-line RLGC
parameters rather than of the scattering parameters.

The simulation of 10000 MC samples for the circuit under study required
41248 s, while SimuI , SimuTL, and the technique in [4] required 139 s, 91 s,
and 45 s, respectively. Hence, the new technique offers a great efficiency with re-
spect to the MC analysis, achieving a speed-up factor of 297× (SimuI ) and 453×
(SimuTL). This not only demonstrates the flexibility of the proposed technique,
but also shows an alternative and more efficient way to deal with complex systems
by modeling their stochastic subnetworks.

On the other hand, it should be noted that the technique in [4] offers an even su-
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Figure 3.6: Example 3.3.1. PDF and CDF of the output voltage. The solid line, and
markers ◦, + represent the PDF calculated with the MC method, SimuI , and SimuTL,
respectively; the dashed line and markers �, ∗ represent the CDF calculated from the MC,
SimuI , and SimuTL, respectively.

perior efficiency because it directly models the RLGC parameters of the transmis-
sion lines. It is well known that VF is not very efficient for modeling electrically-
long interconnects, which may lead to an increase of the model complexity with
consequent reduction of simulation efficiency as the interconnect length and/or
port number is increased. Hence, a lower computational efficiency is to be ex-
pected when simulating a network that consists of circuit components only. Nev-
ertheless, as already mentioned, the proposed approach has the considerable ad-
vantage of being more general and applicable to any passive linear system, since it
is based on a scattering representation.

3.3.2 Nonuniform differential line

Coupled microstrip lines are widely used in modern high-speed digital circuits to
transmit differential signals across boards, with higher EM immunity against con-
ducted and radiated noise, lower interference and lower crosstalk. When using
such differential line circuits, it is important to minimize the risk of differential-
to-common mode conversion. However, layout constraints due to large-scale inte-
gration and miniaturization often make line bends unavoidable, which gives rise to
such a mode conversion, and lead to a reduction in the spacing between the lines,
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which can exacerbate the impact of manufacturing variations, possibly leading to
severe signal degradation. Therefore, it is important to quantify the effects of geo-
metrical parameter variations on the SI in the early-stage design of the system.

As an example, the differential microstrip interconnect illustrated in Fig. 3.7
is analyzed in this section. The line exhibits a larger spacing between the traces
at the terminal sections, which is reduced in the central part to achieve lower area
occupation and lower mode conversion [21], and a 90-degree bend in the middle.
As shown in Fig. 3.8, this nonuniform coupled line is differentially driven at the
input ports, and it is terminated with clamp diodes to limit voltage over- and under-
shoots at the receiver side. The driver is implemented using behavioral macromod-
els of a Texas Instruments transceiver (model name SN74ALVCH16973, power
supply voltage VDD = 2.5 V). It produces a pseudo-random sequence of 1000
bits, with a bit time of 3 ns and a Gaussian jitter having a standard deviation of
0.15 ns. The diodes have saturation current IS = 50 pA, series resitanceRS = 1 Ω

and junction capacitance CJO = 1 pF.

The values of the geometrical and electrical parameters of the microstrip line
are shown in Fig. 3.7. In addition, the trace widths w1 and w2 are assumed to be
independent Gaussian random variables, having a nominal value 0.625 mm and a
relative standard deviation of 5%. It is important to note that, since this intercon-
nection must be studied by means of full-wave electromagnetic simulators and is
terminated with nonlinear devices, its stochastic analysis cannot be addressed by
previously proposed techniques.

Input

Output

w1 d w2

40.5 mm

εr=10.2

tanδ=0.002

0.04 mm

σ=5.8×107S/m

0.8 mm

Figure 3.7: Example 3.3.2. Layout and cross-section of the bent microstrip differential line.
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Figure 3.8: Example 3.3.2. Schematic of the complete differential link with driver and
terminations.

The scattering matrices of the differential microstrip line are evaluated in ADS1

at 152 frequency points in the frequency range [0 - 5] GHz: half of them is used
to build the desired model, the rest is used for validation. By following the proce-
dure described in Section 3.2.1, the augmented SPC matrix is computed for each
frequency sample starting from a PC expansion of order two, leading to six PC
basis functions. Next, the equivalent state-space model is computed by means of
the VF algorithm and then synthesized into a SPICE-compatible equivalent cir-
cuit. This equivalent circuit is complemented with the models for the driver and
terminations, which are properly interconnected as discussed in Section 3.2.

At this point, one transient SPICE simulation allows the designer to estimate
the PC coefficients of the port signals, from which stochastic information pertain-
ing the common and differential mode voltages are readily calculated.

A similar strategy is also adopted to run the comparative MC analysis. The
scattering parameters of the stochastic system are evaluated for 10000 samples of
the two random parameters w1, w2. For each sample, a stable and passive model
is obtained by means of VF and then, via the same synthesis technique [17], con-
verted into an equivalent circuit that is simulated in SPICE.

Figure 3.9 shows the probability of the common mode voltage levels, arising
from both the mismatch in line length between the two traces [21] and the asym-
metry introduced by the stochastic variations of the cross-sectional geometry [22],
over a two-bit span resulting from the superposition of 10000 MC simulations for
the entire 1000-bit input stream. The results from MC and PC-based analysis, the
latter obtained by inexpensive sampling of the PC expansion (3.1), are compared
side by side showing again excellent qualitative agreement.

Another important analysis for SI investigation is the prediction of the eye dia-
gram. Fig. 3.10 shows the eye diagram of the output differential mode (DM) volt-

1Advanced Design System (ADS), Keysight Technologies, Santa Rosa, CA.
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Figure 3.9: Example 3.3.2. Probability of common mode (CM) voltage levels in a two-bit
time window calculated from the results of MC (left) and PC-based (right) analyses.

Figure 3.10: Example 3.3.2. Eye diagram of the differential model (DM) signal with inclu-
sion of the eye opening profile computed with a 99% confidence level. Markers × and ◦
indicate the mask obtained from the MC samples and via the proposed technique, respec-
tively.

age for 10000 MC simulations of the bitstream transmission. In addition, mark-
ers ×, ◦ indicate the profile of the eye opening calculated with a 99% confidence
level, which means there is a 1% probability that the stochastic differential mode
response lies inside this mask.

Finally, Fig. 3.11 shows the probability distribution of the differential mode
voltage obtained from both the MC (left panel) and PC (right panel) results, whereas
Fig. 3.12 compares the PDF and CDF of the eye height calculated with the two
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Figure 3.11: Example 3.3.2. Probability of differential mode (DM) voltage levels calculated
from the results of MC (left) and PC-based (right) analyses.
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Figure 3.12: Example 3.3.2. PDF (full line) and CDF (dashed line) of the eye height
computed using the new proposed technique. Markers ◦ and � indicate the same quantities
computed with the MC method.

methods. An excellent agreement between MC and the proposed PC-based tech-
nique is once again established.

As far as the computational times are concerned, the MC analysis based on
10000 samples required 5 d 19 h 44 m for the S-parameter extractions, 1 h 1 m for
10000 circuit models building and 22 d 14 h 49 m for the time-domain simulations.
In contrast, the new proposed technique required 20 m 58 s, 9.4 s and 1 h 21 m for
these three phases, respectively, thus achieving a speed-up of about 400× for each
phase.
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3.4 Conclusion
The efficient stochastic SI analysis of complex circuits including both passive
linear subnetworks and nonlinear components is addressed in this chapter. The
proposed framework is based on representing the stochastic port voltages and cur-
rents of each component or subsystem as PC expansions. Deterministic augmented
models are computed that describe the relationship between the pertinent PC co-
efficients. Such augmented models are synthesized into equivalent circuits, which
are properly interconnected and solved with a single SPICE simulation to retrieve
the time-domain behavior of the PC coefficients. From these PC coefficients, rel-
evant statistical information about SI is obtained. The proposed method is mod-
ular and applicable to a broad range of systems composed by different elements
(lumped, distributed, passive and active ones), thereby significantly expanding the
scope of applicability of existing PC-based techniques. The accuracy, efficiency
and flexibility of the modeling framework are illustrated by means of relevant nu-
merical examples concerning SI investigations of digital interconnects.
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Abstract

In this chapter, a novel modeling and simulation method for general linear, time-
invariant, passive photonic devices and circuits is proposed. This technique, start-
ing from the scattering parameters of the photonic system under study, builds a
baseband equivalent state-space model which splits the optical carrier frequency
and operates at baseband, thereby significantly reducing the modeling and simu-
lation complexity without losing accuracy. Indeed, it is possible to analytically
reconstruct the port signals of the photonic system under study starting from the
time-domain simulation of the corresponding baseband equivalent model. How-
ever, such equivalent models are complex-valued systems and, in this scenario, the
conventional passivity constraints are not applicable anymore. Hence, the passivity
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constraints for scattering parameters and state-space models of baseband equiva-
lent systems are presented, which are essential for time-domain simulations. Fur-
thermore, the built complex-valued baseband models can be analytically converted
to real-valued ones, which preserve all the properties of physical systems and can
be simulated in a variety of solvers. Several suitable examples demonstrate the
feasibility, accuracy and efficiency of the proposed method.

4.1 Introduction

Over the last decade, photonic integrated circuits (PICs), and especially silicon
photonics, gained a lot of popularity due to their compatibility with the manufac-
turing processes used in the CMOS industry. Given the rapid development of PICs
in terms of complexity and integration scale, photonic design automation (PDA)
tools for photonic circuit simulations, and photonic-electronic co-simulation [1–4],
become of paramount importance.

In this framework, it is fundamental to build compact models which can accu-
rately and efficiently mimic the behavior of photonic devices and circuits, for both
frequency-domain and time-domain simulations. In our work, we focus on the
modeling of linear passive devices and systems whose functions roughly fall into
two categories: distributing/transporting light (e.g. waveguides), and optical wave-
length filtering for applications such as spectroscopy, wavelength division multi-
plexing (WDM) or microwave photonics (MWP) applications. Especially in the
last two applications, an efficient modeling approach of the filters, which is able
to take into account imperfections such as higher-order dispersion, wavelength-
dependent loss, and imperfections in coupling coefficients, is urgently needed.

A common approach is to compute analytic models, which rely on the knowl-
edge of the working principles of the device under study. Such models are useful
in the design phase, because the geometrical or optical parameters (such as length,
coupling coefficient, effective index, etc.) are directly related to the performance
measures of the device considered. However, in practice, analytic models can be
derived only for simple photonic systems and there is a limit in their accuracy
when describing complex non-ideal characteristics of the system under study (i.e.
backscattering and dispersion effects). Furthermore, most of these models are gen-
erally described as frequency- (wavelength) domain models, whereas time-domain
models are needed when time-domain simulations are required to evaluate the per-
formance of the PICs, such as bit error rate and eye diagrams [1, 3].

In practice, for passive devices and circuits, their scattering parameters data
are more accessible (e.g. via electromagnetic simulations or measurements) than
accurate analytic models. Hence, it is convenient to conduct time-domain simu-
lations starting from the scattering parameters. A typical example is given by the
finite impulse response (FIR) modeling technique [5], which is based on the scat-
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tering parameters representation and is adopted in the dedicated photonic simula-
tors Lumerical INTERCONNECT [6], VPIphotonics [7] and PICWave [8]. The
accuracy provided by FIR filters substantially depends on the design methodol-
ogy employed and it inherently degrades near the edges of the simulated signal
bands [5].

In the electronic field, a popular compact modeling approach for distributed
devices, such as nonuniform transmission lines or microstrip filters, leverages on a
frequency-domain system identification technique named vector fitting (VF) algo-
rithm [9], which is able to build stable and passive rational models of the scatter-
ing parameters of the devices under study. Then, these frequency-domain mod-
els can be directly converted to an equivalent state-space representation in the
time domain. This technique is widely applied to electronic systems, for exam-
ple in [9–14].

Since the VF method is developed for linear, time-invariant, passive systems
and is based on their transfer function representation (e.g. scattering parameters),
it is immediately applicable to passive photonic devices and circuits [15]. How-
ever, compared to electronic systems, the frequency range of interest for photonic
systems is typically around [187.5; 200] THz, corresponding to a wavelength of
[1.5; 1.6] µm, commonly used for telecommunication applications. Such a wide
range at high frequencies has a direct impact on the modeling and simulation pro-
cesses, which can become very time and/or memory consuming.

To address this problem, a novel modeling method is proposed in this chap-
ter, which is based on baseband equivalent signal and system representation. In
particular, the proposed modeling approach computes an accurate baseband equiv-
alent state-space representation, starting from the scattering parameters of the pho-
tonic system under study evaluated at optical frequencies. However, such equiva-
lent state-space model is complex-valued, and not physically realizable. Further-
more, the stability and passivity constraints on scattering parameters and state-
space models of complex-valued systems, which are fundamental properties for
time-domain simulations, appear yet to be missing in literature. In this work, we
rigorously discuss these conditions for the proposed baseband equivalent systems
based on the classic definitions of stability and passivity to validate the feasibility
of the proposed time-domain simulation method. The proposed technique offers
two main advantages: 1) the modeling process is based on the scattering param-
eters, which makes it a widely applicable method for generic linear passive pho-
tonic components and circuits; 2) the state-space representation is a continuous
time-domain model, which can be efficiently simulated in the time domain with-
out involving convolution, fast Fourier transform (FFT), or inverse fast Fourier
transform (IFFT), thereby making this method robust and accurate.

The remainder of this chapter is organized as follows: Section 4.2 presents an
overview of the “standard” modeling approach based on the VF algorithm, while
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Section 4.3 introduces the baseband equivalent signals and systems and describes
the novel proposed modeling framework. The stability and passivity constraints of
such systems are discussed in Section 4.4. A practical guideline for the applica-
tion of the proposed modeling approach is given in Section 4.5 while Section 4.6
validates the proposed method by means of three pertinent numerical examples.
Then, Section 4.7 extends the applicable range of the proposed technique and the
real-valued baseband model is derived in Section 4.8. Finally, Section 4.9 presents
two suitable examples validating the accuracy and efficiency of the real-valued
baseband modeling technique, and conclusions are drawn in Section 4.10.

4.2 Conventional state-space modeling of photonic
systems

In both electronics and photonics, the scattering matrix is widely used to describe
the behaviors of passive devices and circuits:

b(s) = S(s)a(s) (4.1)

where s is the Laplace variable, a(s) and b(s) are the forward wave and backward
wave, respectively, and S(s) is the scattering matrix of the system under study,
which can be obtained through simulations or measurements. The aim of the ra-
tional modeling is to find a Laplace-domain model of (4.1) in a pole-residue form
as

S(s) =

K∑
k=1

Rk

s− pk
+D (4.2)

where D ∈ Rn×n,Rk ∈ Cn×n, k = 1, · · · ,K, n and K being the number
of ports of the system under study and the number of poles used to approximate
the scattering parameters, respectively. Typically, all the elements Sij(s) of the
scattering matrix representation (4.2) use a common denominator polynomial and
pole-set [p1, p2, · · · , pK ], where such poles are either real quantities or complex
conjugate pairs [9]. The identification of poles pk and residue matrices Rk can
be performed via the VF algorithm [9, 16–19], starting from a set of the scattering
parameters under study obtained for sr = j2πfr with r = 1, . . . , R. It is important
to remark that the model (4.2) can be considered as a black-box model and its poles
do not necessarily represent the physical poles of the system under study.

However, it is important to note that the sign convention ejwt is commonly
used in the electronics field to represent the incident and reflected waves in (4.1),
while e−jwt is sometimes adopted in the optics field [20, 21]. Hence, the scattering
matrix defined with one sign convention is the complex conjugate of the other. The
VF algorithm is based on the assumption that the sign convention ejwt is adopted,
since it has been originally developed for electromagnetic problems. In case e−jwt
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is used to define the scattering parameters under study, a simple solution is to apply
the VF algorithm to the complex conjugate of the scattering matrix.

Then, the rational model (4.2) can be transformed to state-space form by a
simple rearrangement [18, 22]

S(s) = C(sIm −A)−1B +D (4.3)

where A ∈ Cm×m, B ∈ Rm×n, C ∈ Cn×m, D ∈ Rn×n, m = nK and Im is
the identity matrix of size m × m in this chapter. In particular, A is a diagonal
matrix with all the poles as diagonal elements while C contains all the residues,
and they can be always converted to real matrices as long as the poles and residues
are real or complex conjugate pairs [18].

Now, it is straightforward to convert (4.3) to an equivalent state-space repre-
sentation in the time domain [22] as

dx(t)

dt
= Ax(t) +Ba(t)

b(t) = Cx(t) +Da(t)

(4.4)

where x(t) ∈ Rm×1 is the state vector.
Note that, fundamental properties for time-domain simulations such as the sta-

bility and passivity of models in the form (4.4) must be assured [14]. While the
stability of VF models can be guaranteed by construction by means of suitable pole
flipping schemes [9], their passivity can be checked and, eventually, enforced only
after the rational model is computed by adopting passivity enforcement techniques.
Indeed, due to the unavoidable numerical approximations, the rational model com-
puted might be non-passive. Several robust passivity enforcement methods have
been proposed in the literature, see for example [17–19]. Now, time-domain sim-
ulations can be carried out by solving the system of first-order ordinary differ-
ential equations (ODE) (4.4) via suitable numerical techniques [23, 24]. These
approaches iteratively solve (4.4) for a discrete set of values of the time, which are
chosen via suitable algorithms (i.e. fixed or adaptive time-step). In particular, the
computational cost of solving (4.4) depends on three main elements:

• the bandwidth of the signals considered, which define the maximum time-
step ∆tmax that can be adopted: ∆tmax must be smaller than the highest
frequency component of the signals considered;

• the numerical technique adopted to solve (4.4);

• the number of poles K and of ports n of the system under study, which
directly determine the number of states m = nK.

The modeling technique described so far allows one to simulate any generic
linear and passive system in the time or frequency domain and it has found exten-
sive applications in the electronic engineering problems [9–14]. However, when it
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comes to photonic circuits one substantial difference arise with respect to the elec-
tronic domain: the range of frequency of interest is, for example, typically around
[187.5; 200] THz, corresponding to a wavelength of [1.5; 1.6] µm, or even higher
frequencies for shorter wavelengths. This has a major impact on the modeling and
simulation complexity of the approach described so far. Indeed, a high number
of poles K can be required to accurately model the scattering parameters in the
chosen frequency range and the passivity enforcement phase can become compu-
tationally prohibitive. Furthermore, the corresponding ODE (4.4) will have a high
number of equations and a small time-step (of the order of femtoseconds) must be
adopted to solve it.

In order to tackle these issues, a novel approach based on baseband equivalent
state-space models is proposed in this contribution, which can be applied to either
a large or relatively small modeling frequency range for time-domain simulations.

4.3 Baseband equivalent state-space models for time-
domain simulation of photonic systems

The basic concepts of baseband equivalent signals and systems are first introduced
in Section 4.3.1, given their importance in the definition of the proposed modeling
approach, which is described in Section 4.3.2.

4.3.1 Baseband equivalent signals and systems

The excitation signal of photonic systems is often an amplitude and/or phase mod-
ulated signal with optical carrier and electronic modulating signals, which can be
written in the following form

u(t) = A(t) cos(2πfct+ φ(t)) (4.5)

where A(t) is the time-varying amplitude or envelope of the modulated signal,
and φ(t) is the time-varying phase. In electronics or radio-frequency (RF) appli-
cations, both A(t) and φ(t) relate to electronic signals, such as voltage, current or
electric field. In photonics, the optical carrier frequency fc is much higher than
the bandwidth of A(t) and φ(t), given that the wavelength of light is much smaller
than the one of RF signals, so the representation (4.5) is often called a bandpass
signal.

An analytic complex-valued representation of the real-valued signal (4.5), called
analytic signal, is introduced here as [25]

ua(t) = u(t) + jH(u(t)) = A(t)ej(2πfct+φ(t)) (4.6)
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whereH(u(t)) is the Hilbert transform of u(t). In the frequency-domain equation
(4.6) becomes

Ua(f) = 2U(f)Step(f) (4.7)

where Ua(f) and U(f) are the Fourier transform of ua(t) and u(t), respectively,
and Step(f) is a unit step function defined by

Step(f) =


1, f > 0

1

2
, f = 0

0, f < 0

(4.8)

Now, the corresponding baseband equivalent signal of the bandpass signal is
defined as

ul(t) = ua(t)e−j2πfct = A(t)ejφ(t) (4.9)

Ul(f) = 2U(f + fc)Step(f + fc) (4.10)

which can be considered as the complex envelope optical signal representation
and is widely used in photonics and optical fiber communication. The relations
between u(t),H(u(t)) and ul(t) in the time- and frequency-domain are [25]

u(t) = <[ul(t)e
j2πfct] (4.11)

H(u(t)) = =[ul(t)e
j2πfct] (4.12)

U(f) =
1

2
U∗l (−f − fc) +

1

2
Ul(f − fc) (4.13)

where the superscript ∗ denotes complex conjugate operator while < and = stand
for real and imaginary parts, respectively.

In the frequency domain, the concepts of analytic signal and baseband equiv-
alent signal are intuitive: U(f) has a symmetric spectrum with respect to the
positive and negative frequencies, while Ua(f) has only a non-zero spectrum in
the positive frequencies around the carrier frequency; by shifting the spectrum of
Ua(f) in the direction of the negative frequencies of fc (or equivalently in the
time domain by multiplying ua(t) with e−j2πfct) leads to Ul(f). Such relations
are illustrated in Fig. 4.1.

If a system with impulse response h(t) and frequency response H(f) operates
in the bandwidth BW around fc satisfying fc >> BW , then it can be consid-
ered as a bandpass system. Now, the corresponding baseband equivalent system
can be defined by applying the same concepts described for the baseband signals.
Thanks to the relations among bandpass signals and systems, and their baseband
equivalents, it can be proven that the output signal of a bandpass system can be
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Figure 4.1: Spectrum of bandpass signalU(f), analytic signalUa(f), and baseband equiv-
alent signal Ul(f).
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Figure 4.2: Time-domain simulation of bandpass system and baseband equivalent system.

analytically recovered from the output of the corresponding baseband system, as
illustrated in Fig. 4.2. A detailed proof is given in Appendix 4.11.1.

It is important to remark that performing time-domain simulations of baseband
equivalent systems allows one to efficiently recover the corresponding bandpass
signals, thus avoiding expensive time-domain simulations of photonic system at
optical frequencies.

4.3.2 Realization of baseband equivalent signals and systems

Baseband equivalent signals ul(t) can be easily computed with (4.9), where ul(t)
can be a real (amplitude modulation) or a complex signal (when both amplitude
and phase modulation are applied). For example, in case of a quadrature amplitude
modulation (QAM), ul(t) can be expressed with respect to its in-phase component
I(t) = A(t) cosφ(t) and quadrature component Q(t) = A(t) sinφ(t), as ul(t) =

I(t) + jQ(t).
Note that, baseband equivalent signals and systems are widely used in the sim-
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ulation of communication systems to simplify the modulation, demodulation and
filtering process [25]. In such a scenario, continuous systems and signals are often
first sampled and defined as finite discrete sequences, and then convolution, FFT,
or IFFT are adopted for the time-domain simulation of the discrete-time represen-
tations of such signals and systems, which could lead to inaccurate results [5].

In this section, the goal is to build stable and passive continuous models for
baseband equivalent systems in state-space form, whose time-domain simulation
can also capture transient behaviors. However, a readily baseband counterpart for
(4.4) does not exist in literature. Indeed, baseband systems have an asymmetric
frequency response with respect to the positive and negative frequencies (simi-
lar to Ul(f) in Fig. 4.1) resulting in a non-physical, complex-valued system, as
described in details in Appendix 4.11.1. The VF algorithm [9] is a technique de-
veloped for physical systems with a symmetric frequency response, which can be
described with real or complex conjugate poles: this situation clearly does not hold
for baseband systems and VF cannot be directly applied to the baseband response
of the system under study.

In order to reach our goal, the first step is to express a(t), b(t) and x(t) in the
system of ODE (4.4) in the form (4.11), which gives<

dxl(t)e
j2πfct

dt
= A<[xl(t)e

j2πfct] +B<[al(t)e
j2πfct]

<[bl(t)e
j2πfct] = C<[xl(t)e

j2πfct] +D<[al(t)e
j2πfct]

(4.14)

where al(t), bl(t), and xl(t) are the baseband equivalents of a(t), b(t), and x(t),
respectively. Next, by using the Hilbert transform and the relation (4.12) to repre-
sent a(t), b(t) and x(t) in equation (4.4) leads to=

dxl(t)e
j2πfct

dt
= A=[xl(t)e

j2πfct] +B=[al(t)e
j2πfct]

=[bl(t)e
j2πfct] = C=[xl(t)e

j2πfct] +D=[al(t)e
j2πfct]

(4.15)

Equations (4.14) and (4.15) allow us to write
dxl(t)e

j2πfct

dt
= Axl(t)e

j2πfct +Bal(t)e
j2πfct

bl(t)e
j2πfct = Cxl(t)e

j2πfct +Dal(t)e
j2πfct

(4.16)

After simple mathematical manipulations, (4.16) can be written as
dxl(t)

dt
= (A− j2πfcIm)xl(t) +Bal(t)

bl(t) = Cxl(t) +Dal(t)

(4.17)

which represents a realization of the baseband equivalent system by means of the
state-space matrices (A− j2πfcIm),B,C andD: in this contribution we define
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it as baseband state-space model. It is evident that such model can be obtained
by directly shifting all the poles of the corresponding state-space model (4.4) of
bandpass system by j2πfc, considering that A is a diagonal complex-valued ma-
trix with all the poles as diagonal elements, as mentioned in Section 4.2.

It is important to remark one difference between the representation (4.17) and
the definition of baseband systems: in (4.17) the entire frequency response of
the system under study is shifted into baseband, while for the baseband system
introduced in Section 4.3.1 only the frequency response at positive frequencies
is shifted into baseband. However, in Appendix 4.11.2 it is rigorously proven
that these two representation are equivalent in terms of time-domain simulations.
Hence, in the rest of the contribution the expression “baseband equivalent system”
does not refer to the classic definition given in Section 4.3.1 and Appendix 4.11.1,
but to the new proposed baseband equivalent “shifted” system, where the entire
frequency response of the system under study is shifted into baseband.

A similar realization of baseband equivalent systems in the frequency domain,
computed by shifting the poles of the transfer function of the corresponding band-
pass system by j2πfc, has been presented in the electronic domain in [25, 26],
but the derivation is not given. Note that the time-domain simulation methods
in [25, 26] are substantially different from the one presented here. In [25], once
the transfer function of the baseband equivalent system is obtained, it is first sam-
pled and converted to an equivalent discrete system, and then the discrete impulse
response is calculated via IFFT. Finally, the time-domain behavior of the baseband
equivalent system is simulated by convolution. In [26], first the inverse Laplace
transform is adopted to analytically convert the baseband equivalent transfer func-
tion to a continuous impulse response, then a recursive convolution technique is
used to perform time-domain simulations. In contrast, the time-domain simulation
method presented in this chapter directly solves the corresponding ODE, which is
more straightforward. However, it is crucial to prove that fundamental properties
for time-domain simulations, such as stability and passivity [14], still hold for the
proposed baseband equivalent state-space representation.

4.4 Passivity of baseband equivalent systems

The poles and residues of rational models of electronic and photonic systems are
always real, or complex conjugate pairs as discussed in Section 4.2. However,
for the baseband equivalent state-space model (4.17), the poles do not follow this
rule anymore; furthermore the corresponding frequency response is not symmet-
rical with respect to positive and negative frequencies, which makes the baseband
equivalent system a non-physical, complex-valued system. Finally, the most re-
markable difference with respect to bandpass systems is that the impulse response
of these baseband equivalent systems is not real, and with a real input, they can



VF-BASED BASEBAND MODELING OF LINEAR PHOTONIC CIRCUITS 4-11

generate a complex output.
Then, it is important to verify if such linear, time-invariant complex-valued

systems still comply with the passivity conditions of “conventional” real-valued
systems, which are listed as follows [27]:

1. Each element of S(s) is analytic in <(s) > 0;

2. In−SH(s)S(s) is a nonnegative-definite matrix for all s such that <(s) >

0;

3. S∗(s) = S(s∗).

The superscript H stands for the transpose conjugate operator. The first condition
is related to causality and stability; the second one is basically a bound for S(s);
the third ensures that the associated impulse response is real, which requires the
system to be real-valued [28]. Evidently, the third condition is not suitable for
complex-valued systems anymore. In this section, the passivity constraints for
scattering parameters of baseband equivalent systems will be proposed, and a fast
assessment of the passivity of the corresponding baseband equivalent state-space
model will be presented.

4.4.1 Passivity constraints on scattering parameters of base-
band equivalent systems

According to [27, 29, 30], an n-port electronic system is passive if, for any τ >
−∞ and v(t) ∈ L2n (L2n denotes the space of all vectors whose n components
are functions of a real variable t and square integrable over −∞ < t < ∞), it
holds

<
∫ τ

−∞
vH(t)i(t)dt ≥ 0 (4.18)

where v(t), i(t) are the voltage and current at the system ports. It is important to
note that this definition is given not only for real signals but also for complex ones.
By expressing (4.18) in terms of the forward a(t) and backward b(t) waves, the
passivity definition becomes [27, 31, 32]∫ τ

−∞
aH(t)a(t)− bH(t)b(t)dt ≥ 0 (4.19)

which is more convenient for describing photonic systems.
Following the same proof process as [27], particularly Theorem 2 and Theorem

3, the first and second passivity conditions can be derived from (4.19) for the
complex-valued systems studied in this chapter. Alternatively, the same conclusion
can be obtained via the approach in Chapter II of [31] which gave simpler formal
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proofs using the theory of distributions. The interested reader may consult [27]
and [31] for a detailed and comprehensive proof.

Therefore, we propose the following passivity constraints on the scattering
parameters Sl(s) of the baseband equivalent systems as:

1. Sl(s) is analytic in <(s) > 0;

2. In−SHl (s)Sl(s) is a nonnegative-definite matrix for all s such that <(s) >

0.

Note that real-valued systems need the extra condition S(s∗) = S∗(s), which
ensures that the impulse response is real, so that a real input results in a real output,
and makes the system physically realizable. Furthermore, it is clearly mentioned
in Section IV of [27] that this requirement is independent with respect to the pas-
sivity definition in (4.18) and (4.19). Therefore this is evidently not required for
the passivity of complex-valued systems which are proposed only for simulation
purposes.

4.4.2 Fast passivity assessment of baseband equivalent systems

Passivity conditions require both scattering parameters S(s) and their baseband
equivalent Sl(s) to be bounded by unity, which implies that all singular values σ
of Sl(s) are smaller than unity at all frequencies:

σi(f) < 1, i = 1, . . . , n (4.20)

An efficient and accurate method to assess the passivity properties of state-
space models of electronic and photonic systems is based on the Hamiltonian ma-
trixM [18] defined as

M =

[
A−BL−1DTC −BL−1BT

CTQ−1C −AT +CTDL−1BT

]
(4.21)

where A, B, C, D are the state-space matrices in (4.4), while L = DTD − In
andQ = DDT − In.

A state-space model is passive if its Hamiltonian matrix has no purely imagi-
nary eigenvalues, since any imaginary eigenvalue indicates a crossover frequency
where a singular value changes from being smaller to larger than unity, or vice
versa. This approach is more reliable and efficient than sweeping the singular val-
ues over a set of discrete frequencies, especially for photonic systems which are
defined over a large frequency range.

A similar Hamiltonian matrix M l for baseband equivalent systems Sl(s) can
be derived by following the procedure in [18], leading to

M l =

[
Al −BlL

−1
l D

H
l Cl −BlL

−1
l B

H
l

CH
l Q

−1
l Cl −AH

l +CH
l DlL

−1
l B

H
l

]
(4.22)
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where Al, Bl, Cl, Dl are the complex-valued baseband equivalent state-space
matrices, while Ll = DH

l Dl−In andQl = DlD
H
l −In. The derivation ofM l

is shown in Appendix 4.11.3.
One can observe that the only difference between M and M l is the use of

the transpose conjugate operator for the state-space matrices in M l, while only
the transpose operator is required in M . Indeed, state-space models of general
electronic or photonic systems satisfy the conjugacy property S∗(s) = S(s∗): the
corresponding scattering parameters do not change if the state-space matrices A,
B,C,D are replaced with their conjugate counterparts [18]. Evidently, this is not
valid for the baseband equivalent systems.

Note that the eigenvalues of (4.22) can be obtained directly from the eigenval-
ues of the corresponding bandpass system (4.21). According to (4.17), by replac-
ingAl,Bl, Cl,Dl in (4.22) with

Al = A− j2πfcIm
Bl = B

Cl = C

Dl = D

gives

M l = M − j2πfcI2m (4.23)

where M is the Hamiltonian matrix of the corresponding bandpass system. Then
it is easy to derive (see Appendix 4.11.3)

λli = λi − j2πfc, for i = 1, . . . , 2m (4.24)

where 2m is the total number of eigenvalues, while λi and λli are the eigenvalues
ofM andM l, respectively.

Hence, the following properties hold:

• If there are passivity violations in a bandpass state-space model, the corre-
sponding baseband equivalent system (4.17) is not passive either.

• There is an one-to-one correspondence between the frequencies where pas-
sivity violations occurs in the state-space models of the bandpass and corre-
sponding baseband equivalent.

• The passivity of baseband equivalent state-space models (4.17) can be guar-
anteed by applying “standard” passivity enforcement algorithm, such as [19,
33], to the corresponding state-space models of the bandpass systems.
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4.5 Proposed modeling framework of photonic sys-
tem for time-domain simulations

The signals traveling through photonic systems are usually phase and/or ampli-
tude modulated signals over a suitable optical carrier. The modulating signals are
electronic ones, whose spectrum bandwidth is normally less than a few hundred
gigahertz, while the carrier frequency is usually defined for example in the range
[187.5; 200] THz, corresponding to a wavelength of [1.5; 1.6] µm.

The proposed modeling approach starts from evaluating the scattering param-
eters of the photonic system under study in the frequency range of interest. Next
an accurate rational model is computed via the VF algorithm. Stability is enforced
during the model-building phase via suitable pole-flipping schemes [9], while the
model passivity is checked and, eventually, enforced as a post-processing step via
robust passivity enforcement methods, such as [19, 33]. A baseband equivalent
state-space representation (4.17) can now be obtained with guaranteed passivity
by (4.24). Such model can be used to efficiently perform time-domain simula-
tions. The flowchart of the proposed modeling framework is shown in Fig. 4.3.

Evaluation of scattering matrix

VF

Shifting poles by 

 Stable and passive state-space model of    

Baseband equivalent state-space model

( )rsS 1, ,r R

( )sS

2 cj f

Time-domain simulation

ODE solverBaseband equivalent inputs

Figure 4.3: Flowchart of the proposed modeling framework for time-domain simulation of
photonic systems.

In particular, when it comes to building state-space models of photonic systems
for time-domain simulations, there are two options:

1. modeling the frequency range of interest, e.g. [187.5; 200] THz, noted as
Model A (covering a large frequency range);

2. considering only the frequency range corresponding to the spectrum of the
optical input signals under study around the carrier frequency, normally
a few hundred gigahertz, noted as Model B (covering a small frequency
range).
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187.5 THz 200 THz

12.5 THz

Model B

fc=193 THz f

Model A

300 GHz
-5.5 THz 7 THz

12.5 THz

Model LB

0 f

Model LA

300 GHz

Figure 4.4: Frequency ranges of Model A, LA, B, and LB.

Models compact flexible simulation at baseband
Model A ×

√
×

Model B
√

× ×
Model LA ×

√ √

Model LB
√

×
√

Table 4.1: Comparison of different modeling strategies.

The corresponding baseband equivalent state-space models are indicated as
Model LA and Model LB, respectively. The modeling frequency ranges of these
four models are illustrated in Fig. 4.4 when assuming fc = 193 THz and the
spectrum of the optical input signal of interest is 300 GHz. Note that Model A
and B can also be used directly to evaluate the behavior of the chosen photonic
system in the time domain: such modeling strategies follow the approach outlined
in Section 4.2.

It is important to remark that Model A and LA are likely to require more poles
as compared to Model B and LB, since they are computed over a larger band-
width: the modeling complexity is higher and the corresponding system of ODE
will be larger. If the scattering parameters under study are very dynamic in the
range [187.5; 200] THz, the modeling process can become prohibitively expen-
sive, making it practically infeasible to build accurate, stable and passive models.
However, this approach offers more flexibility since the corresponding models can
be used for any value of the carrier frequency in the frequency range [187.5; 200]

THz, while Model B and LB must be constructed anew for each value of the carrier
frequency considered.

It is important to note that both Model LA and LB operate at baseband, which
means that a relatively large time-step can be used to solve the corresponding ODE
for time-domain simulation, thereby saving both computational time and memory
storage. Table 4.1 compares the advantages and disadvantages of different ap-
proaches considered during the model building and time-domain simulation pro-
cess.

Finally, no matter which model is used for the time-domain simulation, the
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modeling frequency range must be larger than or at least equal to the frequency
range of the input signals considered. Indeed, no information on the scattering
parameters behavior outside such modeling frequency range is provided to the VF
algorithm: the model obtained via the VF approach extrapolates the scattering
parameters outside the modeling frequency range. Hence, while the state-space
model computed is stable and passive at [0; ∞] Hz, it is not possible to guarantee
its accuracy outside the modeling frequency range. Therefore, if the input signal
is noisy, the spectrum of the noise should also be considered during the model
building phase.

4.6 Numerical examples

This section presents three application examples of the proposed modeling and
simulation technique. The scattering parameters of the photonic systems under
study are evaluated via Caphe [34], while the time-domain simulations are carried
out in MATLAB via the routine lsim on a personal computer with Intel Core i3
processor and 8 GB RAM.

4.6.1 Mach-Zehnder interferometer

In this example, the Mach-Zehnder interferometer (MZI) shown in Fig. 4.5 is stud-
ied, which is formed by two identical directional couplers (with coupling coeffi-
cient 50/50) and two waveguides with lengths 150 µm (upper one) and 100 µm
(lower one). Both waveguides have effective index 2.35 and group index 4.3 at
1.55 µm, and a propagation loss of 200 dB/m. The time-domain simulation is
carried out with the conventional modeling technique (in Section 4.2) and the pro-
posed baseband equivalent modeling approach. For comparison, an analytic model
for MZI is also built by considering the loss and dispersion of the waveguides. The
directional coupler is assumed to be an ideal signal spliter or combiner, which adds
a π/2 phase delay to the cross-coupled signals. The time-domain simulation of this
analyitical model is conducted as a benchmark.

The RF modulation signal is a smooth pulse with amplitude 1 V, a rise/fall time
of 5.7 ps, width of 32 ps, initial delay of 18 ps, and a spectrum bandwidth of 100
GHz. An optical carrier of frequency fc = 193.72 THz, which is chosen at random
in the frequency range [187.5; 200] THz, is used to transmit the modulation signal
through the MZI. Note that we assume the RF signal is ideally modulated on the
carrier via amplitude modulation. Both the modulated signal at optical frequencies
and the smooth RF pulse are shown in Fig. 4.6.

Model A is built starting from the MZI scattering parameters in the range
[187.5; 200] THz, while Model B requires only the scattering parameters in [fc −
∆; fc + ∆], where the choice ∆ = 150 GHz allows one to cover the entire spec-
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Figure 4.5: Example 4.6.1. The geometric structure of the MZI under study.
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Figure 4.6: Example 4.6.1. The electronic signal and amplitude modulated optical signal
for the MZI.

trum of the modulated optical signal. In particular, first the frequency samples have
been divided in two groups: one to compute the desired rational model (modeling
data) and the other to verify its accuracy (validation data). Then Model A and B
are built via the VF algorithm with 67 poles and 8 poles, respectively, aiming at a
maximum absolute error of less than -60 dB between the model and MZI scatter-
ing parameters. Finally, Model LA and LB can be derived analytically from Model
A and B, as shown in Section 4.3.2.
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The accuracy of Model A and LB in the frequency-domain is shown in Fig. 4.7
and Fig. 4.8, respectively, which show both the magnitude and the phase of the
MZI scattering parameters obtained by Caphe and by the corresponding state-
space models.

Time-domain simulations are carried out with all the four models considered;
while for Model A and B a time-step 0.23 fs is adopted, a time-step of 0.4 ps can
be used for Model LA and LB. Meanwhile, time-domain simulation of the analytic
model built according the underlying physical principle of the MZI is performed
in Caphe to validate the accuracy of the other models. The outputs at port P3

of Model A, Model LB, and the analytic model are shown in Fig. 4.9. According
to Section 4.3, the magnitude of the outputs of Model LB is the envelope of the
output of Model A, and this fact is exactly illustrated by Fig. 4.9. In addition, it is
easy to observe that the output of Model LB accurately matches the analytic model
prediction.

The time for model building and time-domain simulation for all the different
models are present in Table 4.2. It clearly shows that modeling only the small
frequency range (Model B and LB) rather than the large frequency range (Model
A and LA) consumes far less time and results in compact models. Note that the
time-domain simulation at baseband with compact models, such as Model LB, is
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Figure 4.7: Example 4.6.1. Comparison of the magnitude (top) and phase (bottom) of the
MZI scattering parameters extracted via Caphe (full blue line) and Model A (red dashed
line), where the green dots represent the corresponding absolute error.
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Figure 4.8: Example 4.6.1. Comparison of the magnitude (left) and phase (right) of the
MZI scattering parameters extracted via Caphe (full blue line) and Model LB (red dashed
line), where the green dots represent the corresponding absolute error.
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Figure 4.9: Example 4.6.1. The output at port P3 of the MZI, the red line is the absolute
value of the complex signal obtained by the time-domain simulation of Model LB, the blue
line is the corresponding signal from Model A, while the marker × denotes the same signal
from the analytic model.

the most efficient, which is consistent with the analysis in Section 4.5.
Finally, the following test illustrates the importance of choosing the correct

modeling frequency range, as mentioned in Section 4.5. Let us assume an elec-
tronic pulse signal with width of 1 ps and spectrum in the range [0; 6] THz as the
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Models
Time
step

Poles
number

Model
building

Time-domain
simulation

Model A 0.23 fs 67 2.10 s 35.66 s
Model B 0.23 fs 8 0.028 s 2.16 s

Model LA 0.4 ps 67 2.10 s 0.49 s
Model LB 0.4 ps 8 0.028 s 0.024 s

Table 4.2: Example 4.6.1. Efficiency comparison of the different modeling strategies.
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Figure 4.10: Example 4.6.1. Time-domain simulation of Model LA and LB with very narrow
pulse input signal. The black line is the electronic input signal, the red solid line is the output
at port P3 of the analytic model, while the blue dashed line and green dotted line indicate
the outputs at the same port of Model LA and LB, respectively.

input signal of Model LA and LB of the MZI. The corresponding output at port P3

is shown in Fig. 4.10: Model LA still gives very accurate results compared to the
analytic model, while the output of Model LB is not even close to the benchmark.
The reason is that the modeling frequency range (12.5 THz) of Model LA covers
the spectrum of the input signal, but this does not hold for Model LB.

4.6.2 Ring resonator

In this example, a double ring resonator (RR) is composed of two rings and two
waveguides, and designed as a narrow band flat-top filter, as shown in Fig. 4.11.
The two rings have different circumferences 20 µm (lower one) and 20.01 µm
(upper one), resulting in slightly differentR1 andR2. The ring waveguides and bus
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Figure 4.11: Example 4.6.2. The geometric structure of the double ring resonator.

waveguides have effective index 2.35 and group index 4.3 at wavelength 1.55 µm.
The coupling coefficient between waveguides and rings is 0.2, while the same
parameter (coupling coefficient) between two rings is 0.03.

First, the Model A of the ring resonator is built in the range [187.5; 200] THz
with 22 poles, while Model B is computed with 6 poles in the range [fc−∆; fc +

∆], with fc = 195.75 THz and ∆ = 450 GHz. The maximum absolute error of
both models is less than -65 dB. Next, Model LB is directly derived by shifting
the poles of model B. Figures 4.12 and 4.13 describe the frequency-domain accu-
racy for Model A and LB, respectively. In this example, a 4-QAM (Quadrature
phase-shift keying) modulated input signal is applied to P1 for time-domain sim-
ulations. The in-phase I and quadrature Q parts of the modulating signal are the
4-bits sequences (-1,-1,1,1) and (-1,1,-1,1), respectively, where each bit lasts for 20
ps. As shown in Fig. 4.14, the modulating signals are realistic analog signals, for
example affected by overshoot and undershoot. As mentioned in Section 4.3.2, the
baseband equivalent of the modulated input signal can be easily calculated, since
I and Q are its real and imaginary parts, respectively.

After conducting the proposed time-domain simulation, the outputs of Model
LB are complex, and their magnitude are the envelopes of the outputs of Model A as
shown in Fig. 4.15. Note that the outputs of model A can be analytically recovered
from the outputs of Model LB, according to (4.52). Hence, Fig. 4.16 shows a side
by side comparison of the output of Model A at port P4 and the corresponding
value recovered from Model LB. For a better observation of the accuracy of the
recovered signal, Fig. 4.17 shows a zoom of Fig. 4.16 around t = 45.6 ps, which
demonstrates an excellent agreement.
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Figure 4.12: Example 4.6.2. Comparison of the magnitude (top) and phase (bottom) of the
ring resonator scattering parameters extracted via Caphe (full blue line) and Model A (red
dashed line), where the green dots represent the corresponding absolute error.
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Figure 4.13: Example 4.6.2. Comparison of the magnitude (left) and phase (right) of the
ring resonator scattering parameters extracted via Caphe (full blue line) and Model LB (red
dashed line), where the green dots represent the corresponding absolute error.
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Figure 4.14: Example 4.6.2. The modulating signals: in-phase part I and quadrature part
Q.
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Figure 4.15: Example 4.6.2. The output at port P4 of the double ring resonator, the red
line is the absolute value of the complex signal obtained by the time-domain simulation of
Model LB, while the blue line is the corresponding signal from Model A.
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Figure 4.16: Example 4.6.2. The output at port P4 of the double ring resonator. Left: the
output of Model A. Right: the recovered bandpass output from Model LB.
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Figure 4.17: Example 4.6.2. A zoom of the output at port P4 of the double ring resonator
around t = 45.6 ps (the green rectangular area in Fig. 4.16). The blue line is used for
Model A, while the red dash line is the recovered bandpass output from Model LB.

As far as the computational times are concerned, building the Model A and LB
required 0.28 s and 0.04 s respectively while their time-domain simulations took
9.29 s and 0.05 s, respectively, which clearly demonstrates the superior efficiency
of the proposed technique when dealing with amplitude and phase modulated sig-
nals.

4.6.3 Lattice filter

A fifth order filter with a Chebyshev window, designed by using a discrete finite
impulse response (FIR) filter design method [35], is realized via a Mach-Zehnder
interferometer lattice filter (LF) [36]. As illustrated in Fig. 4.18, it is formed by
six directional couplers with power coupling coefficients of 0.008, 0.067, 0.175,
0.175, 0.067, 0.008, and waveguides with a length difference of 179 µm between
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P3P1

Figure 4.18: Example 4.6.3. The geometric structure of the Mach-Zehnder interferometer
lattice filter.

the upper and lower ones, whose effective and group index are 2.30 and 4.18, re-
spectively. In practice, due to process variations, when manufacturing photonic
devices geometrical or optical parameters can vary in a relatively small range
around their nominal value [37]; which in turn can lead to variations in the de-
vice frequency response, such as frequency shifts. In this example, we study the
time-domain influence of frequency shifts in the response of the lattice filter via an
eye diagram analysis.

For eye diagram analysis, the input signal and time-domain simulation should
last a relatively long period of time (long bits sequence), which could make the
time-domain simulation of Model A and B unfeasible. In this example, a pseudo-
random sequence of 1000 bits, with a bit time of 30 ps and a Gaussian jitter having
a standard deviation of 1.5 ps is used as modulating signal A(t). The amplitude
of such signal up to 1 ns is shown in Fig. 4.19. The total number of time-steps
required for time-domain simulations of Model A and B with such input signal is
60 million (30 ns/0.5 fs), while this number reduces to only 30,000 time-steps (30
ns/1 ps) for Model LA and LB.

The scattering matrices of the lattice filter are computed in the range [187.5; 200]

THz. However, due to the dynamic behavior of the filter frequency response
in such a wide bandwidth, the modeling complexity of Model A (LA) is very
high. Considering that the efficiency and accuracy of Model LB have been al-
ready demonstrated in Sections 4.6.1 and 4.6.2, only the time-domain simulation
of Model LB is performed.

The sequence signal is modulated on fc = 195.11 THz (λ=1.5365 µm), which
is chosen as the filter passband center frequency during the design phase. Due to
fabrication variations, let us assume that the center frequency can shift to 195.05
THz (λ=1.5370 µm) or 194.98 THz (λ=1.5375 µm), as shown in Fig. 4.20. Model
LB is built for each one of these three situations, by adopting a pole shift of
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Figure 4.19: Example 4.6.3. Pseudo-random sequence of 1000 bits for t ∈ [0; 1] ns.
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Figure 4.20: Example 4.6.3. Shift of the center frequency of passband of the lattice filter
due to the fabrication variations.
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Figure 4.21: Example 4.6.3. The eye diagrams at port P4 of the baseband equivalent
systems of the lattice filter with passband center frequency 195.11 THz, 195.05 THz, 194.98
THz (from left to right).

fc = 195.11 THz, since the excitation signal is modulated on this frequency. In
particular, the models for the three wavelength considered are built with 36 poles
achieving a maximum absolute error of -60 dB.

Then, the time-domain simulations can be easily carried out at baseband with
the pseudo-random sequence of 1000 bits. Figure 4.21 shows the eye diagram of
the power of the complex output signals at port P4 of the three baseband equiva-
lent systems, over a two-bit span resulting from the entire 1000-bit input stream.
It is evident that the signal is completely distorted when the center frequency shift
from 195.11 THz to 194.98 THz. The computational time of the time-domain sim-
ulation for generating each eye diagram is 1.09 s while building each model took
1.67 s, which is very efficient. This example shows that expensive time-domain
simulations can be efficiently performed via the proposed technique, without a loss
in accuracy.

4.7 Extension of the baseband modeling technique
A general linear, passive, and time-invariant physical system can always be de-
scribed by real-valued state-space models. They are widely used in the electronics
and control theory fields where complex models, such as (4.4), are rarely used.
Therefore, to make maximum use of such techniques for photonic circuit mod-
eling, it is important to extend the baseband modeling technique to general real-
valued state-space representations of linear photonic systems.

Let us assume that a general, linear and passive n-ports photonic system can
be represented by a stable and passive state-space model operating at optical fre-
quencies in the form: 

dx(t)

dt
= Ax(t) +Ba(t)

b(t) = Cx(t) +Da(t),

(4.25)

where A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m, D ∈ Rn×n. Even though (4.25)
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shares the same form of (4.4), It is important to note that A, B, C, D in (4.25)
are assumed as matrices with real elements: such model can be obtained by means
of the VF algorithm through a suitable conversion of the rational model (4.2) (see,
for example, the method described in [18]), but also from other approaches, such
as MOR techniques [38], while (4.4) is the particular form of state-space models
derived only from the VF technique.

Now, starting from (4.25), it is possible to derive an equivalent complex-valued
baseband state-space model by applying the same procedure described in Section
4.3.2. In the following, we define such model as general complex-valued baseband
state-space model in the form:

dxl(t)

dt
= (A− j2πfcIm)xl(t) +Bal(t)

bl(t) = Cxl(t) +Dal(t),

(4.26)

which demonstrates that the proposed baseband modeling approach is not only
applicable to a specific complex realization of the state-space matrices obtained
via VF, but also to any general state-space model. It is important to note that the
frequency response of the complex-valued model (4.26) is the frequency response
of the model (4.25) shifted by the carrier frequency fc. Indeed, expressing (4.26)
into the Laplace domain leads to

Sl(s) = C ((s+ j2πfc)Im −A)
−1
B +D

= S(s+ j2πfc),
(4.27)

where Sl(s) and S(s) are the transfer functions of the models (4.26) and (4.25)
in the Laplace domain, respectively. Hence, the frequency response of the model
(4.26) is not symmetrical with respect to positive and negative frequencies, which
makes the baseband equivalent model a non-physical, complex-valued system.

The stability and passivity of the model (4.26), which are fundamental prop-
erties for time-domain simulations [14], are now investigated. In Section 4.4, a
thorough discussion on the definition of the stability and passivity criteria for base-
band systems is presented. Here it is sufficient to remark that the same methods to
assess the stability and passivity of the state-space models of physical systems can
be employed for general baseband models as well. In particular, the stability of
a (complex- or real-valued) state-space model can be assessed by the eigenvalues
of the matrix A: the model is stable if the real part of all the eigenvalues is nega-
tive [39]. Now, let us assume that we start off with a realistic system (4.25) that is
stable (e.g. any passive linear optical filter circuit), and the corresponding matrix
A is diagonalizable, where

A = TV T−1, (4.28)

and T comprises all the eigenvectors and V is a diagonal matrix whose elements
are the corresponding eigenvalues. Note that all the eigenvalues inV have negative
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real parts, since the state-space model (4.25) is assumed to be stable. Then, it is
easy to derive

A− j2πfcIm = T (V − j2πfcIm)T−1, (4.29)

which indicates that the eigenvalues of the baseband model (4.26) are the ones of
the model (4.25) shifted over j2πfc along the imaginary axis in the complex plane.
Hence, the baseband model (4.26) is also stable (all the eigenvalues of the matrix
A− j2πfcIm, have negative real parts) if the original state-space model (4.25) is
stable.

The passivity of stable models can be verified by means of the corresponding
Hamiltonian matrix, which for the system (4.26) is

M l =

[
Al −BL−1DHC −BL−1BH

CHQ−1C −Al
H +CHDL−1BH

]
, (4.30)

where B, C, D are the real state-space matrices in (4.26), while Al = A −
j2πfcIm, L = DHD − In and Q = DDH − In. Note that for real-valued
systems the transpose operator T is used in the Hamiltonian matrix [18], but in a
complex-valued system the transpose conjugate operator H is required according
to Section 4.4.2. In particular, a (complex- or real-valued) stable state-space model
is passive if its Hamiltonian matrix has no purely imaginary eigenvalues, since
any purely imaginary eigenvalue indicates a crossover frequency where a singular
value of the scattering matrix changes from being smaller to larger than unity, or
vice versa [18]. In the following, it is proven that the general complex-valued
baseband state-space model (4.26) is passive by construction if the original model
(4.25) is passive as well.

Indeed, the Hamiltonian matrix M for the real-valued model (4.25) is in the
form (4.21) [18]. By comparing (4.30) and (4.21), it is clear that

M l = M − j2πfcI2m, (4.31)

which describes same the relation as (4.23). Hence, similar conclusion is drawn,
the baseband model (4.26) is passive (the Hamiltonian matrix M l has no purely
imaginary eigenvalues) if the original state-space model (4.25) is passive.

The methodology here presented extends the modeling power of the technique,
while preserving its main advantages: robustness in the model-building phase and
efficiency in time-domain simulations. In particular, the model stability and pas-
sivity can be guaranteed by enforcing the same properties on the model (4.25)
computed at optical frequencies. If the VF algorithm is adopted, the model sta-
bility can be guaranteed by construction and its passivity can be enforced through
robust passivity enforcement techniques [16, 19, 33].
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4.8 Real-valued baseband state-space models
Baseband state-space models represented by (4.17) and (4.26) are systems of first-
order ODE and can be simulated only in solvers which support complex-valued
signals and matrices. Whereas this complex system is compact and elegant, many
solver techniques are developed and optimized for real-valued systems, such as
SPICE, Verilog-A. In this section, a new real-valued baseband state-space model
is derived starting from the baseband model (4.26), and its stability and passivity
will also be investigated.

4.8.1 Model derivation

Complex baseband equivalent signals can be represented with respect to their real
and imaginary parts, such as for al(t)

al(t) = al<(t) + jal=(t). (4.32)

By expressing all the complex signals in (4.26) in the form of (4.32) and by solving
separately with respect to the real and the imaginary parts, lead to:

dxl<(t)

dt
=Axl<(t) + 2πfcxl=(t) +Bal<(t)

dxl=(t)

dt
=Axl=(t)−2πfcxl<(t) +Bal=(t)

bl<(t) = Cxl<(t) +Dal<(t)

bl=(t) = Cxl=(t) +Dal=(t).

(4.33)

It is important to remark that (4.33), which is a real system of ODE, can only be
derived starting from the baseband state-space model (4.26) where A, B, C, D
are real matrices: the model (4.17) proposed in Section 4.3.2 cannot be used to
obtain (4.33). Then, by defining

â(t)=

[
al<(t)
al=(t)

]
, b̂(t)=

[
bl<(t)
bl=(t)

]
, x̂(t)=

[
xl<(t)
xl=(t)

]
(4.34)

and

Â =

[
A 2πfcIm

−2πfcIm A

]
, B̂ =

[
B 0
0 B

]
,

Ĉ =

[
C 0
0 C

]
, D̂ =

[
D 0
0 D

]
,

(4.35)

where 0 represent the null matrix, equation (4.33) can be written as
dx̂(t)

dt
= Âx̂(t) + B̂â(t)

b̂(t) = Ĉx̂(t) + D̂â(t),

(4.36)
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Figure 4.22: Flowchart of the proposed baseband modeling framework for the time-domain
simulation of photonic systems.

which is defined as real-valued baseband state-space model.
It is important to remark the key difference of the novel representation (4.36)

with respect to the complex-valued baseband models (4.17) and (4.26). Indeed, the
models (4.17) and (4.26) are pure mathematical representations of the system un-
der study: their frequency response is not symmetrical with respect to positive and
negative frequencies, and their impulse response is not real: even with real input
signals, they can generate a complex output. The novel macromodel (4.36) has a
symmetrical frequency response with respect to positive and negative frequencies
and its impulse response, input and output signals are real. Hence, it retains all
properties of a physical system. It is defined as real-valued baseband state-space
model since it can be simulated at the frequencies of the electronic modulating
signal(s) rather than at optical frequencies, as for the complex-valued baseband
models (4.17) and (4.26), thus achieving a significant speed-up in terms of effi-
ciency with respect to models of photonic systems in the form (4.4) and (4.25).
Furthermore, the novel model (4.36) is a system of first-order real-valued ODE,
thereby it can be solved in a wider range of simulators than the complex models
(4.17) and (4.26), which opens up the possibility of directly simulating passive
photonic circuits with electronic ones. As remarked in the introduction, photonic-
electronic co-simulations are of paramount importance [1–4, 40, 41]. This topic
will be investigated in future contributions.

The novel model (4.36) still represents the same system as (4.26), but all the
signals (originally complex) are now split into two real-valued signals represent-
ing their real and imaginary parts, which are coupled in the system of ODE (4.36).
However, the size of (4.36) is doubled compared to (4.26) in terms of number of
ports and state variables, since the signals of (4.36) are the real and imaginary
parts of the signals in (4.26). This could have an impact in terms of simulation
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efficiency, but the model (4.36) maintains a high level of sparsity as well, as in-
dicated in (4.35). It is important to remark that the novel real-valued baseband
model (4.36) has been derived in this section starting from model (4.26). How-
ever, it can be directly computed starting from the state-space model (4.25), as
indicated in equation (4.35). Hence, the calculation of the complex-valued base-
band model (4.26) is not necessary to obtain the model (4.36). The flowchart in
Fig. 4.22 shows the proposed baseband modeling framework in the case the VF
algorithm is adopted to build the model (4.25).

4.8.2 Stability and passivity analysis of the real-valued base-
band models

Since the model (4.36) can be considered as a real, linear, and time-invariant sys-
tem with real input and output signals, the stability and passivity conditions defined
for physical linear systems [39], such as (4.25), still hold for the new model (4.36).

The stability of a state-space model can be assessed by the eigenvalue of the
matrix A, as indicated in Section 4.7: the model is stable if the real part of all the
eigenvalues is negative [39]. Let us indicate the eigenvalues of Â with the symbol
V̂k for k = 1, . . . , 2m and the eigenvalues ofAwith Vk for k = 1, . . . ,m. Starting
from (4.35), it is proven in Appendix 4.11.4 that

V̂2k−1,2k = Vk ± j2πfc. (4.37)

Hence, the real part of the eigenvalues of Â is the same as the eigenvalues of A:
the model (4.36) is stable if the original model at optical frequencies is stable.

Then, as indicated in Section 4.7, the passivity of the model (4.36) can be
verified by means of its Hamiltonian matrix, which can be written as:

M̂ =

[
M̂11 M̂12

M̂21 M̂22

]
, (4.38)

where

M̂11 =

[
A−BL−1DTC 2πfcIm
−2πfcIm A−BL−1DTC

]
,

M̂12 =

[
−BL−1BT 0

0 −BL−1BT

]
,

M̂21 =

[
CTQ−1C 0

0 CTQ−1C

]
,

M̂22 =

[
−AT +CTDL−1BT 2πfcIm

−2πfcIm −AT +CTDL−1BT

]
.
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It is not surprising that the Hamiltonian matrix for (4.36) can be expressed in terms
of block matrices, given that the state-space matrices for the real-valued baseband
state-space model are block matrices as well, as indicated in (4.35).

By performing a similarity transformation, the matrix M̄ can be obtained

M̄ = PM̂P−1 =

[
M 2πfcI2m

−2πfcI2m M

]
, (4.39)

where

P =


Im 0 0 0
0 0 Im 0
0 Im 0 0
0 0 0 Im

 , (4.40)

and M is the Hamiltonian matrix of the system (4.25), described in (4.21). Note
that, the similarity transformation (4.39) is equivalent to row and column blocks
exchanges and it can be derived by simple algebraic manipulations.

Since similarity transformations of matrices do not change their eigenvalues,
M̄ and M̂ share the same set of eigenvalues Λk with k = 1, . . . , 4m. Now, by
following the procedure described in Appendix 4.11.4, it is proven that

Λ2i−1,2i = λi ± j2πfc, (4.41)

where λi with i = 1, . . . , 2m are the eigenvalues of M . Equation (4.41) proves
that the eigenvalues of M̄ and M̂ share the same real parts with the ones of M :
the model (4.36) is passive (M̂ has no purely imaginary eigenvalue) if the model
(4.25) is passive.

Hence, this section demonstrates that the stability and passivity of the new
model (4.36) are directly determined by the properties of the original model (4.25),
and the following statements hold:

• one unstable eigenvalue (whose real part is positive) of (4.25) leads to two
unstable eigenvalues of the model (4.36).

• one crossover frequency point where a passivity violation occurs for (4.25)
leads to two crossover frequency points for the model (4.36).

4.9 Examples on photonic circuits

This section presents two application examples of the proposed modeling and sim-
ulation techniques. The scattering parameters of the photonic systems under study
are evaluated via the Caphe circuit simulator (Luceda Photonics) and electromag-
netic simulations in FDTD Solutions (Lumerical), while the time-domain simula-
tions are carried out in Matlab on a personal computer with Intel Core i3 processor
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Figure 4.23: Example 4.9.1. The modulating signals: in-phase part I(t) and quadrature
part Q(t).

and 8 GB RAM. It is important to remark that, even though Caphe and FDTD So-
lutions are chosen to estimate the scattering parameters in the proposed examples,
there is no limitation on adopting any other simulator.

4.9.1 Lattice filter

In this section, the lattice filter presented in Fig. 4.18 in Section 4.6.3 is studied
with the extended baseband modeling techniques.

Let us assume that port P1 of the filter is excited by a 4-QAM (quadra-
ture phase-shift keying) modulated optical signal with carrier frequency fc =

195.11 THz and the in-phase I(t) and quadrature component Q(t) are four bits
sequences (-1, -1, 1, 1) and (-1, 1, -1, 1), respectively, as shown in Fig. 4.23 where
overshoot and undershoot are present to mimic realistic RF signals. It is important
to remark that any RF signal with generic shape can be adopted here, as long as
the chosen modeling frequencies cover the spectrum of the signal.

The scattering parameters of the filter are simulated in Caphe in the frequency
range [fc −∆; fc + ∆], where ∆ = 380 GHz, in order to guarantee that the cho-
sen range covers the spectrum of the modulated optical signal. In this example, 181
frequency samples are used and they are uniformly distributed over the frequency
range of interest. Adaptive sampling strategies can also be adopted to choose the
frequency samples efficiently: more samples are chosen where the frequency re-
sponse is dynamic, such as resonances, and less are chosen in smooth areas [39].
Next, a state-space model is built with 39 poles via the VF algorithm, achieving
a maximum absolute error of less than -50 dB. A standard bottom-up approach is
used to select the required number of poles [39, 42]: the initial number of poles
is iteratively increased until the desired accuracy of -50 dB is reached. In particu-
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Figure 4.24: Example 4.9.1. Magnitude (top) and phase (bottom) of the lattice filter
baseband scattering parameters extracted via Caphe (full blue line) and computed via the
complex-valued baseband state-space model (4.26) (red dashed line), where the green dots
represent the corresponding absolute error.

lar, the state-space model computed is formed only by real-valued matrices, as in
(4.25). Note that, the time-domain simulation of this model computed at optical
frequencies will be used in the following as a reference to validate the accuracy
and the efficiency of the proposed method.

Next, the corresponding complex-valued baseband state-space model in the
form (4.26) can be easily computed. The frequency-domain accuracy of such
model is illustrated in Fig. 4.24, where a comparison between the model frequency
response and the corresponding baseband scattering parameters (obtained by trans-
lating the scattering parameters simulated in Caphe into baseband) is shown.

Finally, a real-valued baseband state-space model in the form (4.36) has been
computed by following the procedure described in Section 4.8.

The simulations of the three models (namely, (4.25), (4.26), and (4.36)) are
carried out with the Matlab routine lsim, and require 10 s, 0.12 s and 0.11 s,
respectively. The main speed-up factor of the proposed modeling approach is given
by the adopted time-step: the model (4.25) requires a time step of 0.25 fs, while
the baseband models (4.26) and (4.36) are simulated with a time step of 0.33 ps.

It is important to remark that the output of model (4.26) is a complex signal
and its magnitude corresponds to the envelope of the output of model (4.25), as il-
lustrated in Fig. 4.25. Furthermore, it is always possible to analytically reconstruct
the port signals of the photonic system under study starting from the time-domain
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Figure 4.25: Example 4.9.1. Output signal at port P3 of the lattice filter. The blue line
represents the signal obtained from model (4.25), while the red line and green cross repre-
sent the the absolute value of the complex signal obtained by the time-domain simulation of
(4.26) and (4.36).

simulation of the corresponding baseband equivalent model. Finally, Fig. 4.25
shows the baseband complex signals computed from the outputs of model (4.36),
according to (4.32) and (4.33).

It is evident that the time-domain simulation results of the two novel proposed
models (4.26) and (4.36) are in excellent agreement with the reference solution
obtained via the model (4.25). As additional proof of the accuracy of the proposed
modeling strategies, a comparison of the real and imaginary part of the complex
baseband signal at port P4 obtained by the complex- and real-valued baseband
models is shown in Fig. 4.26: the results demonstrate a very good match.

4.9.2 Circuit simulation

The simulation of the photonic circuit shown in Fig. 4.27, formed by two direc-
tional couplers and a lattice filter, is described in the following. The lattice filter is
the one presented in the previous section, while the two identical directional cou-
plers have 20 µm coupling length, 5 µm bend radius, and 0.15 µm gap between
coupling waveguides, whose width is 0.43 µm.

In order to simulate this circuit, the baseband models for each device in Fig. 4.27
are computed first, and then properly connected. Since the 4-QAM modulating
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Figure 4.26: Example 4.9.1. Real (top) and imaginary (bottom) parts of the output signal
at port P4 of the lattice filter obtained via the models (4.26) and (4.36), where the solid red
lines and green crosses represent the results from (4.26) and (4.36), respectively, while the
blue solid lines are the corresponding real and imaginary parts of the input signal at port
P1.

P2
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P1

Figure 4.27: Example 4.9.2. The schematic structure of the photonic circuit under study.

signal (with same carrier frequency) described in Section 4.9.1 is used to excite
the circuit at port P1, the scattering parameters of the directional coupler are eval-
uated in the Lumerical FDTD solver for the same frequency range used for the
lattice filter, namely [fc −∆; fc + ∆], where ∆ = 380 GHz. Considering that
the frequency response is rather smooth over the frequency range of interest, only
30 equidistantly spread frequency samples are selected for building the model. It
is important to note that the scattering parameters of the lattice filter are evaluated
in Caphe and its Caphe model is an ideal model without considering reflections,
while the directional coupler is simulated in Lumerical FDTD solver where the
reflection at each port is modeled. Figure 4.28 shows the transmissions and reflec-
tions characteristics of the whole circuit under study. Then, a state-space model
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Figure 4.28: Example 4.9.2. Frequency response of the photonic circuit in Fig. 4.27 in the
frequency range of interest.

in the form (4.25) is built for the directional coupler via the VF algorithm with
14 poles, achieving an absolute maximum error of less than -50 dB. Finally, the
corresponding complex- and real-valued baseband models are computed via the
approaches outlined in Sections 4.7 and 4.8, respectively.

Once the models of the lattice filter and directional coupler have been obtained,
they can be easily connected in order to describe the input/output behavior of the
circuit under study. Figure 4.29 shows an example of the connection of baseband
models computed for two-ports devices. It is very intuitive to realize that the for-
ward wave at port 3 in Fig. 4.29 is the backward one for port 2, and vice versa:
the corresponding ports of the baseband models must be connected accordingly.
The same principle applies to general types of connections (i.e. parallel, feedback,
etc.) and for any number of ports. Now, the built complex-valued and real-valued
baseband models can be readily connected via the connect routine in Matlab, fol-
lowing the method illustrated in Fig. 4.29, and the time-domain simulation can be
performed via the dedicated linear system solver lsim. Note that any hierarchical
connection can be realized via the connect routine, even if only the cascaded case
is shown in this example.

Figure 4.30 shows the magnitude of the complex baseband reflected signal at
port P1 and transmission signal at port P3 obtained with the models (4.26) and
(4.36), which again demonstrates the accuracy of the proposed techniques. The
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Figure 4.29: Example 4.9.2. Example of the connection of the baseband models of two-ports
photonic devices. (a) The physical connection; (b) the connection of the corresponding
complex-valued baseband state-space models (4.26); (c) the connection of the correspond-
ing real-valued baseband state-space models (4.36).
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Figure 4.30: Example 4.9.2. The amplitude of the reflected signal at port P1 (top) and
transmission signal at port P3 (bottom) of the circuit obtained from the simulations of the
models (4.26) and (4.36) with excitation signal shown in Fig. 4.23.

simulation of the complex- and real-valued models requires the same time: 0.42 s.
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Figure 4.31: Example 4.9.2. The amplitude of the reflected signal at port P2 (top) and
transmission signal at port P4 (bottom) of the circuit obtained by the real baseband model
(4.36) computed via the devices and circuit modeling strategies.

Rather than modeling each device separately, it is also possible to consider the
entire circuit in Fig. 4.27 as a single passive element, described by its scattering
parameters. Then, a state-space model in the form (4.25) can be built for the entire
circuit with 69 poles via the VF algorithm, achieving a maximum absolute error of
less than -50 dB. The corresponding complex- and real-valued baseband models
can be calculated as described in Sections 4.7 and 4.8, respectively. Figure 4.31
shows an example of the results of the two modeling strategies considered, namely
devices and circuit modeling: the two approaches are in excellent agreement. This
is a remarkable improvement compared with the FIR modeling technique, where
the modeling accuracy could decrease significantly when multiples FIR models
are connected [5].

The time-domain simulation of the baseband model obtained via the circuit
modeling approach requires 0.43 s, a similar computational cost to the devices
modeling approach, once again demonstrating the efficiency of the proposed method.

4.10 Conclusion

A novel modeling and simulation technique for general linear and passive pho-
tonic components and circuits has been proposed in this chapter, which is flexible,
efficient, accurate and robust. Photonics systems can be characterized by the pro-
posed baseband equivalent state-space models via the robust VF algorithm, which



VF-BASED BASEBAND MODELING OF LINEAR PHOTONIC CIRCUITS 4-41

allows for the time-domain simulations to be conducted at baseband rather than
at the optical carrier frequency. The outputs of photonic systems can be immedi-
ately recovered from the outputs of the corresponding baseband equivalent models,
thereby significantly decreasing the simulation time and memory usage. The pas-
sivity conditions of the proposed baseband equivalent systems are rigorously dis-
cussed and a fast passivity assessment method for the corresponding state-space
models is presented in this chapter. For the simulators which can only deal with
real-valued models of physical systems, the complex-valued baseband models can
now be analytically converted to real-valued ones immediately. The accuracy and
efficiency of the proposed approaches are verified by several photonic circuit ex-
amples.

4.11 Appendix

4.11.1 Time-domain simulation of baseband equivalent signals
and systems

If a system with impulse response h(t) and frequency response H(f) operates in
the bandwidth BW around fc satisfying fc >> BW , then it can be considered
as a bandpass system. Now, in a similar manner as with the baseband equivalent
signal, a baseband equivalent system with impulse response hl(t) and frequency
response Hl(f) can be defined as [25]

hl(t) =
1

2
ha(t)e−j2πfc (4.42)

Hl(f) = H(f + fc)Step(f + fc) (4.43)

where ha(t) is the analytic signal of h(t) and is defined in the same way as (4.6).
Compared with the definition of baseband equivalent signals, a factor 1/2 is

introduced into the definition of baseband equivalent systems [25]. Again, the
relations between h(t),H(h(t)) and hl(t) in the time- and frequency-domain are

h(t) = 2<[hl(t)e
j2πfct] (4.44)

H(h(t)) = 2=[hl(t)e
j2πfct] (4.45)

H(f) = H∗l (−f − fc) +Hl(f − fc) (4.46)

It is important to note that baseband equivalent signals and systems are not
physical, but constitute a mathematical representation developed only for simpli-
fying analysis and simulation of bandpass signals and systems, as discussed in the
following.
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Let us assume that the bandpass input signal, system, and output are u(t), h(t)

and r(t), respectively, while their corresponding Fourier transforms are indicated
as U(f), H(f) and R(f). Then, the following relations hold

r(t) = h(t)⊗ u(t)
R(f) = H(f)U(f)

(4.47)

where ⊗ represents the convolution operator. Now, the corresponding baseband
equivalents of the input signal and system are ul(t), hl(t), Ul(f), Hl(f). Hence,
the output signal of the baseband equivalent system can be defined as

rl(t) = hl(t)⊗ ul(t)
Rl(f) = Hl(f)Ul(f)

(4.48)

In the following, it is proven that the output of the baseband equivalent system
rl(t), Rl(f) and the output of the bandpass system r(t), R(f) have the same rela-
tions as baseband equivalent and bandpass signals (see (4.11) and (4.13)). Indeed,
starting from (4.47) and (4.48), the following relations can be derived [25]:

R(f) = F (r(t)) = H(f)U(f)

=
1

2
[Hl(f − fc) +H∗l (−f − fc)][Ul(f − fc) + U∗l (−f − fc)]

=
1

2
[Hl(f − fc)Ul(f − fc) +H∗l (−f − fc)U∗l (−f − fc)]

=
1

2
[Rl(f − fc) +R∗l (−f − fc)]

=
1

2
F (rl(t)e

j2πfct + r∗l (t)e−j2πfct)

= F (<(rl(t)e
j2πfct))

(4.49)

where the symbol F represents the Fourier transform operator. Equation (4.49)
clearly demonstrates that rl(t) is the complex envelope of the bandpass system
output: r(t) can be immediately obtained from rl(t) [25].

4.11.2 Baseband equivalent “shifted” system

In the following, we prove that the baseband equivalent “shifted” system repre-
sented by (4.17) is equivalent to the based equivalent system hl(t) in (4.42), in the
sense of time-domain simulations.

According to Section 4.3.2, the transfer function H̃l(f) and impulse response
h̃l(t) of the proposed baseband equivalent state-space model (4.17) can be de-
scribed as

H̃l(f) = H(f + fc) = Hl(f + 2fc) +Hl(f) (4.50)

h̃l(t) = h(t)e−j2πfct (4.51)
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since it is obtained by shifting all the poles of the corresponding state-space model
of bandpass system by j2πfc, considering that A is a diagonal complex-valued
matrix with all the poles as diagonal elements.

By comparing the results obtained in (4.50) and (4.51) to the baseband equiv-
alent system definition given in (4.42) and (4.43), one difference is clear: only
the frequency response of H(f) at positive frequencies is shifted by fc in the
definitions (4.42) and (4.43), while in (4.50) and (4.51) the entire frequency re-
sponse of the bandpass system considered is shifted. This difference is illustrated
in Fig. 4.32.

Then it is proven that the relation (4.49) still holds for baseband equivalent
“shifted” systems calculated by means of (4.50) and (4.51). Indeed, the output
signals of the bandpass system in the frequency-domain can be written as

cf

cfcf

cf

cf

cf

( )H f

( )lH f

( )lH f
1

1

1

0

0

02 cf

Figure 4.32: Spectrum of bandpass system H(f), baseband equivalent system Hl(f), and
baseband equivalent “shifted” system H̃l(f).
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R(f) = F (r(t)) = H(f)U(f)

=
1

2
H̃l(f − fc)[Ul(f − fc) + U∗l (−f − fc)]

=
1

2
[H̃l(f − fc)Ul(f − fc) + H̃∗l (−f − fc)U∗l (−f − fc)]

=
1

2
[Hl(f − fc)Ul(f − fc) +H∗l (−f − fc)U∗l (−f − fc)]

=
1

2
[Rl(f − fc) +R∗l (−f − fc)]

=
1

2
F (rl(t)e

j2πfct + r∗l (t)e−j2πfct)

= F (<(rl(t)e
j2πfct))

(4.52)

where
H(f) = H̃l(f − fc)
H(f) = H∗(−f)

H̃l(f − fc) = H̃∗l (−f − fc)
(4.53)

H̃l(f − fc)Ul(f − fc) =Hl(f − fc)Ul(f − fc)
H̃∗l (−f − fc)U∗l (−f − fc) =H∗l (−f − fc)U∗l (−f − fc)

(4.54)

Note that equation (4.54) holds because H̃l(f − fc) and H̃∗l (−f − fc) have a non-
zero frequency response at both positive and negative frequencies, whileUl(f−fc)
and U∗l (−f−fc) have a non-zero frequency response only at positive and negative
frequencies, respectively.

Finally, equation (4.52) demonstrates that the state-space representation (4.17)
of the baseband equivalent “shifted” system can effectively be used to replace the
expensive time-domain simulations of the bandpass system.

4.11.3 Hamiltonian matrix of baseband equivalent system

Following the procedure in [18] and assuming that Sl(s) is the scattering matrix
of a baseband equivalent system, such system is switching from a non-passive to a
passive state (or the other way around) at the frequencies where I−SHl (s)Sl(s) =

0. To identify these frequencies, with input |ul| 6= 0, we write

wl = (I − SHl (s)Sl(s))ul = 0 (4.55)

yl1 = Sl(s)ul (4.56)

yl2 = SHl (s)yl1 (4.57)

wl = ul − yl2 = 0 (4.58)
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Let us assume that Sl(s) has state-space parameters Al, Bl, Cl, Dl; while
AH
l ,CH

l ,BH
l ,DH

l are the state-space parameters ofSHl (s). Then, equations (4.56)
and (4.57) can be written in the form

jωxl1 = Alxl1 +Blul (4.59)

yl1 = Clxl1 +Dlul (4.60)

−jωxl2 = AH
l xl2 +CH

l yl1 (4.61)

yl2 = BH
l xl2 +DH

l yl1 (4.62)

which can be simplified as

jω

[
xl1
xl2

]
=

[
Al 0

−CH
l Cl −AH

l

] [
xl1
xl2

]
+

[
Bl

−CH
l Dl

]
ul (4.63)

[
DH
l Cl BH

l

] [xl1
xl2

]
= (I −DH

l Dl)ul (4.64)

Combining (4.63) and (4.64) leads to

jω

[
xl1
xl2

]
=

[
Al −BlL

−1
l D

H
l Cl −BlL

−1
l B

H
l

CH
l Q

−1
l Cl −AH

l +CH
l DlL

−1
l B

H
l

] [
xl1
xl2

]
(4.65)

where

Ll = DH
l Dl − I (4.66)

Ql = DlD
H
l − I (4.67)

Thus, the Hamiltonian matrix of baseband equivalent systems is

M l =

[
Al −BlL

−1
l D

H
l Cl −BlL

−1
l B

H
l

CH
l Q

−1
l Cl −AH

l +CH
l DlL

−1
l B

H
l

]
(4.68)

and its imaginary eigenvalues jω give the angular frequencies ω where (4.55) is
satisfied and the matrix I − SHl (s)Sl(s) is singular.

Finally, by indicating the eigenvalues ofM l with the symbol λli, the following
equation holds

λli

[
xl1
xl2

]
= M l

[
xl1
xl2

]
(4.69)

Now, assuming that exists a matrixM with eigenvalues λi satisfyingM l = M −
j2πfcI , leads to

λi

[
xl1
xl2

]
= M

[
xl1
xl2

]
= λli

[
xl1
xl2

]
+ j2πfc

[
xl1
xl2

]
(4.70)

which indicates that

λli = λi − j2πfc, for i = 1, . . . , 2m (4.71)
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4.11.4 Eigenvalues calculation

Indicating one of the eigenvalues of Â with V̂k and considering (4.35), the follow-
ing holds: ∣∣∣Â− V̂kI2m

∣∣∣ =

∣∣∣∣[A− V̂kIm 2πfcIm
−2πfcIm A− V̂kIm

]∣∣∣∣ = 0, (4.72)

where |·| stands for the determinant of a matrix. Thanks to (4.28), equation (4.72)
can be written as∣∣∣∣[T (V − V̂kIm)T−1 2πfcIm

−2πfcIm T (V − V̂kIm)T−1

]∣∣∣∣ = 0. (4.73)

Since the determinant operator in (4.73) is applied to a block matrix, it is possible
to write equation (4.73) as [43]∣∣∣T (V − V̂kIm)2T−1 + (2πfc)

2Im

∣∣∣ = 0, (4.74)

leading to ∣∣∣T ((V − V̂kIm)2 + (2πfc)
2Im

)
T−1

∣∣∣ = 0. (4.75)

Hence, there must be a diagonal element Vi in V satisfying

Vi
2 − 2ViV̂k + V̂ 2

k + (2πfc)
2 = 0. (4.76)

Solving (4.76) for V̂k gives

V̂k =

{
Vi + j2πfc

Vi − j2πfc
, (4.77)

which indicates that the eigenvalues of Â can be obtained by shifting the eigenval-
ues ofA along the imaginary axis in the complex plane by ±j2πfc.
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5
Complex Vector Fitting-Based

Baseband Modeling of Linear Photonic
Circuits

Y. Ye, D. Spina, D. Deschrijver, W. Bogaerts, and T. Dhaene, “Compact baseband
modeling of linear photonic circuits via complex vector fitting,” Under review.

Abstract

In this chapter, a novel baseband macromodeling framework for linear passive
photonic circuits is proposed, able to build accurate and compact models while
taking into account the nonidealities, such as higher-order dispersion and wave-
length dependent losses of the circuits. Compared to a previous modeling method
based on the Vector Fitting (VF) algorithm in Chapter 4, the proposed modeling
approach introduces a novel Complex Vector Fitting (CVF) technique. It can gen-
erate a half-size state-space model for the same applications, thereby achieving a
major improvement in efficiency of the time-domain simulations. The proposed
modeling framework requires only measured or simulated scattering parameters
as input, which are widely used to represent linear and passive systems. Three
photonic circuits are studied to demonstrate the accuracy and efficiency of the pro-
posed technique.
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5.1 Introduction

In order to build time-domain models of linear and passive photonic circuits, which
take into account the imperfections such as higher-order dispersion and wavelength
dependent losses, in Chapter 4 (which is formed of [1, 2]), a baseband modeling
approach was proposed to build state-space model from the scattering parameters
via the robust Vector Fitting (VF) technique [3–5]. Such model is inherently a
system of first-order ordinary differential equations (ODEs) and can be efficiently
simulated in ODE solvers. In this chapter, a novel alternative approach is pre-
sented, called Complex Vector Fitting (CVF), which preserves all the advantages
of the previous methods in Chapter 4, but generates more compact baseband state-
space models that are only half the size of the corresponding models obtained
in Chapter 4. Note that this reduces the simulation time by, at least, a factor of
two [6]. This is a significant advantage when considering complex systems com-
prised of a large number of passive components. However, the proposed models
are complex-valued systems and can only be adopted in simulators supporting
complex-valued signals and matrices. Since many solver techniques are devel-
oped and optimized for real-valued systems, such as SPICE and Verilog-A, it is
demonstrated that such stable and passive complex-valued baseband model can
be directly converted into a corresponding real-valued state-space representation,
whose stability and passivity are preserved by construction.

The chapter is organized as follows. Section 5.2 presents an overview on base-
band signals and systems. The novel compact baseband modeling approach is
presented in Section 5.3, while its passivity assessment and enforcement are stud-
ied in Section 5.4. Section 5.5 compares the proposed technique with the previous
one in Chapter 4. The real-valued baseband model is derived in Section 5.6 and
its properties are rigorously discussed. Finally, Section 5.7 presents three photonic
circuits examples, and conclusions are drawn in Section 5.8.

5.2 Problem statement

Photonic circuits are characterized in the optical frequency range: for telecom-
munication applications, this is typically defined as [187; 200] THz, which cor-
responds to wavelengths in the range of [1.5; 1.6] µm. A direct time-domain
simulation at this overwhelmingly high frequency range is impractical in terms
of computational time and memory requirements [1, 7], especially for large and
complex PICs. In particular, the transmitted signals in photonic systems are usu-
ally defined as amplitude and/or phase modulated optical signals in the form

a(t) = A(t) cos (2πfct+ φ(t)) , (5.1)
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Figure 5.1: Spectrum of the modulated optical signal (top) and its baseband equivalent
signal (bottom).

where fc is the optical carrier frequency, while A(t) and φ(t) are the time-varying
amplitude and phase, respectively, which are radio frequency (RF) modulating sig-
nals. Hence, the spectrum of a(t) is centered around the optical carrier frequency
and its bandwidth is relatively small compared to fc. The signals in the form (5.1)
are called bandpass signals [8]. Analogously, general linear and passive photonic
circuits that deal with signals in the form (5.1) can be considered as bandpass
systems.

In this scenario, time-domain simulations of bandpass photonic circuits have to
be carried out with very small time steps due to the large carrier frequency, whereas
the baseband modeling and simulation approach can adopt relatively large time
steps to significantly increase the efficiency without losing accuracy [1, 8]. The
main idea is to “remove” the optical carrier frequency from the bandpass signal
a(t) by deriving a corresponding baseband equivalent signal al(t) as [8]

al(t) = A(t)ejφ(t), (5.2)

which represents the complex envelope of the signal a(t). The relation between
a(t) and al(t) in the frequency domain is more intuitive and is illustrated in Fig. 5.1.
The baseband equivalents for bandpass systems can be defined in a similar way,
shown in Fig. 5.2, where S(f) is the frequency response of the bandpass system,
while Sl(f) is its baseband equivalent. If a(t) is the port signal of the bandpass
system S(f), al(t) can be considered as the port signal of the baseband equivalent
system Sl(f). Interested readers are referred to [8] for more details about the def-
inition and derivation of baseband equivalent signals and systems. One important
property of the baseband modeling and simulation approach is that the port signals
(in the form (5.1)) of the bandpass photonic circuits can be analytically recovered
from their baseband equivalents (in the form (5.2)) [1, 8].

It is easy to observe that Sl(f) is simply equal to S(f) at the positive frequen-
cies shifted by −fc. As shown in Fig. 5.2, Sl(f) is a mathematical representation



5-4 CHAPTER 5

cfcf

| ( ) |S f
1

cfcf

| ( ) |lS f
1

f

f

Figure 5.2: Spectrum of bandpass systems (top) and the corresponding baseband equivalent
systems (bottom).

of a physical system that has an asymmetric frequency response with regard to the
positive and negative frequencies. Therefore, it also has a complex-valued impulse
response in the time domain. Directly computing a model of Sl(f) that can be used
for time-domain simulation is a challenging problem. In the next two sections, a
novel methodology to compute stable and passive baseband models of Sl(f) in
state-space form is proposed.

5.3 Pole-residue modeling via Complex Vector Fit-
ting

As described in Section 5.1, the modeling process starts from the scattering pa-
rameters in order to take into account non-ideal behaviours such as higher-order
dispersion and wavelength dependent losses. Hence, let us assume that the scat-
tering parameters of the photonic circuit under study have been obtained (via sim-
ulations or measurements) for a discrete set of frequency values in the bandwidth
of interest for the application considered: S(fr) for r = 1, . . . , R.

Next, shifting S(fr) towards 0 Hz by the carrier frequency fc leads to the
baseband scattering parameters Sl(fi), as shown in Fig. 5.3 where fi = fr − fc.
Then, the CVF algorithm is developed to calculate a pole-residue model of Sl(fi)
as

Sl(s) =

K∑
k=1

Rk

s− pk
+D, (5.3)

where s = j2πf is the Laplace variable, pk are the poles, which can be either
real or complex, and Rk are the corresponding residues, while D is a real matrix.
This form is very similar to pole-residue models that can be computed by the
well known VF algorithm [3, 4], which was proposed two decades ago and is
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Figure 5.3: The simulated or measured scattering parameters at a set of discrete frequency
samples (top) and the corresponding baseband scattering parameters (bottom).

widely used in the electronic field to build pole-residue models for linear passive
distributed devices and systems represented by scattering parameters. There are
several versions of the VF algorithm, that adopt different modeling strategies [3,
9, 10] and passivity enforcement methods [5, 11–14]. In this work, the CVF is
a variant of the VF algorithm available at [15], which implements the techniques
in [3–5, 16]. Since VF has been extensively studied in the past two decades, and
the proposed CVF shares several similarities with it, only the differences between
them that are relevant for our application will be discussed. Interested readers are
referred to [3–5, 16] for a thorough understanding of the VF modeling approach.

In particular, both CVF and VF adopt pole-residue models formed by real and
complex poles having a negative real part, in order to guarantee the stability of the
model [17]. However, the complex poles and the corresponding residues com-
puted via VF must always occur in complex conjugate pairs, for example

pV Fk = −α+ jβ, pV Fk+1 = −α− jβ
RV F
k = η + jγ, RV F

k+1 = η − jγ
(5.4)

where k is the pole and residue index in (5.3), α is a real positive scalar forcing all
the poles in left hand side of the complex plane (for stability), β is a (positive or
negative) real scalar, while η and γ are real matrices.

The frequency response of physical linear systems is always symmetric about
zero (even amplitude and odd phase). The complex conjugate constraint imple-
mented in VF allows to preserve this property, such that the corresponding impulse
response in the time-domain is guaranteed to be real-valued. However, baseband
systems are non-physical and have an asymmetric frequency response with respect
to 0 Hz by construction. Therefore, VF cannot be applied to model such a system
directly, as described in Section 5.5.

In order to overcome this problem, the complex conjugate constraint is re-
moved in the CVF algorithm: the corresponding complex poles and residues are
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given by
pk = −α+ jβ, pk+1 = −ν + jρ

Rk = η + jγ, Rk+1 = ζ + jξ
(5.5)

where α, β 6= ν, ρ and η,γ 6= ζ, ξ. Besides this difference, the methodology
employed to compute a rational model is the same: the pole flipping scheme [3],
relaxed formulation [16] and fast implementation base on QR decomposition [4]
used in VF can be directly adopted for CVF.

The idea of removing the complex conjugacy constraint in the VF algorithm
was first proposed in [18] in order to design complex infinite impulse response
(IIR) filters having asymmetric frequency response. There are two important dif-
ferences with regard to this work: 1) the D matrix in [18] is assumed to be a
complex matrix, whereas it must be real in this work. This physical-base restric-
tion is relevant for our applications, as discussed in Section 5.6.2. 2) The models
built in [18] are not used for time-domain simulations: the passivity definition,
assessment and enforcement of the complex-valued models are not investigated
in [18], while here they are rigorously studied in Section 5.4.

Once a model in the form (5.3) has been obtained via the CVF algorithm, it
can be easily converted into a corresponding state-space form [19] as

dxl(t)

dt
= Axl(t) +Bal(t)

bl(t) = Cxl(t) +Dal(t),

(5.6)

where al(t) ∈ Cn×1 and bl(t) ∈ Cn×1 are the input and output signals of the
n-port baseband system, respectively, which are the baseband equivalents of the
modulated port signals of the original photonic circuit, while xl(t) ∈ Cm×1 with
m = nK collects the state variables. The matricesA,B,C,D can be analytically
derived from (5.3): A ∈ Cm×m is a diagonal matrix with all the poles pk as
diagonal entries, B ∈ Rm×n is a matrix containing only ones and zeros, C ∈
Cn×m contains all the residues Rk, D ∈ Rn×n is the same as in (5.3) [19]. The
representation (5.6) offers two main advantages:

• fundamental properties for time-domain simulations, such as causality, sta-
bility and passivity, are well defined for state-space models;

• state-space models are inherently systems of first-order ODEs: time-domain
simulations can be performed by solving the state-space models in a variety
of robust ODE solvers with great accuracy and efficiency, for example the
Matlab linear state-space system solver lsim and its open-source counterpart
in Python package SciPy.

It is important to remark that the computational time for building a CVF model
withK poles is comparable to the time needed to build a VF model with 2K poles.
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The number of unknowns is the same in both algorithms, considering that the poles
and residues in VF are complex conjugated [3].

5.4 Passivity assessment and enforcement of CVF
models

Since the baseband model (5.6) will be used for simulations in the time-domain,
the model passivity must be checked and, eventually, enforced [17]. In Chapter 4,
the passivity definition and conditions for complex-valued linear baseband systems
are presented. In particular, there are two passivity constraints that the baseband
scattering parameters Sl(s) must satisfy:

1. Sl(s) is analytic in <(s) > 0;

2. In−SHl (s)Sl(s) is a nonnegative-definite matrix for all s such that <(s) >

0.

where <(s) represents the real part of the Laplace variable while In is the identity
matrix of size n×n. Note that such conditions are the same as for physical systems,
with the exception that the conjugacy relation S∗(s) = S(s∗) no longer needs to
hold for complex-valued systems.

Now, the above passivity conditions require that the maximum singular value
of Sl(s) is bounded by unity at all frequencies. In this framework, it has been
proven that the Hamiltonian matrix M can be used to assess the model passivity
with accuracy and efficiency [1], which is defined as

M =

[
M11 M12

M21 M22

]
, (5.7)

where
M11 = A−BL−1DHC,

M12 = −BL−1BH ,

M21 = CHQ−1C,

M22 = −AH +CHDL−1BH ,

L = DHD − In, Q = DDH − In.

(5.8)

Note thatM11,M21,M22 are complex matrices, whileM12 is real, sinceA and
C are complex, while B and D are real. The Hamiltonian matrix for complex-
valued systems is very similar to the corresponding one defined for real-valued
ones, except that the former employs the conjugate transpose operator H [1],
whereas the latter one can use the transpose operator T [19], as shown in Section
5.6.2.
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In particular, a (complex- or real-valued) stable state-space model is passive if
its Hamiltonian matrix has no purely imaginary eigenvalues: any such eigenvalue
indicates a crossover frequency where a singular value of the scattering matrix
changes from being smaller to larger than unity, or vice versa [1, 19]. Once the
crossover frequency points are identified by checking the eigenvalues of (5.7), the
local maxima of violating singular values of the scattering matrix can be found [5].
Passivity can be enforced by perturbing the residues such that the violating singular
values become smaller than unity [5].

From an algorithmic point of view, the CVF technique offers a robust model
building tool and can leverage on powerful passivity assessment and enforcement
techniques developed for the VF algorithm, with one exception. Indeed, the half-
size passivity test matrix that is proposed in [19] for an efficient passivity assess-
ment of real-valued reciprocal systems, is no longer applicable to the complex-
valued systems studied in this chapter, due to the presence of the conjugate trans-
pose operator H in (5.7). Interested readers are referred to [19] for details.

5.5 Comparison with previous work
The section compares the proposed technique to the VF-based baseband modeling
technique presented in Chapter 4 ( [1, 2]). The main differences with respect to the
proposed modeling framework are outlined in Fig. 5.4. In particular, the approach
in Chapter 4 is based on the VF algorithm: first a state-space model SV F (f)

of S(fr) is computed via VF. Then, since SV F (f) operates at optical frequency
range, it is converted into a baseband model SV Fl (f), whose time-domain state-
space representation is in the form

dxl(t)

dt
= (AV F − j2πfcI)xl(t) +BV Fal(t)

bl(t) = CV Fxl(t) +DV Fal(t),

(5.9)

( )l ifS

Shift by fc

CVF

Novel compact baseband model (5.6)

Baseband scattering parameters

Simulated or measured scattering parameters

( ) 1, 2,rf r RS

VF

Baseband equivalent “shifted” model (5.9)

 

State-space model via VF

Shift by fc

( )VF fS

( )l fS ( )VF

l fS

Figure 5.4: Flowchart of the CVF modeling approach (left branch) and the one presented
in Chapter 4 (right branch).
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Figure 5.5: Spectrum of the model SV F (f) (top) and the model SV F
l (f) represented by

(5.9) (bottom).

whereAV F ,BV F ,CV F ,DV F are the state-space matrices ofSV F (f) computed
via VF, starting from the bandpass scattering parameters S(fr). In particular,
AV F is a diagonal matrix containing the poles identified by VF, CV F is a ma-
trix that contains residues, BV F is a matrix containing only ones and zeros and
DV F is a real-valued matrix. Whereas the CVF model (5.6) and the one in the
form (5.9) are somewhat similar, the different modeling strategies result in a ma-
jor difference: the novel proposed approach allows one to build a model that can
have half the size of the model (5.9) in terms of number of poles and state vari-
ables, thereby significantly decreasing the simulation time. The reason is clearly
identified by considering the frequency-domain response SV Fl (f) of model (5.9).
Indeed, the frequency response SV Fl (f) has also components around −2fc, since
it is computed by shifting the VF model SV F (f) defined at bandpass frequency,
as indicated in Fig. 5.5. In particular, by looking at equation (5.9), the poles of
the VF model SV F (f) collected in the matrix AV F are shifted by the quantity
−j2πfc, as shown in the complex plane in Fig. 5.6. Clearly, the poles around
−j4πfc do not contribute to the results of time-domain simulations performed
with baseband signals al(t) defined around 0 Hz (see Fig. 5.1). Intuitively, the
frequency response around −2fc can be removed by simply discarding the corre-
sponding poles and residues from the model (5.9), thereby achieving a half-size
compact model. However, this brute-force operation can cause two problems: 1)
slightly decreasing the accuracy of the desired frequency response around 0 Hz; 2)
accidentally turning the model (5.9) from passive to non-passive. So calculation
of the half-size model (5.6) using CVF technique is advised.

For time-domain simulations, solving the half-size model (5.6) requires less
than half of the computational complexity with respect to (5.9). For example,
the two main steps in the Matlab routine lsim to solve a linear system of ODEs
have a computational complexity ofO(m3) andO(m2Nt) [6], respectively, where
m = nK is the size of A and Nt is the total number of time samples. Hence, the
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Figure 5.6: Poles of the model SV F (f) (left) and the model SV F
l (f) represented by (5.9)

(right).

proposed technique offers a significant computational advantage, especially when
the model size is large.

5.6 Real-valued baseband state-space models

Both the baseband CVF model represented by (5.6) and the VF-based model rep-
resented by (5.9) are complex-valued systems and can be simulated only in solvers
that support complex-valued signals and matrices. However, in Chapter 4, the
model (5.9) is analytically converted to a real-valued model that can be adopted in
a wider range of simulators, such as SPICE and Verilog-A. In this section, we will
demonstrate that a real-valued baseband state-space model can also be derived,
starting from the modeling framework described in Section 5.3. Additionally, its
stability and passivity properties are investigated.

5.6.1 Model derivation

Complex signals can be represented as a sum of their real and imaginary parts,
such as for al(t)

al(t) = al<(t) + jal=(t). (5.10)

Note that for a quadrature amplitude modulation (QAM) signal, al<(t) and al=(t)

can be considered as in-phase and quadrature parts, respectively. By expressing
all the complex signals and matrices in (5.6), namely al(t), bl(t), xl(t), A and
C, in the form of (5.10) and by solving separately with respect to the real and the
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imaginary parts, leads to:

dxl<(t)

dt
=A<xl<(t)−A=xl=(t) +Bal<(t)

dxl=(t)

dt
=A<xl=(t) +A=xl<(t) +Bal=(t)

bl<(t) = C<xl<(t)−C=xl=(t) +Dal<(t)

bl=(t) = C<xl=(t) +C=xl<(t) +Dal=(t),

(5.11)

where the indexes< and= indicate the real and imaginary part, respectively. Then,
by defining

â(t)=

[
al<(t)
al=(t)

]
, b̂(t)=

[
bl<(t)
bl=(t)

]
, x̂(t)=

[
xl<(t)
xl=(t)

]
(5.12)

and

Â =

[
A< −A=
A= A<

]
, B̂ =

[
B 0
0 B

]
,

Ĉ =

[
C< −C=
C= C<

]
, D̂ =

[
D 0
0 D

]
,

(5.13)

where 0 represents the null matrix, equation (5.11) can be written as
dx̂(t)

dt
= Âx̂(t) + B̂â(t)

b̂(t) = Ĉx̂(t) + D̂â(t),

(5.14)

which is defined as real-valued baseband state-space model.
It is important to remark the main difference of the real-valued representation

(5.14) with respect to the complex-valued one (5.6). The model (5.6) is a purely
mathematical representation of the system under study, as described in Section 5.2.
The novel model (5.14) has a symmetrical frequency response with respect to the
positive and negative frequencies and its impulse response, input and output sig-
nals are real. Hence, it represents a physical linear system, while it can still be
simulated at baseband. Furthermore, the novel model (5.14) is also a system of
first order real-valued ODEs. Hence, it can be solved in a wider range of simula-
tors than the complex-valued model (5.6).

5.6.2 Stability and passivity analysis

Since the model (5.14) can be considered as a physical, linear and time-invariant
system, the stability and passivity conditions defined for physical linear systems
[17], still hold for the new model (5.14).

The stability of a state-space model can be assessed from the eigenvalue of the
matrix Â: the model is stable if the real part of all the eigenvalues is negative [17].
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First, a similarity transformation is applied to Â:

Ã = T−1ÂT =

[
A< − jA= 0

0 A< + jA=

]
=

[
A∗ 0
0 A

]
, (5.15)

where T = [Im, Im; jIm,−jIm]. If all the eigenvalues of A are in the vector
λ, then (5.15) indicates that the eigenvalues of Ã are λ and λ∗ combined. Since
similarity transformations do not change the eigenvalues, Ã and Â share the same
set of eigenvalues. Therefore, when the model (5.6) is stable (all the elements
in λ have negative parts), the real-valued model (5.14) is stable as well (all the
eigenvalues of Â have negative real parts).

Then, as indicated in Section 5.4, the passivity of the model (5.14) can be
verified by means of the Hamiltonian matrix for real-valued models [19]:

M̂ =

[
M̂11 M̂12

M̂21 M̂22

]
, (5.16)

where

M̂11 = Â− B̂L̂
−1
D̂
T
Ĉ,

M̂12 = −B̂L̂
−1
B̂
T
,

M̂21 = Ĉ
T
Q̂
−1
Ĉ,

M̂22 = −Â
T

+ Ĉ
T
D̂L̂

−1
B̂
T
,

L̂ = D̂
T
D̂ − I2n, Q̂ = D̂D̂

T
− I2n.

(5.17)

Starting from (5.13), (5.8) and (5.17), after some block matrices calculations de-
scribed in Appendix 5.9.1, the following relations can be derived

M̂11 =

[
M<

11 −M=
11

M=
11 M<

11

]
, M̂12 =

[
M12 0

0 M12

]
,

M̂21 =

[
M<

21 −M=
21

M=
21 M<

21

]
, M̂22 =

[
M<

22 −M=
22

M=
22 M<

22

]
,

(5.18)

where M<
11 and M=

11 are the real and imaginary parts of M11, respectively, and
the same notation is also adopted for M12, M21, M22. It is important to remark
that the relation (5.18) can only be derived thanks to the choice of computing D
in (5.3) as real matrix, as indicated in Section 5.3.

By performing a similarity transformation on M̂ , a new matrix M̄ can be
obtained

M̄ = P−1M̂P =

[
M∗ 0
0 M

]
, (5.19)
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where

P =


Im 0 Im 0
jIm 0 −jIm 0
0 Im 0 Im
0 jIm 0 −jIm

 , (5.20)

and M is the Hamiltonian matrix of the CVF system (5.6), described in (5.7).
Note that, the similarity transformation (5.19) can be derived by simple algebraic
manipulations. Since similarity transformations do not change the eigenvalues,
the eigenvalues of M̂ are the union set of the eigenvalues of M and their com-
plex conjugate according to (5.19). This proves that, if the stable model (5.6) is
passive (M does not have any purely imaginary eigenvalue), then the real-valued
model (5.14) is passive by construction (M̂ has no purely imaginary eigenvalue
either).

5.7 Examples on photonic circuits

This section presents three application examples of the proposed modeling and
simulation techniques. The scattering parameters of the photonic circuits under
study are evaluated via the Caphe circuit simulator (Luceda Photonics) and elec-
tromagnetic simulations in FDTD Solutions (Lumerical), while the time-domain
simulations are carried out in Matlab on a personal computer with Intel Core i3
processor and 8 GB RAM.

5.7.1 Five-ring resonator filter

A five-ring resonator filter based on [20] is studied in this section. The filter com-
prises four directional couplers (DCs) and two multimode interferometers (MMIs),
as shown in Fig. 5.7. The geometric parameters of the filter can be found in [20]
and will not be repeated here.

A direct FDTD simulation of the entire five-ring filter is very time consuming,
as the structure is very large, and because of the resonances a very long simulation
time is needed to reach the termination condition where the residual fields have
died out. Therefore, we only simulate the coupling structures, i.e. the MMI and
two DCs (indicated in Fig. 5.7) given that the filter is symmetric, and evaluate
the scattering parameters in the modeling frequency range [187.37; 199.86] THz
(corresponding to a wavelength of [1.5; 1.6] µm) while considering a carrier fre-
quency fc = 193.46 THz. Then, the scattering parameters of the whole filter are
calculated in the circuit simulator Caphe by connecting the MMI and DCs.

Following the CVF modeling procedure, the evaluated scattering parameters
over optical frequency range are first shifted to the baseband [−6.09; 6.40] THz
by fc = 193.46 THz. Next, a stable and passive baseband model in the form (5.6)
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Figure 5.7: Example 5.7.1. The structure of the five-ring resonator filter.
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Figure 5.8: Example 5.7.1. The accuracy of the model (5.9) (top) built via the technique
in Chapter 4 and the model (5.6) (bottom) built via the newly proposed technique; the red
solid lines represent the simulated scattering parameters, the blue dashed lines represent
the models, while the green lines are the magnitude of the error between the two.

is built with 54 poles. Then, a real-valued state-space model (5.14) for the filter is
directly derived from (5.6) according to (5.13). Note that we deliberately consid-
ered a wide modeling frequency range in order to make the modeling process more
challenging, even though RF signals with such large spectrum are rarely used. As a
comparison, the model in the form (5.9) is also built via the VF algorithm with 108
poles. The magnitude of the maximum absolute error for both models is less than
-52 dB, as shown in Fig. 5.8. Note that the calculated models are already passive,
so no passivity enforcement is required in this example. The scattering parameters
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Figure 5.9: Example 5.7.1. The poles of the model (5.6) from the proposed technique (rep-
resented by circles) and the model (5.9) from the technique in Chapter 4 (represented by
crosses).

of the filter are full matrices, since reflections are captured by the FDTD simula-
tor. Hence, even though only S11 and S13 are shown in Fig. 5.8 for readability,
the model is bidirectional, includes reflections and can be excited from any of the
ports. The poles of the models (5.6) and (5.9) are illustrated in Fig. 5.9. It is
clear that half of the poles of (5.9) are around −j4πfc, while the other half cluster
around 0 Hz, as explained in Section 5.5 (see Fig. 5.6). It is important to remark
that the poles of the CVF model (5.6) and VF-based model (5.9) around 0 Hz are
relatively close in the complex plane, but are different: the CVF model is not the
same as first computing the VF-based model and then removing the poles around
−j4πfc.

To perform time-domain simulations, we applied a 16-QAM input signal at
port P1. The corresponding in-phase I(t) and quadrature component Q(t) are RF
bit sequence signals, with bit rate 80 Gbit/s and 1000 bits long. The first 25 bits of
I(t) and Q(t) are shown in Fig. 5.10.

Note that I(t) andQ(t) can be considered as the real and imaginary parts of the
baseband signals in the form (5.2), and can be directly adopted for baseband time-
domain simulations with the models (5.6), (5.9), and (5.14) [1]. Relevant time-
domain simulation results obtained by the three models are shown in Fig. 5.11.
Additionally, the transmission signal at P3 (drop port of the filter) is plotted as
a constellation diagram to better observe the influence of the filter on the input
signal, as shown in Fig. 5.12. It is demonstrated by Figs. 5.8, 5.11, and 5.12 that
the proposed technique is accurate in both frequency and time domain.

The model building time of the VF-based model (5.9) and the CVF model (5.6)
is 3.4 s and 3.3 s, respectively. The simulation of the VF-based model (5.9), the
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Figure 5.10: Example 5.7.1. The in-phase part I(t) and quadrature part Q(t) of the 16-
QAM input signal.
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Figure 5.11: Example 5.7.1. The output signals at P1, P2, P3 and P4 obtained from base-
band time-domain simulations of models (5.6), (5.9) and (5.14).

CVF model (5.6) and the real-valued state-space model (5.14) requires 132 s, 12 s,
12 s, respectively: the half-size CVF model (5.6) is superior to the full-sized VF-
based model (5.9) in terms of computational speed, while achieving a comparable
accuracy.
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Figure 5.12: Example 5.7.1. Constellation diagrams of the transmission signal at P3 cal-
culated from different models.

DC

DC DC

DC DC

0.5 0.5

0.14
DC

0.28

0.3 0.32

PS 173° PS 52°

PS 0° PS 109°

P2

P3

P4

P1

Figure 5.13: Example 5.7.2. The schematic circuit of the ring-loaded MZI filter.

5.7.2 Ring-loaded Mach-Zehnder filter

A ring-loaded MZI filter is designed according to the structure proposed in [21],
as shown in Fig. 5.13. There are six directional couplers (DCs) and four ring
resonators with a phase shifter (PS) in each ring. The power coupling coefficients
and phase shifters parameters are indicated in Fig. 5.13. Once the phase shifters
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Figure 5.14: Example 5.7.2. The accuracy of the model (5.9) (top) built via the VF-based
technique in Chapter 4 and the model (5.6) (bottom) built via the new CVF-based technique;
the red solid lines represent the simulated scattering parameters, the blue dashed lines
represent the models, while the green lines are the magnitude of the error between the two.

are tuned to the desired values, they are kept fixed and the filter can be considered
as a linear time-invariant system. It is important to remark that the filter is designed
intentionally to have an asymmetric passband feature as shown in Fig. 5.14, which
can occur in practice due to variations of the manufacturing process or variations
in the tuning of the phase shifters. In this example, we will demonstrate that the
proposed modeling technique is robust with regard to this kind of imperfections as
well.

The filter is simulated in the Caphe circuit simulator to extract the scattering
parameters within the chosen frequency range [190.34; 192.05] THz, which cov-
ers a bandwidth of 1710 GHz. The carrier frequency is set at the center of the
passband of the filter: fc = 191.19 THz. Note that reflections are not considered
in the models of the waveguides and the couplers: the overall circuit has no reflec-
tions as well. As a result, the scattering matrices are sparse. The frequency range
is chosen to be wide, in order to demonstrate the modeling power of the proposed
technique. In practice, however, it can be chosen according the spectrum of the
input signals according to Chapter 4. Then, a compact state-space model in the
form (5.6) is built via the CVF technique with 21 poles over the corresponding
baseband frequency range [−850; 860] GHz. Finally, the real-valued state-space
model (5.14) is analytically calculated as described in Section 5.6. For com-
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Figure 5.15: Example 5.7.2. The poles of the CVF model (5.6) (represented by circles) and
the model (5.9) from the VF-based technique in Chapter 4 (represented by crosses).

parison, the VF-based model (5.9) of the filter is also built via the VF algorithm
with 42 poles. The magnitude of the maximum absolute error for both the models
(5.6) and (5.9) is less than -56 dB, as shown in Fig. 5.14. The poles of the CVF
model (5.6) and the VF-based model (5.9) are illustrated in Fig. 5.15, which again
demonstrates the poles from both models around 0 Hz are slightly different. The
passivity assessment (see Section 5.4) reveals that all the models are passive and
suitable for time-domain simulations.

In particular, the same 16-QAM signal in Fig. 5.10 is adopted as input for port
P1, with one difference: the data rate is decreased from 80 Gbit/s to 20 Gbit/s, since
the (single side) passband of the filter in this example is approximately 50 GHz.
Time-domain simulations are conducted with the three models and the results for
the first 250 ps are shown in Fig. 5.16.

For a better observation of the transmission signal at P3, constellation diagrams
are plotted in Fig. 5.17, where the results from different models are compared to
the input. It is evident that the constellation symbols are still clearly separated
by safe gaps, but rotated by the total phase delay of the filter circuit at the carrier
frequency fc. The results shown in Figs. 5.14, 5.16 and 5.17 demonstrate the
accuracy of the proposed modeling approach.

The model building time of the VF-based model (5.9) and the CVF model (5.6)
is 2.7 s and 2.6 s, respectively. The simulation of the VF-based model (5.9), CVF
model (5.6) and the real-valued model (5.14) requires 8.2 s, 2.5 s, 2.6 s, respec-
tively. In this example, the simulation speed-up is less significant than the previous
example in Section 5.7.1, because fewer poles are needed in the models. This re-
sult is consistent with the analysis in Section 5.5: the efficiency of the proposed
technique with regard to the technique in Chapter 4 increases with respect to the
size of the models [6].
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Figure 5.16: Example 5.7.2. The output signals at P3 and P4 obtained from baseband
time-domain simulation of models (5.6), (5.9) and (5.14).

Figure 5.17: Example 5.7.2. Constellation diagram of the transmission signal at P3 calcu-
lated from different models.
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In practice it is possible that the passband of the filter can shift due to fabrica-
tion variations. So, extra tests are conducted to study the influence of the passband
shifting of the filter on the same input signal. We assume that the passband red-
shifts or blueshifts by 0.3 nm in wavelength (about 36 GHz in frequency). Then,
the corresponding baseband model can be built in two ways: i) rebuild a CVF
model at the new passband following the proposed technique; ii) directly shift the
CVF model computed so far at the original passband to the new passband, by only
shifting the poles in the matrixA, which is represented by

dxl(t)

dt
= (A− j2π∆fIm)xl(t) +Bal(t)

bl(t) = Cxl(t) +Dal(t),

(5.21)

where ∆f is the amount that the passband shifts, which is very different from
the model (5.9), where the shifted value is the optical carrier frequency. In this
example, ∆f is 36 GHz for the redshift, and -36 GHz for the blueshift.

This approach can be adopted since it is proven in Chapter 4 that shifting the
poles of state-space models is equivalent to shifting the frequency response. It
is also studied in Chapter 4 that shifting poles along the imaginary axis in the
complex plane does not affect the model stability and passivity. Therefore, the
shifted CVF model (5.21) is still stable and passive. It is important to remark that

Figure 5.18: Example 5.7.2. Constellation diagram of the transmission signal at P3 calcu-
lated from the rebuilt CVF model in the form (5.6) and the shifted one in the form (5.21),
when the passband of the filter redshifts and blueshifts by 0.3 nm.
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the maximum absolute error of the shifted CVF model with regard to the scattering
parameters is the same as the original CVF model, but only if the shifted modeling
frequency range still covers the entire spectrum of the input signal [1]. The wider
the spectral range of the original CVF model, the more it can be shifted to perform
a tolerance analysis without the need to rebuild the model. The results from the
models generated by the two methods at red- and blueshifted passbands are shown
in Fig. 5.18. Due to the asymmetric passband of the filter, it is understandable
that the blueshifted passband makes the constellation symbols more fuzzy than the
redshifted case.

5.7.3 Mach-Zehnder lattice filter

The baseband models based on the VF and CVF techniques in the previous two
examples are passive by construction. In this example, the passivity enforcement
of the CVF algorithm will be demonstrated via modeling the Mach-Zehnder-based
lattice filter presented in Chapter 4, whose structure is shown in Fig. 5.19.

First, the scattering parameters of the filter are simulated in Caphe in the fre-
quency range [fc −∆; fc + ∆], where ∆ = 760 GHz and fc = 195.11 THz.
Then, a compact state-space model is built via the CVF technique with 34 poles
and a magnitude of the maximum absolute error of -51 dB. The passivity of the
model is assessed with the method presented in Section 5.4, and small but mul-
tiple passivity violations are found. The passivity enforcement algorithm is then
applied to the non-passive model, as shown in Fig. 5.20. Before passivity en-
forcement, the singular values of the CVF model are plotted with solid blue lines,
where small passivity violations can be observed (singular values are larger than
unity). After passivity enforcement, all the singular values are forced below unity,
at the expense of a slight increase in the maximum absolute error (-48 dB). For
comparison, a model in the form (5.9) is also built with 68 poles by first obtaining
an VF model according to Chapter 4. Passivity enforcement of the VF model is

P2 P4

P3P1

Figure 5.19: Example 5.7.3. The structure of the Mach-Zehnder interferometer lattice filter.
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Figure 5.21: Example 5.7.3. The accuracy of the VF-based model (5.9) (top) built via the
technique in Chapter 4 and the new CVF model (5.6) (bottom); the red solid lines represent
the simulated scattering parameters, the blue dash lines represent the models while the
green lines show the error between them.



5-24 CHAPTER 5

also required in the modeling process, leading to an increase in the maximum ab-
solute error from -51 dB to -49 dB. The modeling accuracy of the two techniques
is illustrated in Fig. 5.21.

The modeling time (including passivity enforcement) of the VF-based model
(5.9) and the CVF model (5.6) for the lattice filter are 6.3 s and 6.2 s, respectively.
Since the accuracy and efficiency of the time-domain simulation with the proposed
models is demonstrated in Sections 5.7.1 and 5.7.2, and the filter was studied in
Chapter 4, time-domain results are not presented in this chapter.

5.8 Conclusion

This chapter presented a novel compact modeling approach for linear photonic
circuits that is based on the scattering parameters and the proposed CVF tech-
nique. The new CVF models offer significant advantages in terms of compactness
and simulation speed, as compared to the VF-based models derived from previous
work. In order to extend the compatibility of the proposed approach to simulators
that only support real-valued signals (such as many EDA simulators), equivalent
real-valued baseband models were analytically derived and their stability and pas-
sivity is rigorously studied. Three photonic circuits examples were provided to
validate the proposed approach.

5.9 Appendix

5.9.1 Transformation of Hamiltonian matrix

By means of (5.13), the following relation between L̂
−1

in (5.17) andL−1 in (5.8)
can be derived:

L̂
−1

=

([
DT 0

0 DT

] [
D 0
0 D

]
−
[
In 0
0 In

])−1

=

([
DTD − In 0

0 DTD − In

])−1

=

[
L−1 0

0 L−1

]
.

(5.22)

In a similar way, there is

Q̂
−1

=

[
Q−1 0

0 Q−1

]
. (5.23)
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Thanks to the relations between A, B, C, D and Â, B̂, Ĉ, D̂ in (5.13), the
following results can be derived by simple block matrices calculations:

M̂11 =

[
A< −A=
A= A<

]
−
[
B 0
0 B

] [
L−1 0

0 L−1

] [
DT 0

0 DT

] [
C< −C=
C= C<

]
=

[
A< −BL−1DTC< −A= +BL−1DTC=
A= −BL−1DTC= A< −BL−1DTC<

]
=

[
M<

11 −M=
11

M=
11 M<

11

]
(5.24)

M̂12 = −
[
B 0
0 B

] [
L−1 0

0 L−1

] [
BT 0

0 BT

]
=

[
−BL−1BT 0

0 −BL−1BT

]
=

[
M12 0

0 M12

] (5.25)

M̂21 =

[
CT
< CT

=
−CT

= CT
<

] [
Q−1 0

0 Q−1

] [
C< −C=
C= C<

]
=

[
CT
<Q
−1C<+CT

=Q
−1C= CT

=Q
−1C<−CT

<Q
−1C=

CT
<Q
−1C=−CT

=Q
−1C< CT

=Q
−1C=+CT

<Q
−1C<

]
=

[
M<

21 −M=
21

M=
21 M<

21

] (5.26)

M̂22 =−
[
AT
< AT

=
−AT

= AT
<

]
+

[
CT
< CT

=
−CT

= CT
<

] [
D 0
0 D

] [
L−1 0

0 L−1

] [
BT 0

0 BT

]
=

[
−AT

< +CT
<DL

−1B −AT
= +CT

=DL
−1B

AT
= −C

T
=DL

−1B −AT
< +CT

<DL
−1B

]
=

[
M<

22 −M=
22

M=
22 M<

22

]
,

(5.27)
where M<

11 and M=
11 are the real and imaginary parts of M11, respectively, and

the same notation is also used for M21 and M22, while M12 is a real-valued
matrix.

It is important to note that equations (5.24) − (5.27) hold because B̂ and D̂
are block diagonal matrices, whileB andD are real matrices.
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6
Time-Domain Characterization of

Linear Photonic Circuits Subject to
Fabrication Variations

Y. Ye, M. Wang, D. Spina, W. Bogaerts, and T. Dhaene, “Time-domain charac-
terization of photonic integrated filters subject to fabrication variations,” Under
review.

Abstract

Fabrication variations are a key factor to degrade the performance of photonic
integrated circuits (PICs), and especially wavelength filters. We propose an ef-
ficient modeling approach to quantify the effects of fabrication variations on the
time-domain performance of linear passive photonic integrated circuits (including
the wavelength filters) in the design stage, before fabrication. In particular, this
novel approach conjugates the accuracy of the Polynomial Chaos (PC) expansion
in describing stochastic variations and the efficiency of a Vector Fitting (VF)-based
baseband modeling technique in performing time-domain simulations. A suitable
example validates the performance of the proposed method.
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6.1 Introduction

Fabrication variations pose a considerable design challenge for silicon-on-insulator
based photonic integrated circuits (PICs), since the high material index contrast
makes photonic devices very sensitive to the geometry variations [1, 2]. Such vari-
ations normally lead to performance degradation of PICs after manufacturing and
can even cause considerable yield loss. Hence, it is very important to quantify
the performance variations of PICs before they are fabricated, which is often re-
ferred to as variability analysis. In this scenario, the Monte Carlo (MC) method is
a robust, accurate and easy to implement solution. However, it is also very time
consuming due to its slow convergence rate [3]. The Polynomial Chaos (PC) ex-
pansion is considered as an efficient alternative approach for variability analysis in
electronic applications, for example in [4–8], and in recent years it has also been
demonstrated on PICs [9–13]. In the latter case, however, the proposed techniques
focus mainly on the variability analysis of suitable performance indicators defined
in the wavelength/frequency domain, such as coupling coefficients [9, 10], 3-dB
bandwidth [11, 12], transmission or scattering matrices [13]. The time-domain
variability analysis of linear and passive PICs, such as filters, has not been studied
in the literature yet, due to the challenge of building accurate and efficient time-
domain models of complex PICs [2]. In fact, from a system performance point
of view, the time-domain performance for a given input signal, expressed as an
eye diagram or constellation diagram, is a more direct and intuitive measure of the
effect of the variations on signal integrity [14].

In this chapter, we propose a time-domain variability analysis approach for
passive photonic circuits under uncertainty effects, which is based on two recent
techniques: PC-based macromodeling for characterizing the variations in Chap-
ter 2 and [7, 13], and baseband modeling for efficient time-domain simulations in
Chapter 4. In particular, the PC-based macromodeling approach leverages on the
PC expansion of the scattering parameters of the circuits under stochastic effects,
and employs the Galerkin projection method and the Vector Fitting (VF) algo-
rithm to compute a deterministic, stable and passive state-space model describing
the relation between the PC coefficients of the input and output signals of the cir-
cuits [7]. This model is usually called “augmented”, since it has an higher number
of ports than the original circuit under study [7]. Since a direct time-domain simu-
lation of a state-space model computed at optical frequencies is time and memory
consuming [15, 16], the augmented model is converted into an equivalent base-
band representation, according to the technique introduced in Chapter 4, thereby
obtaining a baseband augmented model which can be efficiently simulated. Fur-
thermore, pertinent time-domain statistical information of the circuit input/output
signals can be computed by means of only one time-domain simulation of such
model. In this work we especially focus on wavelength filters, as they represent
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an important category of passive photonic circuits and their performance suffers
severely from fabrication variations when they are not designed to be robust [17].

The chapter is organized as follows. Section 6.2 describes the problem state-
ment. Section 6.3 presents the standard MC approach for time-domain variability
analysis, while Section 6.4 proposes the novel PC-based approach. A relevant
application example is presented in Section 6.5, where the proposed technique is
compared to the MC analysis in terms of accuracy and efficiency. Conclusions are
drawn in Section 6.6.

6.2 Photonic filters subject to fabrication variations
Photonic filters are often studied in the frequency (or wavelength) domain, as their
transfer function depends on suitable (geometrical or optical) design parameters
and the frequency. Hence, it is straightforward to describe a photonic filter subject
to fabrication variation via a scattering matrix S(f, ξ), where f is the frequency
and the vector ξ collects all the normalized random variables of the problem at
hand, which represent the design parameters affected by fabrication variations (e.g.
width and thickness of a waveguide, coupling coefficients, effective index). The
port signals of the scattering matrix of the filter are incident and reflected waves,
which have the relation

b(f, ξ) = S(f, ξ)a(f, ξ). (6.1)

S(f, ξ) is a N × N matrix when the filter under study has N ports. Note that,
due to the variability of the filter, no matter whether the incident waves are de-
terministic or stochastic, the reflected waves b(f, ξ) will always depend on ξ and
can be considered stochastic quantities. In general, the incident waves a(f, ξ) can
also be considered stochastic quantities when the filter connects to other photonic
components and there are stochastic reflections at joints. If the reflections at the
terminations can be neglected, the incident waves can be assumed deterministic.

The challenge addressed in this chapter is to quantify the impact of the random
parameters ξ on the port signals in the time domain.

6.3 MC approach for time-domain variability anal-
ysis

The MC method is the standard approach for such variability analysis. In our
problem formulation, it requires the following three steps: 1) computing a large
number of samples of the random variables ξi for i = 1, · · · , NMC , according
to their distribution. For each sample, the scattering parameters of the filter are
calculated, representingNMC different filters; 2) building models for all theNMC
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filters and performing NMC time-domain simulations to obtain the port signals;
3) computing the relevant statistics, such as mean, standard deviation, probability
density function (PDF) or any other stochastic information of interest, based on
the data collected so far.

In this framework, it is crucial to choose a suitable modeling approach for
time-domain simulations, considering that a large number NMC is required to
accurately estimate the stochastic information [3]. In this work, we adopt the
baseband modeling technique proposed in Chapter 4 for time-domain modeling
and simulations, which is elaborated as follows.

For each filter with parameters ξi, the scattering matrix has to be evaluated at a
set of frequencies in the range of interest, denoted by S(fr, ξi) for r = 1, · · · , R.
Then, a continuous VF model can be built [18]

S(f, ξi) =
K∑
k=1

Rk

j2πf − pk
+D, (6.2)

whereRk areN×N matrices containing the residues and pk are the corresponding
poles, which can be either real or complex conjugate pairs, while D is a real
matrix. Note that the model (6.2) is stable and passive: its stability is preserved
by a pole-flipping scheme, while passivity assessment and enforcement can be
accomplished by using robust standard techniques [19]. Next, a time-domain state-
space model can be analytically derived from (6.2) [20]:{

ẋ(t, ξi) =Ax(t, ξi) +Ba(t, ξi)

b(t, ξi) =Cx(t, ξi) +Da(t, ξi),
(6.3)

where a(t, ξi) and b(t, ξi) are the time-domain counterparts of a(f, ξi) and b(f, ξi),
respectively. A, B, C, D are the state-space matrices of S(f, ξi). In particular,
A is a diagonal matrix with all the poles pk as diagonal entries,B is a matrix con-
taining only ones and zeros, C contains all the residues Rk, while D is the same
as in (6.2).

The model (6.3) represents a system of first-order ordinary differential equa-
tions (ODE) that can be solved via robust numerical methods with respect to the
incident waves a(t, ξi). However, the port signals a(t, ξi) and b(t, ξi) are mod-
ulated optical waves defined at the Terahertz frequency range, and a time-step
on femtosecond-scale is needed to solve (6.3), which is impractical in terms of
memory requirements and computational time [15, 16]. To address this challenge,
baseband equivalents aB(t, ξi) for the optical waves a(t, ξi) are defined in Chap-
ter 4:

a(t, ξi) = <[aB(t, ξi)e
j2πfct], (6.4)

H[a(t, ξi)] = =[aB(t, ξi)e
j2πfct], (6.5)
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where <(·) and =(·) stand for the real and imaginary part, respectively, and H(·)
represents the Hilbert transform. The signals aB(t, ξi) are called baseband equiv-
alents since they no longer contain the fast oscillation of the optical carrier. Note
that, to avoid any confusion (with the notation am in (6.7) and aBm in (6.12)), the
subscript B is used to represent baseband equivalent signals in this chapter while
the subscript l is used in Chapters 4 and 5. Correspondingly, a baseband equivalent
system for (6.3) was proposed in Chapter 4{

ẋB(t, ξi) =(A− j2πfcI)xB(t, ξi) +BaB(t, ξi)

bB(t, ξi) =CxB(t, ξi) +DaB(t, ξi),
(6.6)

where aB(t, ξi), bB(t, ξi), and xB(t, ξi) are the baseband equivalents of a(t, ξi),
b(t, ξi), and x(t, ξi), respectively.

Then, the system of ODE (6.6) can be solved efficiently with a much larger
time step compared to (6.3), since the baseband equivalent signals have spectrum
in the radio frequency (RF) band [15]. Note that for photonic circuits we are
only interested in the baseband equivalent signals aB(t, ξi) rather than the fast os-
cillating modulated optical signals a(t, ξi), since aB(t, ξi) represents the useful
information that a(t, ξi) carries [15, 21]. Furthermore, the optical signals can be
analytically calculated from their baseband counterpart, as shown in (6.4). Inter-
ested readers are referred to Chapter 4 for more details about the baseband signals
and models.

The MC analysis is completed by repeating this procedure for each sample ξi
of the random variables and pertinent statistical analyses can be performed based
on the large number of time-domain simulations performed.

6.4 PC-based time-domain variability analysis

In contrast with the MC method, the technique described in this section is able to
compute a statistical model of the input/output signals of the filter under study via
a single time-domain simulation, which can be used to efficiently and accurately
perform time-domain variability analysis, as described in the following.

6.4.1 PC-based augmented systems

The PC expansion is an efficient modeling method to quantify stochastic varia-
tions. The main properties of the PC expansion and the procedure to build PC-
based augmented systems are described in this section.

According to the PC theory, the stochastic quantities in (6.1) can be represented
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as [22, 23]:

S(fr, ξ) ≈
M∑
m=0

Sm(fr)ϕm(ξ),

a(fr, ξ) ≈
M∑
m=0

am(fr)ϕm(ξ),

b(fr, ξ) ≈
M∑
m=0

bm(fr)ϕm(ξ),

(6.7)

where ϕm(ξ) are called basis functions, while Sm(fr), am(fr) and bm(fr) for
m = 0, . . . ,M are suitable coefficients, referred to as PC coefficients. In particu-
lar, the basis functions ϕm(ξ) are orthonormal and depend on the joint distribution
of the random variables ξ as

〈ϕi(ξ), ϕm(ξ)〉 =

∫
Ω
ϕi(ξ)ϕm(ξ)W (ξ)dξ = δim, (6.8)

where δim is the Kronecker delta and Ω represents the stochastic space where the
random variables ξ are defined, while W (ξ) is a weight factor corresponding to
the normalized joint probability density function of ξ.

Given (6.8), several techniques exist to estimate the basis functions [23]. It is
important to note that, if the random variables ξ are independent, the basis func-
tions are defined as product combination of the orthonormal polynomials corre-
sponding to each individual random variable in ξ, which are known for certain
distributions. For example, ϕm(ξ) are product of Hermite polynomials if the ran-
dom variables ξ follow a Gaussian distribution, while for Uniform distribution
they can be computed as product of Legendre polynomials [22, 23]. The accuracy
of the approximations in (6.7) can be improved by increasing the number of basis
functions M + 1, which depends on the number Q of random variables in ξ and
the PC order P : M + 1 = (Q+ P )!/(Q!P !) [22]. Since the basis functions are
typically polynomials, the PC order P is defined as the maximum degree of the
elements ϕm(ξ), for m = 0, . . . ,M [22, 23].

In this framework, only the PC coefficients must be estimated to obtain the
models (6.7). Several non-intrusive techniques can be adopted to reach this goal,
based on linear regression [13], numerical integration [22], or stochastic testing
(ST) [4, 6]. Similar to the MC method, these approaches require to evaluate the
filter scattering parameters for a set of samples NPC of the random variables, with
one main difference: NPC << NMC . Hence, computing the PC models (6.7) is
much more efficient than performing a MC analysis.

Mathematically, the PC expansion process in (6.7) can be considered as pro-
jecting a stochastic quantity onto M + 1 known orthonormal bases. Once the PC
coefficients are calculated, the variability analysis can be performed with great
accuracy and efficiency:
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• the mean and standard deviation of the stochastic quantity under study, for
example S(fr, ξ), can be directly calculated from the corresponding PC
coefficients [22, 23];

• more complex stochastic moments, such as the probability density or the
cumulative distribution function, can be estimated via a MC analysis based
on the analytical models (6.7), which can be evaluated very efficiently.

The interested reader is referred to [4–13, 22, 23] for a complete description of
the properties of the PC expansion, including its application to problems involving
correlated random variables.

Now, by following the procedure described in Chapter 2 and [7, 13], it is pos-
sible to describe the relationship between the PC coefficients of the incident and
reflected waves as:

bPC(fr) = SPC(fr)aPC(fr), (6.9)

where the vectors aPC(fr) and bPC(fr) are formed by the PC coefficients of the
incident and reflected wave, respectively: they have a total of (M+1)N elements.
Note that equation (6.9) is deterministic, since SPC(fr) with size (M + 1)N ×
(M + 1)N is obtained by a suitable combination of the PC coefficients Sm(fr)

in (6.7). It is important to remark that (6.9) describes a new system represented by
SPC(fr), whose port signals are the PC coefficients of the incident and reflected
waves of the original stochastic filter. In particular, SPC(fr) is M + 1 times
larger than the original system under study in terms of ports number, and is often
referred to as “augmented system” in the PC jargon. It is demonstrated in [7] that
SPC(fr) can be considered as a scattering matrix of a physical linear and passive
system: it can be modeled with the same approaches that are used for modeling
the filter (see (6.2)), as it will be described in the next section. Furthermore, an
augmented matrix representation SPC(fr) is adopted in [13] to model stochastic
building blocks in PICs for efficient frequency-domain variability analysis.

Note that, when the incident waves do not depend on the random variables con-
sidered (a(fr, ξ) = a(fr)), (6.9) still holds and aPC(fr) = [a(fr),0,0, · · · ]T ,
due to the properties of the PC expansion [22, 23].

6.4.2 Time-domain augmented model

Let us assume that SPC(fr) has been computed for a discrete set of frequency
values fr for r = 1, · · · , R. Then, as it can be done for S(fr, ξi), a continuous
frequency-dependent pole-residue model for SPC(fr) can be built by means of
the VF technique [18]

SPC(f) =

L∑
l=1

RPC
l

j2πf − pPCl
+DPC , (6.10)
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Figure 6.1: (a) Waveguide under stochastic effects; (b) the corresponding time-domain
augmented model.

whereRPC
l are (M+1)N×(M+1)N matrices containing the residues and pPCl

are the poles, while DPC is a real matrix. Next, it is straightforward to convert
(6.10) into a corresponding time-domain state-space representation [20]{

ẋPC(t) =APCxPC(t) +BPCaPC(t)

bPC(t) =CPCxPC(t) +DPCaPC(t),
(6.11)

where APC , BPC , CPC , DPC are the state-space matrices of SPC(s) and can
be directly calculated from (6.10) according to [20]. Note that xPC(t) is the corre-
sponding state-vector, while aPC(t) and bPC(t) are the time-domain counterparts
of aPC(f) and bPC(f), respectively, which collect all the PC coefficients am(t)

of a(t, ξ) and bm(t) of b(t, ξ).
To better understand this model, let us consider a waveguide in Fig. 6.1(a),

which depends on one random variable (such as the width of the waveguide). If
three basis functions are used for the PC expansion (PC order P = 2), then the
corresponding time-domain augmented model is shown in Fig. 6.1(b). In this case,
aPC(t) = [a1

0(t), a2
0(t), a1

1(t), a2
1(t), a1

2(t), a2
2(t)]T , where a1

0(t) represents the
first PC coefficient of the stochastic signal at port one and so on.

Now, time-domain simulations can be performed by solving the system of
first-order ODE (6.11) with input signals aPC(t). However, the PC coefficients
collected in aPC(t) have spectrum in the terahertz frequency range, considering
that the optical signals a(t, ξ) are defined at such frequencies and the PC basis
functions are time independent. As a result, similar to (6.3), time-domain simu-
lations of (6.11) would have to adopt time steps of the order of the femtoseconds
and would be very time and memory consuming [15]. This issue is addressed in
the following by defining a baseband augmented model.
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6.4.3 Time-domain baseband augmented model

The PC expansion of a(t, ξ) and its baseband equivalent aB(t, ξ) are

a(t, ξ) ≈
M∑
m=0

am(t)ϕm(ξ),

aB(t, ξ) ≈
M∑
m=0

aBm(t)ϕm(ξ).

(6.12)

Combining (6.4) and (6.12), there is

M∑
m=0

am(t)ϕm(ξ) = <[

M∑
m=0

aBm(t)ϕm(ξ)ej2πfct]. (6.13)

Thanks to (6.8), projecting (6.13) on the i−th PC basis function via Galerkin pro-
jection gives [22]

ai(t) = <[aBi(t)e
j2πfct], (6.14)

which indicates that the PC coefficients ai(t) of the optical signals a(t, ξ) can
be analytically recovered from the PC coefficients aBi(t) of the corresponding
baseband equivalents aB(t, ξ). Then, by collecting all the elements ai(t) and
aBi(t) in vectors, it leads to:

aPC(t) = <[aBPC(t)ej2πfct]. (6.15)

Starting from (6.5) and (6.12), the following relation can be obtained in the same
way

H[aPC(t)] = =[aBPC(t)ej2πfct]. (6.16)

It is easy to prove that similar relations also hold for bPC(t) and xPC(t) in (6.11).
Hence, considering the relations (6.15) and (6.16), a baseband augmented

model for (6.11) can be derived by following the same procedure used for the
filter (see (6.3) and (6.6)), which leads to:{

ẋBPC(t) = (APC − j2πfcI)xBPC(t) +BPCaBPC(t)

bBPC(t) = CPCxBPC(t) +DPCaBPC(t).
(6.17)

Now, all the PC coefficients bBPC(t) of the stochastic baseband equivalent sig-
nals bB(t, ξ) can be obtained by performing only a single time-domain simulation
of (6.17) in the baseband with efficiency and accuracy. With these PC coefficients,
the mean and standard deviation of the baseband port signals can be immediately
calculated, while a cheap MC analysis based on the obtained PC model can also be



6-10 CHAPTER 6

Calculation of PC coefficients 

                of  

1, , 1, , MCr R i N 

  Evaluation of ( , )r ifS ξ

Building the VF model 

 ( , )ifS ξ

Converting to the baseband

          model (6) at  iξ

Time-domain simulation of 

          model (6) at iξ

1, , 1, , PCr R i N 

  Evaluation of ( , )r ifS ξ

( , )rfS ξ 1, ,r R( )m rfS

Calculating augmented system 

                  1, ,r R( )PC rfS

 Building VF model ( )PC fS

Converting to the baseband

       augmented model (17) 

Time-domain simulation of 

model (17)

MC PC

Stochastic information Stochastic information

No

Yes

1i i1i

MCi N

Figure 6.2: Flowchart of the MC approach (left) and the proposed PC-based method (right).

performed to estimate more complex quantities, such as the PDF, eye or constella-
tion diagrams [22, 23]. Note that, starting from the PC coefficients of the baseband
signals, it is possible to analytically estimate the corresponding PC coefficients of
the signals at optical frequencies, see (6.15): the variations of the optical signals
are fully characterized by the PC model of their baseband counterpart.

The key steps of the MC method presented in Section 6.3 and of the novel
PC-based approach are illustrated in Fig. 6.2. It is important to remark that both
techniques start with evaluating scattering matrices, whereas the MC and PC-based
approach require NMC and NPC samples respectively, and NPC is much smaller
than NMC , as will be demonstrated in Section 6.5. Note that several steps in the
MC approach have to be repeated NMC times, while those in PC-based approach
need to be carried out only once. These differences make the proposed method far
superior in terms of efficiency.

6.5 Study of a ring-loaded MZI filter under stochas-
tic effects

The proposed technique is applied to a compact silicon-on-insulator bandpass filter
presented in [24], whose structure is shown in Fig. 6.3. The filter is designed based
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on unbalanced Mach-Zehnder interferometer (MZI) loaded with a pair of ring res-
onators (RR). The length of the unloaded arm is set in such a way that the free spec-
tral range of the RR matches that of the MZI. The characteristics of the filter, such
as 3 dB bandwidth, off-band rejection and shape factor, are mainly determined by
three phase shifters PS0, PS1, PS2, and two power coupling coefficients K1, K2

as indicated in Fig. 6.3. In particular, K1 and K2 affect the bandwidth tunability
and off-band rejection; the phase difference between PS0 and PS1 has an impact
on the 3 dB bandwidth; the condition PS2 = mπ + (PS0 + PS1)/2 has to be
satisfied in order to achieve a symmetric passband with regard to the center fre-
quency, where m is an integer [24]. In our design, these parameters are chosen as
PS0 = 0, PS1 = π, PS2 = π/2, K1 = 0.67, K2 = 0.67.

We assume that, due to fabrication variations, the coupling coefficients K1

and K2 vary independently from chip to chip and can be represented as Gaussian
random variables with standard variation of 0.02. Furthermore, while the phase
shifter PS0 is switched off since it is zero, the phase shifters PS1 and PS2 on
different chips are sensitive to fabrication variations. For example, when the phase
shifter is implemented by diode-loaded heaters, the shifted phase obtained from
temperature changes could be different due to the post-processing of the heaters,
or the slight difference of the applied voltage and current. Hence, PS1 and PS2 are
assumed as independent and Gaussian distributed random variables with a standard
deviation of two degrees. Hence, the filter scattering parameters depend on Q = 4

random variables.

To build the baseband augmented model, first a suitable modeling frequency
range around the carrier frequency fc = 190.77 THz must be defined: [190.29;
191.25] THz. This choice depends on the spectrum of the modulated input signals:
a bandwidth of ±480 GHz is sufficient for our application. In particular, 260 fre-
quency samples that are uniformly distributed over the modeling frequency range
are adopted. Then, a PC order P = 2 is chosen, leading to 15 basis functions,
which is sufficient to obtain an accurate PC expansion of the scattering parameters
in this case. According to the ST approach [4, 6], the PC coefficients of the scatter-
ing matrices S(fr, ξ) can be calculated by evaluating S(fr, ξi) at onlyNPC = 15

P2

P3

P4

P1

K1 K2

PS0 PS1

3 dB 3 dB

PS2

Figure 6.3: Structure of the ring-loaded MZI filter under study.
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samples of ξ, which is equal to the number of basis functions. Finally, the obtained
PC coefficients Sm(fr) for r = 1, . . . , 260 can be used to calculate SPC(fr), as
described in Section 6.4.1.

With the VF technique [18–20], a stable, passive, and continuous state-space
model SPC(f) in the form (6.11) is built with 34 poles [7, 8]. The magnitude
of the maximum absolute error between the VF model and the data is less than
-55 dB. It is important to remark that the PC coefficients Sm(f) can always be
estimated from the corresponding augmented system SPC(f) [7, 8]. Since a
continuous frequency-domain model of SPC(f) has been computed via the VF
technique, the PC coefficients of the filter scattering matrix can be evaluated at
any frequency point in the frequency range considered, which is [190.29; 191.25]

THz in this case. Hence, a cheap MC analysis based on the PC model of the scat-
tering parameters is conducted to calculate S(fk, ξi) for i = 1, · · · , 10000 and
k = 1, · · · , 800, as shown in Fig. 6.4. The blue and red curve are the frequency
response with the intended design parameters (also called nominal design), while
the gray lines represent the variations in the frequency response of the filter under
stochastic effects. Note that the carrier frequency is chosen at the passband center
of the filter as indicated in Fig. 6.4. Finally, the baseband stochastic model can be
built according to (6.17) for efficient time-domain variability analysis.

We assume that the filter is excited at port P1 with quadrature amplitude mod-
ulated (QAM) source signal, then the incident waves are a(t, ξ) = a(t), while

Figure 6.4: The variation (gray lines) in frequency response of the filter due to stochastic
effects and the nominal design (red S13 and blue S14 ).
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Figure 6.5: The in-phase part (I) and quadrature part (Q) of the input QAM signal.

the outputs b(t, ξ) will vary from chip to chip due to the variations of PS1, PS2,
K1 and K2. The in-phase part I(t) and quadrature part Q(t) of the QAM input
signal are pseudo-random sequence of 1000 bits with a bit time of 15 ps, whose
first 25 bits are plotted in Fig. 6.5. Note that I(t) and Q(t) correspond to the real
and imaginary parts of the baseband equivalent of the QAM modulated signal, re-
spectively [15]. Furthermore, any input signal with a generic shape can be adopted
here as the filter excitation, as long as the chosen modeling frequency range covers
the spectrum of the signal.

Considering that the incident waves at port P1 is a deterministic source signal,
its first PC coefficient is equal to the source signal itself, while all the others are
zeros (see Section 6.4.1). Similarly, we assume that the other ports have no in-
cident waves, so their PC coefficients are all zeros. In this framework, the input
signal for the built baseband model (6.17) can be easily calculated: aBPC(t) =

[I(t) + jQ(t), 0, 0, · · · ]. It is important to remark that in this example only the
port P1 is excited for an easier demonstration of the simulation results. In fact, the
proposed modeling and simulation technique allows that all the ports are excited
at the same time with different input signals. Once we have the baseband aug-
mented model and its input aBPC(t), time-domain simulations can be conducted
by solving the first-order ODE (6.17) by robust ODE solvers. In this work, the
Matlab linear system simulator lsim is adopted. Finally, all the PC coefficients
of the baseband reflected wave bB(t, ξ) are obtained, which are collected in the
output bBPC(t). The mean and standard deviation (sigma) of the output signal
bB(t, ξ) are readily calculated from bBPC(t) [7, 8].

As a benchmark, a time-domain MC analysis is also performed with NMC =

10000 samples of PS1, PS2, K1 and K2, by following the procedure outlined in
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Figure 6.6: Variations of the output at port P3 and P4 obtained from the proposed technique
(red dash line) and MC analysis (blue line).

Section 6.3. Figure 6.6 shows the mean and mean± 3sigma of the output at P3
and P4 at the first 200 ps, computed via the proposed PC-based approach and via
the MC analysis: an excellent agreement can be observed.

Furthermore, bBPC(t) is a cheap but accurate PC model, from which bB(t, ξ)

at any point in the stochastic space can be efficiently computed. So if the PDF
and CDF of bB(t, ξ) are desired, a cheap MC analysis based on the obtained PC
model can be immediately conducted [7, 8, 13]. In this example, a MC analysis
of the constellation diagrams of the output at port P4 is carried out by computing
bB(t, ξi) of the filters at 10000 samples of ξ. Note that the real and imaginary
parts of bB(t, ξi) are the in-phase part I(t) and quadrature part Q(t), respectively,
and the constellation diagram can be immediately plotted with I(t) and Q(t). Fig-
ure 6.7 shows the 10000 diagrams computed from the cheap PC model and MC
analysis, and the diagrams for input signal and output signal of the nominal de-
sign for comparison. Again, the results demonstrate the accuracy of the proposed
method.

The computational time for the proposed technique and MC analysis are com-
pared in Table 6.1 in term of three phases: evaluating scattering matrices, building
the models with the VF technique, and time-domain simulations. It demonstrates
that the proposed technique is much more efficient than the MC method, while
achieving a comparable accuracy. Note that all the operations are carried out on a
personal computer with Intel Core i3 processor and 8 GB RAM. However, the ef-
ficiency of the proposed technique is sensitive to the number of random variables.
More random variables leads to more basis functions for the same PC order (see
Section 6.4.1), which has two effects: not only the the numberNPC of samples re-
quired to calculate the PC coefficients of the filter scattering parameters increases,
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Figure 6.7: Constellation diagrams of: input (top left), the output at P4 of nominal design
(top right), 10000 filters from MC analysis described in Section 6.3 (bottom left), and 10000
filters from the computed PC model (bottom right).

Technique Steps Computational
time

Proposed
technique

Extract scattering matrices at 15
(PS1, PS2, K1, K2) samples 1 min 2 s

Build baseband augmented model (6.17) 1 min 52 s
Time-domain simulation 9 min 22 s
Total time 12 min 16 s

MC

Extract scattering matrices at 10000
(PS1, PS2, K1, K2) samples 11 h 35 min

Build 10000 baseband models (6.6) 1 h 54 min
10000 time-domain simulations 1 h 56 min
Total time 15 h 25 min

Table 6.1: Efficiency of the proposed technique

but also the size of SPC(f) and its corresponding baseband model increase as
well, which can reduce the efficiency of the proposed method both in the model
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Figure 6.8: Constellation diagrams of 10000 filters from the proposed PC-based technique
when different variations are considered.

building and simulation phase. This is a de facto challenge for PC-based tech-
niques: their efficiency is high if the number of random variables is (relatively)
limited [23].

To study how the variations in PS1, PS2, K1 and K2 impact the output signal
at port P4, the standard deviation for (K1, K2) and (PS1, PS2) is first increased
to 0.03 and 3 degrees, respectively, then to 0.04 and 4 degrees, respectively. Per-
forming the variability analysis via the MC approach outlined in Section 6.3 is
particularly expensive, since a new set of NMC = 10000 samples must be evalu-
ated each time the standard deviation of the random variables changes. With the
proposed technique, only NPC = 15 samples of the random parameters need to
be computed anew for the chosen standard deviation values, which leads to a great
efficiency gain. The effect of the change in the standard deviation on the constel-
lation diagrams by means of the proposed method is shown in Fig. 6.8.

Furthermore, the PDF of the constellation symbol gap can also be calculated
from both the MC analysis and the proposed PC-based technique, as illustrated in
Fig. 6.9. Note that the gap is defined as the distance between the centers of two
constellation symbols, as indicated in Fig. 6.7. It is evident that the PDF of the
gap obtained from both techniques show an excellent agreement for the original
assumption of the standard deviations. When the standard deviations increase, a
clear larger spread of the gap distribution can be observed from the PDF computed
via the efficient PC-based technique.

6.6 Conclusion

In this work, we presented an efficient baseband augmented modeling technique
for time-domain variability analysis of photonic filters under stochastic effects.
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Figure 6.9: PDF of the constellation symbols gap calculated from MC analysis and the
proposed PC-based technique while considering different variations.

The proposed approach is applicable to general linear passive photonic devices
and circuits, since it is based on the scattering parameters representation, and al-
lows for an efficient characterization of the impact of random variables on the
time-domain performance of photonic circuits. The accuracy and efficiency of the
proposed method was validated by means of a comparison with the time-domain
MC approach for a pertinent example of a photonic integrated filter circuit.
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7
Conclusion

7.1 Summary and results

The purpose of this PhD was to develop modeling techniques for the design and
analysis of electronic and photonic circuits.

In the early phase of my PhD research, the main focus was on quantifying the
effects of the variations of the manufacturing process on the performances of mod-
ern ICs. Since this problem can be studied in a probabilistic framework, I devel-
oped stochastic macromodeling approaches to characterize the behaviour of elec-
tronic circuits under stochastic effects. In this PhD thesis, stochastic macromod-
els are defined as mathematical models describing the behaviour of the stochastic
system under study as seen from the system input/output ports. Given the large
variety of devices and components in modern ICs, I first focused on a specific
class of systems, namely linear and passive multiport electronic circuits (such as
transmission lines, distributed filters, connectors, etc.). These systems can be de-
scribed both in the frequency- and time-domain by means of their transfer function,
which can be expressed by different representations, such as impedance, admit-
tance and scattering parameters. Hence, Chapter 2 presented an extensive study
of stochastic macromodeling of general passive multiport electronic circuits based
on their transfer function representation. It is important to remark that the pro-
posed stochastic macromodeling approaches preserve relevant physical properties
of the system under study, namely causality, stability and passivity, allowing one to
perform variability analysis both in the frequency and time domain with accuracy
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and efficiency with respect to traditional MC-based approaches. Finally, a unique
modeling framework for passive circuits depending on both deterministic design
parameters and stochastic random parameters was developed.

Chapter 3 extended the proposed stochastic macromodeling framework to gen-
eral electronic circuits consisting of both linear and nonlinear devices. The main
feature of the proposed approach is that the stochastic macromodels for linear and
nonlinear elements under stochastic effects can be built separately, and then con-
nected and simulated in SPICE-like simulators. The simulation results can be used
not only to calculate simple stochastic information, such as mean and standard de-
viation, but also complex statistics like the PDF and the CDF. The proposed tech-
nique is much more efficient than MC-based approaches and is widely applicable
to general electronic circuits.

Then my research gradually shifted towards photonic integrated circuits (PICs),
which represent a promising solution to overcome the bottleneck in data transmis-
sion speed and volume of electronic circuits. However, unlike electronic circuits,
which are highly sophisticated in terms of design and manufacturing, there are
many challenges to design highly integrated silicon photonic circuits for mass pro-
duction. In particular, modeling and simulation techniques for photonic circuits
are still not well established. Hence, I first developed robust modeling and sim-
ulation techniques, then focused on efficient variability analysis methods able to
quantify the impact of the fabrication variations.

In particular, Chapter 4 proposed a baseband modeling technique for general
linear and passive photonic circuits, which allows to perform time-domain simu-
lations with accuracy and efficiency. The modeling process starts with the scat-
tering parameters, which contain both transmission and refection information and
are able to characterize nonideal behaviours, such as higher-order dispersion and
wavelength-dependent losses. The proposed technique is widely applicable, since
any linear passive photonic circuit can be described by its scattering parameters.
Furthermore, the modeling process is very robust since it leverages on the VF
technique, which has been extensively studied in the last two decades. Chapter 5
presented a novel modeling technique based on the CVF algorithm, which inher-
its all the advantages of the approach described in Chapter 4 and offers a reduced
modeling complexity: for the same application, the model built via the technique
in Chapter 5 has half the size of the model built via the technique in Chapter 4.
This characteristic is crucial when simulating circuits with a large number of com-
ponents, since compact models lead to more efficient simulations.

Finally, Chapter 6 introduced a stochastic baseband modeling technique for
general linear and passive photonic circuits. To the best of my knowledge, it is
the first PC-based approach presented in the literature allowing for the efficient
characterization of stochastic photonic circuits directly in the time domain. This
novel approach leverages on the PC expansion, a state-of-the-art stochastic method
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for variability analysis, and the baseband modeling approach defined in this thesis
for efficient and accurate time-domain simulations.

7.2 Future work

7.2.1 Compact modeling of linear photonic circuits via delayed
vector fitting

General linear and passive photonic circuits can be accurately modeled by the
Vector Fitting (VF) technique, as demonstrated in Chapter 4. One of the main
advantages is that only the scattering parameters of a linear device or circuit are
required to compute the desired model: the approach in Chapter 4 can be applied
to a large class of devices (couplers, filters, ring resonators, etc.). In particular, the
VF algorithm adopts a set of poles and residues to approximate the scattering pa-
rameters, so the built models are also called pole-residue models. Mathematically,
the pole-residue models can also be expressed as pole-zero models. Therefore,
the VF technique is inherently good at modeling the oscillations in the frequency
response that are caused by resonances.

However, many photonic devices, such as waveguides and directional couplers,
are characterized by smooth frequency responses (without resonances) over a wide
frequency range and have a large wavelength dependent phase rotation, and the
VF technique normally requires a relatively high amount of poles and residues to
approximate such smooth frequency responses. If we consider an extreme case: a
nondispersive waveguide can be modeled by a single delay, but it is challenging to
compute a compact VF model over a wide bandwidth, since the magnitude of its
frequency response is constant with respect to the frequency (no resonances).

Hence, a large increase in modeling power can be expected by adding de-
lays to the VF pole-residue model. In this framework, a modeling technique has
been proposed in the electronic field, called Delayed Vector Fitting (DVF) [1].
Researching approaches based on DVF to describe linear photonic circuits seems
very promising, since it could lead to more compact models than the VF technique,
especially for optically long systems (where the physical length is much larger than
the wavelength). Unfortunately, the DVF has two main challenges: 1) the accurate
estimation of multiple delays; 2) the development of robust and efficient passivity
assessment and enforcement strategies. Even though some successful applications
were demonstrated in literature, it is still a far less robust modeling technique and
not widely used as compared to the VF algorithm. Hence, developing robust and
accurate DVF-based modeling approaches for photonic circuits is a challenging
task.
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7.2.2 SPICE-compatible models of linear photonic circuits

As mentioned in Chapter 1, for electronic and photonic circuits co-simulation, it
is promising to build models of photonic devices which are compatible with elec-
tronic simulators, such as SPICE and Verilog-A. Several techniques have been
published in the literature for building SPICE or Verilog-A compatible models
for nonlinear photonic devices (e.g. lasers [2, 3], modulators [4–6], photodetec-
tors [7–10]), but there are still challenges to build SPICE or Verilog-A compatible
models for general linear and passive photonic elements. In Chapters 4 and 5, it is
demonstrated that complex-valued state-space models of linear photonic circuits
can be converted into real-valued ones. Real-valued state-space models represent
physical systems and have the potential to be converted into suitable equivalent
circuits (netlists) which are SPICE-compatible [11].

However, there is a fundamental issue that must be addressed. In SPICE, sig-
nals are node voltages and branch currents, while the port signals of photonic
circuits are incident and reflected waves. Therefore, a suitable transformation of
waves into voltages and currents must be performed to simulate photonic circuits
in electronic circuit simulators. The definition of such transformation is the main
research challenge to overcome [12]. A possible solution is to directly interpret
the magnitude/phase or real/imaginary parts of the forward and backward waves
to voltage and/or current. This approach is accurate from a mathematical point of
view in some cases [13, 14]; however, the voltages and currents in electronic cir-
cuit simulators always comply with the Kirchhoff’s voltage law (KVL) and Kirch-
hoff’s current law (KVL), respectively, whereas the optical waves never follow
these rules. For microwave systems, the non-conservative electromagnetic waves
are converted to voltages and currents through the definition of the characteristic
impedance in waveguide circuit theory [15]. It would be very useful to define
a suitable optical equivalent counterpart of the characteristic impedance, which
could physically map optical waves to voltages and currents.

7.2.3 Variability analysis of linear and nonlinear photonic cir-
cuits

A general photonic system always contains linear and nonlinear devices. When it
comes to manufacturing, both kinds of devices are subject to fabrication variations.
Therefore, it is meaningful to develop variability analysis techniques applicable to
circuits with both linear and nonlinear devices.

To this end, a possible approach is to define a methodology allowing to model
the stochastic variations of linear and nonlinear devices separately: the computed
models can then be suitably connected to estimate the variability of the entire cir-
cuit. Such methodology has been presented in Chapter 3 for electronic circuits and
its applicability in the photonic domain could be investigated in the future.
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Furthermore, the variability analysis techniques described in this thesis (Chap-
ters 2, 3 and 6) are based on the PC expansion: one of the main challenges is to
extend the proposed methodologies to circuits with a large number of random pa-
rameters. Indeed, the number of PC coefficients increases rapidly with the number
of random parameters, leading to very large augmented models which are compu-
tationally expensive to simulate. Developing efficient PC-based variability analy-
sis techniques for circuits depending on a large numbers of random parameters is
still an open problem.

It is also interesting if the variability analysis can take into account both the
systematic and random variations and the correlations among the random vari-
ables, which is often the case in practice [16].
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