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Nederlandse samenvatting
–Summary in Dutch–

Procesvariaties in gentegreerde fotonica-circuits

Silicon photonics is een aantrekkelijke technologie om kosten efficiënt fotonica op
chip te integreren door zijn compatibiliteit met bestaande CMOS fabricage techno-
logie. Co-integratie van elektronische en fotonische chips is eenvoudiger net door
deze compatibiliteit. Het hoge index contrast tussen silicium en silicium dioxide
zorgt voor sterke geleiding van het licht, waardoor zeer kleine componenten op
grote schaal mogelijk zijn.

Het is echter zo dat dit hoge contrast en de kleine geometrische elementen er-
voor zorgen dat deze fotonische circuits in silicium zeer gevoelig zijn aan variaties
waar het fabricageproces aan onderworpen is. Bloodstellingsdosis, leeftijd van
gebruikte resist, plasma dichtheid en de samenstelling van de slurry bij chemical
mechanical polishing, zijn voorbeelden van parameters die bij de fabricage kunnen
variëren die uiteindelijk leiden tot geometrische variaties op nanometer schaal zo-
als lijndikte, laagdikte en hoek van de zijwanden van waveguides. Deze variaties
op componenten niveau vertalen zich op circuit niveau tot verschillende vertragin-
gen tussen optische paden in een circuit, de optische signalen zijn uit balans. Dit
zorgt voor een slechtere functionaliteit van het betreffende circuit, waarbij soms
slechts een deel van een optisch circuit functioneel is. Hoe complexer de circuits,
hoe groter de kans dat delen van het circuit niet werken.

Filters, zoals Arrayed Waveguide Gratings en ring resonatoren, zijn bijzonder
gevoelig aan deze procesvariaties. Dit zorgt voor meer overspraak tussen kanalen,
grotere verliezen, meer verbruik en een afwijking van de golflengte van een kanaal.
Wanneer de impact van deze procesvariaties niet in acht genomen wordt zullen
bepaalde componenten niet meer werken, zelfs met een variabel element die de
fout tracht te compenseren. [1]. Variaties in het proces zijn dus een limiterende
factor voor de opbrengst (yield), de fractie van werkende circuits gefabriceerd in
dit proces. Zonder een goede analyse en praktische methode om de impact van
proces variatie te voorspellen en te matigen, zal procesvariatie bij fabricage leiden
tot een grotere kost en de mogelijkheden tot integratie beperken.
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Uitdagingen voor het voorspellen van de opbrengst
van Photonic Integrated Circuits fabricage
Om de opbrengst te voorspellen en te schatten hoe de degradatie van de prestaties
van het geproduceerde circuit kan worden gecompenseerd, wordt het essentieel
om voorspelling van de variatie in gedrag van het circuit in de gestandaardiseerde
ontwerp workflow te integreren. Er zijn twee uitdagingen om een realistische op-
brengstvoorspelling te maken voor fotonische gentegreerde schakelingen.

Ten eerste is het, anders dan micro-elektronica, minder intutief om “goedöf
“slecht”te definiëren voor fotonische bouwstenen met behulp van één parameter.
De effectieve index en koppelingscoëfficiënten hebben bijvoorbeeld beide invloed
op de prestaties van de filter, maar ze hebben geen intrinsieke goede of slechte
waarden. De voorspelling zou variaties in het gedrag van een circuit moeten bere-
kenen die genduceerd worden door deze parametervariaties, aangezien uiteindelijk
de mismatch tussen de respons van het ontworpen circuit en het gefabriceerde cir-
cuit de prestaties verslechtert.

Ten tweede zijn procesvariaties niet puur willekeurig. Omdat procesvariaties
sterk locatieafhankelijk zijn, wordt de prestatie van het gefabriceerde circuit pri-
mair bepaald door de lay-out van het circuit en zijn positie op de wafer. Een
realistische opbrengstvoorspelling vereist het kwantitatief vastleggen van de wil-
lekeurige en locatieafhankelijke variaties.

Bijdrage van dit werk aan het onderzoek
Om de opbrengst te voorspellen die rekening houdt met de lay-out, hebben we
een techniek voorgesteld die variaties van gedragsparameters op laag niveau (ef-
fectieve index, koppelingscoëfficiënt) of gefabriceerde geometrische parameters
(lijnbreedte, dikte) vertaald naar circuitprestaties op een hogere abstractie niveau.
Door locatie-afhankelijke variaties toe te wijzen die de werkelijke variatie in fa-
bricage nabootsen, kunnen we de circuitvariaties op hoog niveau inschatten met
behulp van Monte-Carlo-simulaties. Deze techniek vereist drie stukjes informa-
tie: een nauwkeurige verzameling van gegevens op de gefabriceerde wafer, een
realistisch variatiemodel om systematische en willekeurige variaties op verschil-
lende ruimtelijke niveaus te scheiden, en een virtuele wafer-kaart op basis van
geëxtraheerde gegevens van gefabriceerde componenten om Monte-Carlo simula-
ties mogelijk te maken.

Het verzamelen van gegevens over gefabriceerde wafers biedt input voor va-
riabiliteitsanalyse. We willen geometrische parameters van gefabriceerde golfge-
leiders afleiden, omdat dit de meest fundamentele parameters van de lay-out zijn
om de proceskwaliteit weer te geven. Het is echter erg duur om ze te verkrijgen
met behulp van traditionele meettechnieken. We stelden een methode voor om sili-
cium golfgeleider geometrie te extraheren met behulp van spectrale metingen van
een paar MZI-circuits. We hebben een uitgebreide analyse uitgevoerd om de gren-
zen van de parameter te verkleinen, waardoor de nauwkeurigheid van de extractie
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Figuur 1: Componenten voor realistische variabiliteitsanalyse en opbrengstvoorspelling.

aanzienlijk wordt verbeterd. Met behulp van de curve-fitting zijn we er ook in
geslaagd om de extractiemethoden toleranter te maken voor ruis en variaties in de
roosterkoppeling. We hebben een stapsgewijze workflow voorgesteld waarmee we
lijnbreedte en dikte kunnen extraheren met sub-nanometer-nauwkeurigheid, waar-
door het mogelijk is om gedetailleerde gefabriceerde wafer kaarten te extraheren
voor verdere analyse. Het extraheren van de breedte en -dikte van een golfgeleider
helpt bij het analyseren van de procesvariaties op een siliciumfotonica-chip. Vaak
moeten we ook de kwaliteit van gefabriceerde directionele koppelaars kennen om
de procesvariatie van koppelingen te analyseren en om de impact van variaties op
de prestaties van de optische filters te schatten, waarvoor een compact gedrags-
model voor de directionele koppelaars vereist is. We hebben een compact model
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van de directionele koppelaar, dat helpt bij het scheiden van componentontwerp
van circuitontwerp. Het extraheren van koppelingscoëfficiënten is niet triviaal in
de aanwezigheid van meetruis, uitlijningsfout en variatie van de roosterkoppeling.
We hebben verschillende ontwerpen en methoden vergeleken en bewezen dat we,
met behulp van curve-fitting en een goed rooster-koppelingsmodel, parameters van
de directionele koppelaar met hoge nauwkeurigheid uit een MZI-circuit kunnen
extraheren.

Om gelijktijdig meerdere parameters van on-chip golfgeleiders en directionele
koppelaars uit optische metingen te extraheren, stelden we een gevouwen twee-
traps MZI-circuit voor. Het compacte ontwerp is minder blootgesteld aan lokale
variatie binnen het circuit, wat de nauwkeurigheid van de extractie aanzienlijk
verbetert. Ook verkort het circuit de duur van optische metingen op waferschaal
aanzienlijk, waardoor het bruikbaar is voor bewaking van procesbesturing. We
hebben de heropstart van het wereldwijde optimalisatie-algoritme, CMA-ES, ge-
bruikt om parameters te extraheren uit ingewikkelde spectra van het circuit. We
hebben de workflow ook gellustreerd om gedetailleerde waferkaarten te plotten
voor variabiliteitsanalyse van wafermetingen.

Om geëxtraheerde waferkaarten met informatie over de procesvariatie te analy-
seren, stelden we een additief hiërarchisch model voor dat variabiliteit op verschil-
lende ruimtelijke niveaus kan omzetten in systematische en willekeurige variatie.
Om willekeurige variatie in onze analyse te verminderen hebben we de fysieke oor-
sprong van deze procesvariaties besproken en een workflow samengesteld om de
variabiliteit van intra-wafer te scheiden van het intra-die-niveau en een wafer-die
interactie term gentroduceerd. We hebben het model toegepast om de metingen te
analyseren op een 200 mm wafer gefabriceerd in imec’s silicium fotonica-platform
op basis van 193 nm lithografie. Het resultaat toont aan dat de systematische varia-
tie de primaire bron van variatie is voor zowel lijnbreedte als dikte. Op die-niveau
vonden we dat het systematische breedte-patroon nauw verwant is met de lokale
patroondichtheid. Onze bevindingen helpen om de procesvariatie te identifice-
ren en nieuwe ontwerpregels te creëren om de impact van de niet-uniformiteit te
verminderen. Als de systematische variatie die we hebben waargenomen in het
proces verder kan worden verfijnd en gecompenseerd, kunnen we de fotonische
wafers voorzien met een aanzienlijk betere fabricage-uniformiteit in de toekomst.

In de volgende stap hebben we het CapheVE-raamwerk ontwikkeld waarmee
we het ruimtelijke variabiliteitsmodel kunnen importeren en virtuele fabricage-
wafers kunnen genereren. Het raamwerk combineert het circuitmodel, parameter-
gevoeligheid, circuit lay-out en procesvariabiliteitsmodel. Circuitparameters wor-
den gewijzigd op basis van de gevoeligheid, de lay-out en de locatie op de wafer.
Met CapheVE kunnen we de realisaties van het circuit over de wafer verspreiden
en een Monte Carlo-simulatie uitvoeren om de respons van alle circuits te genere-
ren.

Vervolgens kunnen we de gegenereerde antwoorden gebruiken voor lay-out
bewuste variabiliteitsanalyse en opbrengstvoorspelling. We hebben interessante
experimenten gedaan met het CapheVE- raamwerk. We genereerden virtuele wa-
fers die een goede overeenkomst vertonen in statistische eigenschappen en ruimte-
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lijke correlatie van de procesvariaties met de gefabriceerde wafer. We hebben het
raamwerk ook gebruikt om opbrengstvoorspellingen te doen voor golflengte-de-
multiplexer en om de workflow voor parameter-extractie te valideren met behulp
van de compacte tweetraps MZI.

We hebben ook stochastische analysemethoden geprobeerd om de kost van
Monte Carlo-methoden voor opbrengstvoorspelling te verlagen. In vergelijking
met de Monte Carlo-methode kan de stochastische analysemethode de simulatie-
kost aanzienlijk verlagen. We hebben de stochastische collocatiemethode toege-
past om de variabiliteit van directionele koppelaars te analyseren. De methode
heeft de kost van simulatietijd aanzienlijk verlaagd.

Conclusie en toekomst
In dit werk hebben we een compleet raamwerk voorgesteld om realistische op-
brengstvoorspellingen te doen voor gentegreerde fotonica-schakelingen. Onze me-
thoden om gefabriceerde geometrieën of golfgeleider en koppelingsgedragspara-
meters te extraheren helpen om gedetailleerde fabricage waferkaarten te verkrij-
gen met hoge nauwkeurigheid van spectrale metingen. Het variabiliteitsmodel dat
we hebben opgebouwd, splitst procesvariaties op in systematische en willekeu-
rige bijdragen in verschillende ruimtelijke niveaus. Dit model helpt de proces-
variatie te identificeren en nieuwe ontwerpregels te creëren om de impact van de
niet-uniformiteit te verminderen. We hebben het model ook gentegreerd in het lay-
out bewuste opbrengstvoorspelling raamwerk CapheVE om virtuele proceskaarten
te genereren die de kenmerken van geëxtraheerde waferkaarten vastleggen. Met
dit raamwerk kunnen we circuitprestaties berekenen op basis van hun locaties op
de wafer, waarmee we circuitopbrengsten kunnen afleiden met behulp van Monte
Carlo-simulaties.

We hebben meer meetwaarden van de wafer nodig om het variabiliteitsmo-
del verder te valideren. Dit zou ook de waarde van wafer-to-wafer en lot-to-lot
variatie in het model kunnen karakteriseren. We hebben de CMZI-structuur op-
genomen in een fabricage proces waarbij we parameters over meerdere wafers en
volledige dies zouden moeten kunnen extraheren. Met deze informatie kunnen we
de modellering van de variatie in het niveau verbeteren.

Hoewel de relevantie van dit onderzoek voor opbrengstvoorspelling vrij duide-
lijk is, kan het alleen een praktische realiteit worden als het daadwerkelijk wordt
gentroduceerd in de ontwerpstroom die wordt gebruikt door een aanzienlijk deel
van de PIC-gemeenschap. Om dit te bewerkstelligen, moeten we de technieken
voldoende robuust maken en integreren in de tools die door echte ontwerpers wor-
den gebruikt. We werkten samen met Luceda Photonics (in het kader van het
VLAIO-project MEPIC) om ervoor te zorgen dat onze technieken werkelijke ont-
werpproblemen konden oplossen. Als resultaat van dit project zullen enkele van
de technieken (bijvoorbeeld het CapheVE-framework) worden opgenomen in toe-
komstige releases van Luceda’s IPKISS-framework.
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Process Variations in Photonics Integrated Circuits

Silicon photonics is a very attractive solution for low-cost, high-volume photonic
integration for its compatibility with existing CMOS manufacturing technology.
Also, tight integration with electronics is more feasible with silicon technology
than with other photonics integrated circuits technologies. Its high contrast in
the refractive index between silicon and silicon dioxide allows for strong light
confinement, which facilitates small device footprint and large-scale integration.

However, the high material contrast and small feature size also make silicon
photonics circuits very sensitive to process variations. Process variation such as ex-
posure dose, resist age, plasma density, and chemical mechanical polishing slurry
composition can lead to nanometer-scale variations in component geometries such
as linewidth, layer thickness, sidewall angles. Variations in components geome-
tries changes the optical properties of a device such as the effective index and the
group index of a waveguide, the coupling ratio of a coupler and the center wave-
length of interferometric structures. These variations at device level propagate
and accumulate at circuit level such that optical delay has a random component
and path imbalance is induced in the circuit, which deteriorates the circuit per-
formance, making only a fraction of the fabricated circuits perform as intended.
This fraction further shrinks with increasing circuit size and complexity. In par-
ticular, wavelength filters such as ring resonators, lattice filters, array waveguide
gratings, and so on suffer significantly from process fabrication leading to increas-
ing channel cross-talk, insertion loss, power consumption and deviation of channel
wavelength. Neglecting the impact of process variations could lead to failure of
the entire circuits, even with active tuning to compensate the error [1]. Process
variation is a limiting factor to fabrication yield, i.e., the fraction of functional
fabricated circuits. Without proper analysis and a practical method to predict and
mitigate its impact, process variation will increase the cost of large-volume pro-
duction and limit the scale of the integration.
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Challenges in Yield Prediction for Photonics Integrated
Circuits
To predict yield and estimate how to compensate for the degradation of fabricated
circuit performance, it becomes essential to integrate prediction of the circuit per-
formance variation in the standardized design workflow. There are two challenges
to make a realistic yield prediction for photonic integrated circuits.

First, unlike microelectronics, it is less intuitive to define “good” or “bad” for
photonics building blocks using one parameter. For example, the effective index
and coupling coefficients both affect the performance of the wavelength filter, but
they have no intrinsic good or bad values. The prediction should calculate the
circuit performance induced by these parameter variations since ultimately it is
the mismatch between the response of designed circuit and fabricated circuit that
degrade the performance.

Second, process variations are not purely random. As process variations are
highly location-dependent, the performance of the fabricated circuit is primarily
determined by the layout of the circuit and its position on the wafer. A realistic
yield prediction requires to capture the random and the location-dependent varia-
tions quantitatively.

Contribution of This Work
To make the layout-aware yield prediction, we proposed a technique that maps
variations of low-level behavioral parameters (effective index, coupling coeffi-
cient) or fabricated geometry parameters (linewidth, thickness) to high-level cir-
cuit performance variations. By assigning location-aware variations that mimic
the actual fabrication variation, we can derive the high-level circuit variations us-
ing Monte-Carlo simulations. This technique requires three pieces of information:
an accurate collection of data on the fabricated wafer, a realistic variation model to
separate systematic and random variations on different spatial levels, and a virtual
fabrication wafer map based on extracted fabricated data to enable Monte-Carlo
simulations.

Collecting data on fabricated wafers offers input for variability analysis. We
want to derive geometry parameters of fabricated waveguide because they are the
most fundamental layout parameters to reflect the process quality. However, it is
very costly to obtain them using traditional measurement techniques. We proposed
a method to extract silicon waveguide geometry using spectral measurements of
a pair of MZI circuits. We carried out a comprehensive analysis to reduce the
parameter bounds, which improves extraction accuracy significantly. Using the
curve fitting method, we also managed to make the extraction methods more toler-
ant of measurement noise and grating coupler variations. We proposed a step-wise
workflow that allows us to extract linewidth and thickness with sub-nanometer
accuracy, which makes it possible to extract detailed fabrication wafer maps for
further analysis.
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Figure 2: Components for realistic variability analysis and yield prediction.

Extracting waveguide width and thickness helps to analyze the process vari-
ations on a silicon photonics chip. Often, we also need to know the fabricated
quality of directional couplers to analyze the process variation of couplers and to
estimate the impact of variations on the performance of the optical filters, which re-
quires a compact behavioral model for the directional coupler. We constructed and
validated a compact model of the directional coupler that helps to separate com-
ponent design from circuit design. Extracting coupling coefficients is not trivial in
the presence of measurement noise, alignment error, and grating coupler variation.
We compared different designs and methods and proved that using curve fitting
and good grating coupler model, we can extract parameters of the directional cou-
pler with high accuracy from an MZI circuit.
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To simultaneously extract multiple parameters of on-chip waveguides and di-
rectional couplers from optical measurements, we proposed a folded two-stage
MZI circuit. The compact design suffers less from local variation within the cir-
cuit, which significantly improves the accuracy of extraction. Also, the circuit
greatly reduces the duration of wafer-scale optical measurements, making it useful
for process control monitoring. We used the restart CMA-ES global optimization
algorithm to extract parameters for complicated spectra of the circuit. We also
illustrated the workflow to plot detailed wafer maps for variability analysis from
wafer measurements.

To analyze extracted wafer maps that contain rich information about the pro-
cess variation, we proposed an additive hierarchical model that can decompose
variability on various spatial levels into systematic and random variation. We dis-
cussed the physical origins of these process variations and constructed a workflow
to separate variability on intra-wafer, intra-die level, and introduced wafer-die in-
teraction term to reduce random variation in our analysis. We applied the model to
analyze the measurements on a 200 mm wafer fabricated in IMEC’s silicon pho-
tonics platform based on 193 nm lithography. The result shows that the systematic
variation is the primary source of variation for both linewidth and thickness. At
the die level, we found that systematic width pattern is closely related to the local
pattern density. Our findings help to identify the process variation and create new
design rules to alleviate the impact of the non-uniformity. If the systematic vari-
ation we observed can be further refined and compensated in the process, we can
foresee the photonics wafers with significantly better fabrication uniformity in the
future.

In the next step, we developed the CapheVE framework that allows us to im-
port the spatial variability model and generate virtual fabrication wafers. The
framework combines the circuit model, parameter sensitivity, circuit layout, and
process variability model. Circuit parameters are altered according to its sensi-
tivity and layout and location on the wafer. Using CapheVE, we can place the
instances of the circuit over the wafer, and run Monte Carlo simulation to gen-
erate the response for all circuits. We can then use the generated responses for
layout-aware variability analysis and yield prediction. We did interesting experi-
ments with the CapheVE framework. We generated virtual wafers that exhibit a
good match in statistical properties and spatial correlation of the process variations
with the fabricated wafer. We also used the framework to make yield prediction
for wavelength de-multiplexer and to validate the parameter extraction workflow
using the compact two-stage MZI.

We also tried stochastic analysis methods to reduce the cost of Monte Carlo
methods for yield prediction. Compared to the Monte Carlo method, the stochas-
tic analysis method could significantly reduce the simulation cost. We applied
the stochastic collocation method to analyze the variability of DC. The method
significantly reduced the cost of simulation time.
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Conclusions and Perspectives
In this work, we proposed a complete framework to make realistic yield prediction
for photonics integrated circuits. Our methods to extract fabricated geometries
or waveguide and coupler behavioral parameters help to obtain detailed fabrica-
tion wafer maps with high accuracy from spectral measurements. The variability
model we constructed decomposes process variations into systematic and random
contributions on different spatial levels. This model helps to identify the process
variation and create new design rules to alleviate the impact of the non-uniformity.
We also integrated the model into the layout-aware yield prediction framework
CapheVE to generate virtual process maps that captures the features of extracted
wafer maps. This framework allows us to calculate circuits performances accord-
ing to their locations on the wafer, with which we can derive circuit yield using
Monte Carlo simulations.

We need more wafer measurements to validate the variability model further.
Also, this could characterize the value of wafer-to-wafer and lot-to-lot variation in
the model. We have included the CMZI structure on a fabrication run where we
should be able to extract parameters over multiple wafers and full dies. With these
information we might improve the modeling of the die-level variation.

While the relevance of this research on yield prediction is quite clear, it can
only become a practical reality if it is actually introduced into the design flow
that is used by a significant fraction of the PIC community. To bring this about, we
should make the techniques sufficiently robust and integrate them into the tools that
are used by actual designers. We worked together with Luceda Photonics (in the
framework of the VLAIO project MEPIC), to make sure that our techniques could
solve actual design problems. As a result of this project, some of the techniques
(e.g., the CapheVE framework) will be incorporated in future releases of Luceda’s
IPKISS framework.
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1
Introduction

The major goal of this work is to answer a question: When I design a photonic
circuit, what is the chance that it will work when it is fabricated? This ’chance’
translates in what is called ’yield’. To answer the question, we need to make re-
alistic yield prediction. In this work, we explored and researched on a few topics
including compact behavioral models for photonic circuits, methods to make ac-
curate and robust wafer-scale parameter extraction, spatial variability model of
photonics, and layout-aware yield prediction framework. In this thesis, we will
discuss the research we did on those topics and propose and verify a comprehen-
sive workflow to make layout-aware yield prediction at the design stage.

1.1 Integrated Photonics

As has been largely experimented by microelectronics for a few decades, integra-
tion of circuits and functions on the same chip leads to significant reductions in
assembly and test cost. Besides, the miniaturization process shrinks the footprint
and lowers power consumption. The same benefits can apply to photonics.

Photonics is a technology to generate, modulate, propagate and detect light. In-
tegrated photonics miniaturizes bulky photonic devices to process light on the sur-
face of a chip. A photonic integrated circuit consists of functional building blocks
connected by waveguides, which makes it a ’circuit’. These building blocks per-
form functions such as light generation, electro-optical signal modulation, photo
detection, light distribution and wavelength filtering implemented as on-chip in-
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Figure 1.1: (a) Electronicphotonic silicon chip. Figure reproduced from ref. [2]. (b)
Quantum silicon chip. Figure reproduced from ref. [3].

terferometers.
In integrated photonics, there co-exist several technologies. The most common

of these are Silica-on-silicon, Lithium Niobate, III-V semiconductor materials and
Silicon-on-insulator. Silica-on-Silicon uses doped silica as a core where undoped
silica is used as a cladding. Silica-on-Silicon waveguide has a low index con-
trast (2% or lower). It requires a large bend radius to guide light which leads to
large device footprint and low integration density. Lithium Niobate has suitable
for electro-optical modulation and non-linear optics. But it has a complex process
which is very expensive for large scale integration. III-V based technologies such
as Indium Phosphide technology allows us to build lasers, optical amplifiers, and
photodetectors on alloys III-V since it is a direct bandgap material able to generate
and amplify light. It is also possible to integrate electronic elements with technol-
ogy. Monolithically integrated InP multi-wavelength transceivers on the market
can work up to 100Gbit/s [1] already.

Meanwhile, in the past decades silicon photonics has been growing at a break-
neck pace precisely because it is basically compatible with the well-developed
Silicon process infrastructure that supported very large scale integration on-chip
and which led to the advancement of the highly integrated CMOS devices. This
gives silicon photonics a significant leverage in reducing the cost, especially when
the market needs high volumes of products. Also, tight integration with electronics
is also more feasible with silicon technology than with other PIC technologies. [2].
In the foreseeable future, silicon photonics might still need hybrid integration with
III-V to add lasers and amplifiers. Nevertheless, all the other photonics building
blocks can be realized, such as waveguides, power splitters, de-multiplexers, mod-
ulators, detectors (Germanium monolithically integrated), etc.
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Silicon photonics also benefits from the high index contrast of silicon, enabling
strong light confinement and miniaturized circuits. The miniaturization is not yet
the level in comparison with electronics. Still, it is significant. Photonic systems-
on-chip have already integrated > 1000 functional elements onto a few square
millimeters circuit [4]. This paves the road for applications such as large switch
matrices in data center [5], LIDAR [6], quantum computing [3], etc.

1.2 Process Variation in Silicon Photonics

Silicon Photonics is a promising solution for low-cost large-volume production
of photonic circuits because of its compatibility with existing CMOS manufac-
turing technology. Also, it enables large-scale integration by its high contrast in
refractive index (between silicon and silicon dioxide), which allows strong light
confinement, and thus small footprint. However, the high material contrast and
small feature size also make silicon photonic circuits very sensitive to nanome-
ter scale variations in component geometries, which can be induced by process
variations. Process variability induces changes in behavior of photonic circuits at
different levels (Fig. 1.2). Process variation such as exposure dose, resist age,
plasma density, and CMP slurry composition lead to variations in device geometry
such as linewidth, layer thickness, sidewall angles, and doping profile variation.
Process variation affects optical properties of a device such as effective index and
group index of a waveguide, the coupling of a coupler and center wavelength of in-
terferometric structures. The performance variations at device level propagate and
accumulate at circuit level so that optical delay has a random component and path
imbalance is induced in the circuit, which deteriorates the circuit performance,
making only a fraction of the fabricated circuits perform as intended. This frac-
tion further shrinks with the increasing circuit size and complexity. In particular,
wavelength filters such as ring resonators, lattice filters, array waveguide gratings
and so on suffer significantly from process fabrication leading to increasing chan-
nel cross-talk, insertion loss, power consumption and deviation of channel wave-
length. Neglecting the impact of process variations could lead to failure even with
tuning to compensate the error [7]. Process variation is a limiting factor to fab-
rication yield, i.e., the fraction of functional fabricated circuits. Without a good
analysis and a practical method to predict and mitigate its impact, process vari-
ation will increase the cost of large-volume production and limit the scale of the
integration.
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Figure 1.2: Describing variability presents at different levels.

1.3 Yield Prediction of Silicon Photonics

Process variations increase the cost of the delivered product and limit the capac-
ity of a circuit. Predicting the circuit performance variation becomes essential in
standardized design workflow to predict yield and estimate how to compensate for
degradation of the fabricated chip.

In integrated electronics, the traditional way to assess the performance of cir-
cuits under the effects of variability is corner analysis, which calculates best and
worst cases under a fabrication variation. The definition of best or worst is of-
ten clear (e.g. slow and fast transistors). Better corresponds to lower resistance,
faster switching times, etc. However, it is less intuitive to define “good” or “bad”
for photonics building blocks using one parameter. For example, the effective in-
dex and coupling coefficients both affect the performance of the wavelength filter,
but they have no intrinsic good or bad values. It is the deviation from the designed
value or the mismatch between values of components in the circuit that degrade the
performance. To predict the yield of photonics circuits, we can map variations of
low-level behavior parameters (effective index, coupling coefficient) or fabricated
geometry parameters (linewidth, thickness) to high-level circuit performance vari-
ations. By assigning location-aware variations that mimic the actual fabrication
variation, we can derive the high-level circuit variations using Monte-Carlo simu-
lations. This technique requires three pieces of information: an accurate collection
of data on the fabricated wafer, a realistic variation model to separate systematic
and random variations on different spatial levels, and a virtual fabrication wafer
map based on extracted fabricated data to enable Monte-Carlo simulations. This
thesis will discuss our progress on these aspects to achieve realistic yield predic-
tion.
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Figure 1.3: Components for realistic variability analysis and yield prediction.

1.4 Outline of the Thesis

1.4.1 Compact Behavioral Model and Parameter Extraction

Extracting compact model parameters of fabricated circuits is essential to get input
data for performance evaluation [8] and variability analysis [9]. Extracting fabri-
cated geometry is essential to map fabricated variations to circuit performance
variations.

In Chapter 2, we will introduce a method to extract silicon waveguide geometry
with sub-nanometer accuracy using spectral measurements. We will discuss how
to obtain effective index and group index with high accuracy from a pair of Mach-
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Zehnder Interferometers (MZI) and how to map them to waveguide width and
thickness.

In Chapter 3, we will describe how we built and validated a compact behav-
ioral model of the directional coupler. We will also compare a few circuit designs
and methods to extract coupler model parameters. We will discuss how to accu-
rately extract coupler model parameters in the presence of measurement noise and
grating coupler process variations.

In Chapter 4, we will present a compact circuit to extract multiple parameters
of waveguides and directional couplers simultaneously. The design suffers less
from a local variation, which significantly improves the accuracy of extraction.
The circuit also greatly reduces the duration of wafer-scale optical measurements,
making it very useful for process control monitoring. We will illustrate the global
optimization algorithm and the workflow to extract parameters from wafer mea-
surements and plot detailed wafer maps for variability analysis.

1.4.2 Spatial Variability Model

To analyze the statistics of the parameters extracted from fabricated wafer maps
and regenerate the statistics in the yield prediction, we require a variability model.
In Chapter 5, we proposed a hierarchical model to separate the layout-dependent
systematic process variation and random process variation on different spatial lev-
els. Using the model, we decomposed variations of the measured wafer maps and
found out quantitatively how each of them contributes to the total process varia-
tion. We also observed that die-level systematic linewidth variation is correlated
with local pattern density.

1.4.3 Yield Prediction

Being able to estimate the yield at the design stage is crucial to improve the design
for better process tolerance. Also, the prediction helps to estimate and reduce the
cost of production. In Chapter 6, we will propose our solutions to two major issues
to predict the yield for silicon photonics. In the first part, we will discuss methods
based on the stochastic analysis to reduce simulation cost for yield prediction. In
the second part, we will illustrate the CapheVE framework to make layout-aware
yield prediction. We will describe how to generate virtual wafer maps from real
fabrication statistics and how to include link process variability to performance
variation of circuits in the framework. We will show the example where we used
CapheVE to verify the extraction workflow proposed in Chapter 4 and the spatial
variability model described in Chapter 5.
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2
Behavioral and Geometry Parameter

Extraction of A Waveguide

Process variations have a significant impact on the performance of integrated pho-
tonics. To understand the behavior of process variations, we need methods to
measure the variations accurately. Fabricated linewidth and thickness of waveg-
uides are the most fundamental layout parameters that reflect the process quality.
However, it is very costly to obtain them using current measurement techniques,
which makes it difficult to obtain wafer maps to present process variations.

In this chapter, we will introduce an method to extract silicon waveguide ge-
ometry with sub-nanometer accuracy using spectral measurements. The effective
index and group index of silicon on insulator (SOI) waveguides are extracted from
the spectral measurements of a pair of Mach-Zehnder Interferometers (MZI). We
built an accurate model mapping the SOI waveguide geometry to its effective in-
dex and group index to obtained accurate values of linewidth and thickness. We
will analyze in detail how to set up the bounds for the effective index and group
index to get the extraction with improved accuracy. We will also discuss principles
to design the MZI extraction circuits. We applied the method on a die fabricated
by IMEC multiproject wafer services and will present the result at the end of the
chapter.
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2.1 Process Monitoring for Silicon Photonic Waveg-
uides

The sub-micron Silicon-on-Insulator (SOI) platform for silicon photonics offers
tight confinement of light and compact integration of photonic devices. However,
the high material index contrast also makes devices very sensitive to the geometry
variation [1]. The variation introduced in fabrication often significantly deterio-
rates the device performance. Especially for spectral filters, geometry variation
causes a shift in the spectrum and needs good compensation [2, 3]. Therefore, an
accurate evaluation of the fabricated geometry helps to estimate how to compen-
sate the performance error and make a sensible design.

2.1.1 Challenges in Metrology Measurement

Extracting the fabricated linewidth and layer thickness is essential in getting the
input data for analyses such as performance evaluation, [4, 5], revising compact
behavioral models [6], variability analysis in Chapter 5 and yield prediction in
Chapter 6. However, metrology measurement of a fabricated photonic chip using
a scanning electron microscope (SEM) is both expensive and destructive. Con-
ventionally, the semiconductor fab only takes a few destructive cross-section pic-
tures at given wafer locations on different dies, and this only during process de-
velopment, not in production. The accuracy of such SEM-based measurements
is usually limited to a few nm, which is good for a qualitative confirmation but
not accurate enough for exact modeling. Ultra-precise methods such as atomic
force microscope (AFM) are extremely time-consuming [7]. In production, non-
destructive methods such as top-down SEM, ellipsometry, and scatterometry, are
used to measure geometries such as line widths and layer thickness. The problem
with such measurements is that they are collected in dedicated measurement sites,
which are often not representative for the actual waveguide devices. The current
methods are not capable of extracting accurate wafer maps of the actual device
geometry on nanometer-scale and its variability.

An alternative approach is to use optical transmission measurements on the
actual devices to extract the variation of geometry parameters. Investigating the
spectral response of devices such as micro-disks or long Bragg gratings offers a
more efficient way of characterizing manufacturing variations. However, most
demonstrated methods either use dual-polarization measurements or request com-
plex spectral reflection measurements from both ends of the device [4, 8]. Opti-
cal properties such as the effective index and group index can be extracted from
interfering structures such as Mach-Zehnder interferometers (MZI) [3] and ring
resonators [5, 9]. Recent research shows the possibility to correlate waveguide ge-
ometry with these behavioral parameters such as resonance wavelength and group
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index by mapping them with a linear model [5]. Lu et al. measured spectral re-
sponses of ring resonators over the wafer and from this derived a geometry wafer
map, demonstrating the potential of the optical method for wafer-scale geometry
extraction. In this study, they used a ring resonator which consists of both straight
and bent waveguides. Since straight and bend waveguides have different effective
and group indices, the geometrical cross-section of a straight waveguide cannot be
extracted accurately from a ring, without making assumptions on the straight and
bend geometry that cannot be verified.

Even though geometry extraction through transmission measurements shows
real practical potential, it is still challenging to characterize the manufacturing
quality accurately. First of all, the geometry model that links geometry with the
behaviour parameters should on one hand be very accurate, but on the other hand
have as few parameters as possible. This is hard to achieve with combinations of
different waveguide types (straight and bend), each with their own optical proper-
ties. Secondly, there is always noise and reflection-induced fringes in the spectral
measurements, error in measurement alignment and variability in grating couplers
(GC). It is essential to develop a method which is tolerant of the above-mentioned
factors. Thirdly, geometry extraction requires a method to simultaneously extract
both effective and group indices from the same device. Most importantly, it is
not trivial to get the correct effective index from the spectrum of an interfering
device [10]. We need a quantitative discussion to choose the right effective index
from many possible solutions.

2.1.2 The Workflow of the Process Monitoring using Optical
Measurement

In this chapter, we will address the above-mentioned challenges in a systematic
way. As shown in Fig. 2.1, we first perform optical measurements on MZIs. We
build a circuit model of the device and match the simulated transmission curve
with measurements to get behavioral parameters of a waveguide such as neff and
ng. Next, we build an accurate model to map neff and ng to waveguide width
and thickness. Then, using the model, we obtain waveguide geometry parame-
ters from extracted behavior parameters. We automated the optical measurement
and repeated the geometry extraction on devices with the same design over the
wafer. From the extraction, we perform a variability analysis and derive fabrication
variation with high accuracy. In Section 2.2, we propose an improved geometry
model to offer high modeling accuracy. In Section 2.3, we show that a curve fitting
method is less sensitive to measurement noise and helps in removing the grating
coupler envelope, and in Section 2.4, we show how to design two MZIs to extract
the accurate and unique neff and ng given the waveguide geometry variation range.
Section 2.5 discusses the procedure of the waveguide geometry extraction from a
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couple of MZIs. Finally, in Section 2.6 we apply the method to extract linewidths
and thicknesses of SOI waveguides on a die fabricated by the IMEC MPW service.

Figure 2.1: The workflow of extracting behavioral parameters and fabricated geometry
using optical measurements.
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2.2 An Accurate Geometry Model of Waveguide

Figure 2.2: Cross-section schematic of an oxide-clad SOI strip waveguide with a 85◦

sidewall angle.

We do not measure linewidth w and thickness t directly, so we infer them from
the results of optical transmission measurements. In particular, we first extract
the effective index neff and group index ng of the waveguide. To calculate the
fabricated waveguide linewidth w and thickness t from the effective index neff and
group index ng, we require a geometry model that links neff and ng to w and t. To
build the model, we simulated oxide-clad Si waveguide cross-section (Fig. 2.2 )
with the COMSOL Multiphysics Finite Element Method (FEM) solver. According
to the IMEC technology handbook of the run, a fabricated strip waveguide has a
sidewall angle of 85◦, so we simulated the waveguide with a 85◦ sidewall angle.
The waveguide width is the bottom width of the trapezoidal. We swept width from
440 nm to 500 nm and thickness from 195 nm to 235 nm, and calculated neff and
ng at 1550 nm wavelength. The linewidth-thickness grid in Fig. 2.3 (a) can be
mapped one-on-one to the simulated neff − ng grid (black solid line with circles)
in Fig. 2.3 (b). Then, we fitted simulated neff and ng using polynomials of w and t.
We build first-, second- and third-order polynomial models (dashed lines Fig. 2.3
(b)). Both neff and ng vary quite linearly with w and t. Nonetheless, the first-order
fitted linear model shows a clear deviation (maximum 0.32 per cent error in neff and
0.40 per cent in ng) from simulated neff and ng. The third-order model matches the
simulation very accurately(, as will be quantified in the discussion below). Then,
to get w and t from spectral measurements, we wrote w and t , as a polynomial of
neff and ng at 1550 nm as:

w = p0 + Σnj=1,i=1pi,jn
i
effn

j
g (2.1)

t = q0 + Σnj=1,i=1qi,jn
i
effn

j
g (2.2)

where p0 and q0 are constant terms, pi,j , and qi,j are coefficients in polynomi-
als, and n is the order of the polynomial.
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Figure 2.3: (a) width and thickness grid of strip waveguides; (b) effective and group index
of strip waveguides on the geometry grid using the COMSOL FEM simulation, and the
first-, the second- or the third-order polynomial mapping model.
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Using a simulated model can introduce a simulation error, coming from a dif-
ference between the actual waveguide geometry (both dimensions, shape and ma-
terial properties) and the trapezoidal geometry model we used in the mode solver.
We have considered the sidewall angle in our model, but still we don’t know the
actual geometry, so it is very hard to compensate for this error. This means that
some parameters will be only relative.

In addition, the mapping error is the difference between the simulated trape-
zoidal waveguide geometry and extracted trapezoidal waveguide geometry using
the geometry model. To calculate the mapping error, we first use simulated neff

and ng for simulated geometry. Then, we calculate the waveguide geometry using
a polynomial model with the simulated neff and ng. The mapping error reduces
significantly with the order of the polynomial.(Table. 2.1) The first-order model
has a maximum error of several nanometers which is comparable to the reported
intra-wafer manufacturing variations in width of 0.78 nm to 2.65 nm, and in thick-
ness of 0.83 nm to 4.16 nm. [11–16] Obviously, the modelling error is too large
to extract intra-die variations (variations between same devices on one die). For a
good estimation of the fabricated geometry variation, especially to study variabil-
ity on intra-wafer level and intra-die level, a lower mapping error is required. The
third-order polynomial model has maximum error of 0.05 nm for both linewidth
and thickness (Fig. 2.4), which is one magnitude smaller than the fabrication vari-
ation. A low modelling error makes geometry extraction more accurate and cred-
ible. Polynomial with a higher-order does not significantly improve the mapping
accuracy so that we used the third-order polynomial as our model.

Figure 2.4: Error contour plot of the proposed third-order polynomial model where w
ranges from 440 to 500 nm and thickness ranges from 195 to 235 nm. Left: width
extraction error; Right: thickness extraction error.
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Error ∆w [nm] Error ∆t [nm]
1st order 5.10 4.57
2nd order 0.14 0.18
3rd order 0.06 0.08

Table 2.1: Error of polynomial models (order = 1,2,3).

2.3 Extracting Effective Index and Group Index from
an MZI

Before we can determine the waveguide geometry from neff and ng, we need to
experimentally measure those quantities of a device and isolate the values for a
straight waveguide. This effectively means that we need a device where a trans-
mission measurement can give us an accurate extraction of both neff and ng for a
straight waveguide only, and which is in the presence of measurement noise and
variation in the coupling structures.

2.3.1 Using an MZI or a Ring Resonator?

In [5], ring resonators were used to extract neff and ng. A ring resonator has sharp
resonance peaks. Spectral measurement of a ring requires very fine resolution.
Also, if you get asymmetric peak splitting, you would get a wrong peak position
[17]. Moreover, a ring uses either a bent waveguide or it combines bends with
straight sections, and the round trip path also includes the coupling sections which
will also have different optical properties. As such we cannot isolate neff and ng of
the straight or bent waveguide. The alternative is to use an MZI with two arms that
are identical but for the fact that one arm has a longer straight part than another [3].
Ideally, the neff and ng of the two arms are identical so that the spectral response
of the MZI is only dependent on the path length difference between two arms. We
can use the MZI to measure varying waveguide geometry under process variation
at different locations. In practice, the path length difference in a single MZI is
also induced by a difference in the neff in the two arms because of local process
variability. Also, there can be a difference in the neff that the bends will contribute.
Those differences also lead to the extraction error in neff and ng. However, since
the distance between waveguide within an MZI this compact is within 100 µm,
we can safely assume that the error will be much smaller than the device-to-device
variation.

An interfering structure such as a ring or an MZI would have a constructive
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Figure 2.5: This figure shows the measured transmission spectrum (red solid) and fitted
spectrum (blue dot) using the circuit model including the polynomial GC model. Also,
valleys of the spectrum (green cross) are found by the peak detection method. Left: the
low-order MZI. Right: the high-order MZI.

interference when interference order m is an integer and

m =
neff,0∆L

λres
(2.3)

FSR =
λ2
res

ng∆L
(2.4)

where neff,0 is the prior estimate at the resonance wavelength λres and ∆L is the
physical path length difference.

2.3.2 Extraction Method: Resonance Detection vs. Curving
Fitting

If we know the resonance order m, we could get neff by locating λres in the output
spectrum. It is natural to apply the resonance detection method [5, 9] to locate
resonances in the spectrum to get both neff and ng. Extraction of parameters from
resonance is accurate when the device has sharp resonance peaks, which is the case
for a ring resonator. However, an MZI has a sinusoidal-like spectral transmission.
Its curve is quite flat near a maximum or minimum. Especially when measurement
noise is involved, it is hard to locate its peaks (constructive interference) or valleys
(destructive interference) by peak detection method (Fig. 2.5 green cross indicates
detected valleys). Using only maximum detection method leads to a significant er-
ror (Table. 2.2)in effective index and group index extraction making it not suitable
for geometry extraction.



2-10 CHAPTER 2

Figure 2.6: Top: layout of the MZI under test. Bottom: circuit schematic of the MZI.

To improve the extraction accuracy, we used a curve fitting technique. It ex-
tracts parameters by minimizing the difference between a circuit simulation and
the measurement data. While maximum/minimum extraction only uses informa-
tion at the peaks and ignores information on the rest of the spectrum, curve fitting
method utilizes the information from the entire measured spectrum, which is more
tolerant to the measurement noise and gives more reliable extraction.

We simulate the MZI circuit in Caphe, [18] a circuit simulator that calculates
the scattering matrix of the circuit from defined scattering matrix of each com-
ponent. We built a Caphe circuit model of the MZI the same way as our device
under test (DUT), which has two types of components: waveguide and multimode
interference (MMI) coupler.

neff ng width [nm] thickness [nm]
Curve fitting using a GC model 2.319 4.291 466.0 211.8

Peak detection 2.318 4.302 462.0 213.8
Difference between two methods 0.001 0.009 4.0 2.0

Table 2.2: Comparison between the peak detection method and the curve fitting method.
We applied both methods to extract parameters from the spectrum of a high-order MZI
(Fig. 2.5 right)
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2.3.2.1 Removing the Effect of the Grating Couplers

For automated measurement, light is vertically coupled to the DUT using a pair of
grating couplers (GC). We need to remove the envelope of the GC before fitting
the spectrum with the circuit model. We can remove the GC in two ways. One way
we measure a pair of reference GCs, preferably close to the DUT. By subtracting
the measured reference GC from the DUT spectrum in log-scale, we can normal-
ize the transmission spectrum of the DUT. It is a very common practice in optical
transmission measurements. However, this method is error-prone in the presence
of fabrication variation in GCs, because the reference GC can be subtly different
from the GCs connected to DUT. Even more, the input and output GC of the DUT
can be different from each other. As shown in the Fig. 2.7, the MZI transmission
after subtracting the reference is not as we would expect: the linear-scale spectrum
should be a sine-like curve with maxima of the same amplitude. Also, the nor-
malization cannot be correct, because you would have transmission larger than 1.
The significant mismatch between measured and fitted spectrum introduces a large
error in the extracted parameters.

Empirically, the transmission spectrum passing through input GC to output
GC on the logarithmic scale (expressed in dB) can be well fitted by a fourth-order
polynomial. So we use a fourth-order polynomial to represent the transmission
spectrum of the combined input and output GC on the logarithmic scale. We in-
clude two GCs in the circuit model together with the MZI. As shown in the Fig.
2.5, the fitting is considerably enhanced where the simulation matches measure-
ment nicely. From fitting, we can get circuit parameters such as effective index,
group index and coefficients of the polynomial describing the GC.

2.3.2.2 Fitting Accuracy vs. MZI Order

In the transmission spectrum of the MZI, the positions of the peaks and valleys
give information about the effective index neff. The periodicity of the transmission
spectrum is determined by the group index ng.

An MZI with low order m has only a few peaks/valleys in the measurement
band, and therefore it will have a low accuracy on the extraction of ng. On the other
hand, a high-order MZI can give a high accuracy of ng extraction. As explained by
Dwivedi et al. in [3] the combination of a low-order MZI and a high-order MZI
can give a good accuracy on both neff and ng.

When noise is mingled in the measured spectrum, it will induce an additional
uncertainty in the curve fitting. The uncertainty is proportional to the square root
of the residual of the fitting. [19] Therefore, the spectral fringes and noise would
increase the uncertainty of the extracted parameters, thus lowering the extraction
accuracy. The uncertainties on the parameters are the standard deviations of the
parameters as the fitting process takes place. If the goodness of fit depends strongly
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Figure 2.7: We removed the GC envelope using a reference GC near the DUT. Fabrication
variation caused the measured spectrum after GC removal far from ideal (as shown by
spectrum simulated by the circuit model) as ideally the peaks in the spectrum should have
the same amplitude. Also, you have transmission larger than 1, so the normalization
cannot be correct. After the GC removal, we fitted the measured spectrum with the circuit
model (Fig. 2.6), not including GC. Red solid: measured transmission spectrum after
removing the GC envelope using a reference GC. Blue dot: fitted spectrum using the
circuit model. Left: the low-order MZI. Right: the high-order MZI.

on a particular fit parameter, the uncertainty will be low. Then, it is a question of
how the fitting accuracy or uncertainty is related to the order of the MZI. In this
work, we used the non-linear least-squares method to fit the transmission curves
with a waveguide compact model.

Order 15 50 100 150
neff 2.336264 2.340747 2.339561 2.339729
ng 4.28 4.290649 4.288268 4.288448
w [nm] 472.6998 469.3341 470.0631 470.0189
t [nm] 212.7182 215.6051 214.9168 214.9829
Uncertaintyneff 0.014705 2.18E-05 1.07E-05 7.39E-06
Uncertaintyng 0.718928 0.001366 0.000663 0.00046
Uncertaintyw [nm] 270.3557 0.511691 0.248367 0.172499
Uncertaintyt [nm] 137.6516 0.270922 0.130336 0.090586

Table 2.3: Fitting uncertainty vs. interference order

We built a circuit model of a waveguide with 470 nm width and 215 nm thick-
ness and simulated the transmission spectrum. Then, we add a ± 0.2 dBm to the
spectrum to emulate the typical spectral fringes led by reflection and measurement
noise. Finally, we get neff and ng using the curve fitting. The fitting uncertainty
we presented is the estimate of 1.96 times standard deviations of each of the pa-
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rameters, which provides confidence limits of approximately 95%. As shown in
Table. 2.3, we did not get accurate ng from an MZI with order = 15. This leads
to a huge uncertainty in extracted width and thickness. The fitting uncertainty de-
creases with the interference order. Therefore, an increasing interference order of
the MZI improves fitting accuracy.

2.4 Design Principle of the MZI for Geometry Ex-
traction

When fitting the transmission curve of the MZI, the fitting algorithm implicitly
assumes that the order m of the MZI is sufficiently accurate, i.e., that the peak
near the center wavelength of 1550 nm corresponds with the designed order m.
However, in the presence of fabrication variation, this is not necessarily the case,
and as the designed order of the MZI increases, the uncertainty on the measured
order increases. Therefore, the design parameters should be chosen such that the
low-order MZI can be used to pin the orderm of the device unambiguously [3], and
make a good estimate of neff. The order of the high-order MZI should be chosen
such that a maximum of information can be extracted, based on the estimate of neff

obtained from the low-order MZI. We discuss the design process for these devices.

2.4.1 The Interference Order under a Given Effective Index
Variation

Eq. 2.4 shows that if we know the resonance order m, we can calculate neff from
the peak locating λres in the output spectrum. However, if fabrication variations
can shift the spectrum more than half a free spectral range (FSR), we can no longer
be certain of the order m. Therefore, we should design the MZI with sufficiently
low order m such that the order at the center wavelength wavelength is always
within m± 0.5, which means

neff,0∆L

λ
= m

(neff,0 −∆neff/2)∆L

λ
> m− 0.5

(neff,0 + ∆neff/2)∆L

λ
< m+ 0.5

Given the variation in neff is ∆neff , we can decide the order m that fulfills the
condition and would give us sufficient confidence:

m <
neff,0
∆neff

(2.5)
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This is equivalent to a constraint on the length difference ∆L between the two
arms of the MZI:

∆L <
λ

∆neff
(2.6)

2.4.2 The Bounds for Effective Index and Group Index from
the Geometry Variation

Within the measurement interval, the spectrum of an MZI looks quasi identical if
we shift the interference order m by an integer number. Without a proper confi-
dence interval on neff, there would be multiple solutions of neff to fit the spectrum.
As neff and ng can be mapped to linewidth w and thickness t, we can derive the
bound of (neff , ng) from the confident interval of the geometry parameters (w, t)

which are supplied by the fab. As presented in section 2.2, ng and neff can be ac-
curately mapped on w and t by a third-order polynomial model. For simplicity of
analysis in the derivation below, we use the linear geometry model where

neff = neff0 +
∂neff
∂w

(w − w0) +
∂neff
∂t

(t− t0)

ng = ng0 +
∂ng
∂w

(w − w0) +
∂ng
∂t

(t− t0)

Figure 2.8: Bounds of the extraction. (a) The bound of width and thickness (b) Rectangle
bound: reference [3], parallelogram: reduced bounds by linear transformation of geometry
bounds (c) Rectangle bounds can not separate three groups of solutions (red, blue, green
circles). The parallelogram cleanly isolates the correct solutions (blue circles).

When the bounds for linewidth and thickness form the rectangle ABCD in
(w, t) space (Fig. 2.8 a), the parameter range in (neff , ng) space lies in-between
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neff ∈ [neff1 , neff2 ] and ng ∈ [ng1 , ng2 ]:

neff1 = neff0 +
∂neff
∂w

(w1 − w0) +
∂neff
∂t

(t1 − t0) (2.7)

neff2 = neff0 +
∂neff
∂w

(w2 − w0) +
∂neff
∂t

(t2 − t0) (2.8)

ng1 = ng0 +
∂ng
∂w

(w2 − w0) +
∂ng
∂t

(t1 − t0) (2.9)

ng2 = ng0 +
∂ng
∂w

(w1 − w0) +
∂ng
∂t

(t2 − t0) (2.10)

where w0 and t0 are the nominal values for w and t variations. The range is
a rectangle in (w, t) space whose centre is (w0, t0). Assume ∆w = w2 − w1

and ∆t = t2 − t1. As (w, t) and (neff , ng) follow a near linear mapping, the
vertices of the bound rectangle in the (w, t) space A,B,C,D can be mapped to
the (neff , ng) space as A′,B′,C ′,D′. Intuitively, the bound rectangle ABCD in
(w, t) space is linearly transformed into a parallelogram A′B′C ′D′ in (neff , ng)

space. The tilted boundary A′B′C ′D′ is within the original rectangular boundary
but much smaller. For the fundamental TE mode of a SOI oxide-clad waveguide,
∂ng
∂w

is negative while
∂neff
∂w

,
∂neff
∂t

and
∂ng
∂t

are positive. The parallelogram

A′B′C ′D′ then will be tilted as in Fig. 2.8 (b).
The bounds of the confidence interval for neff are fundamental to get a correct

extraction. Extraction of the group index ng does not pose that much of a prob-
lem, as the confidence interval is much larger, and there are no multiple solutions.
Depending on whether we know ng of the same waveguide, we can estimate the
range for neff in two ways.

2.4.2.1 Low-order MZI: Estimating the Effective Index without information
on the Group Index

Sometimes we cannot obtain accurate information of ng, such as when we are
using a low-order MZI. Then, as in [3], we can calculate the uncertainty ∆neff
from geometry variations ∆w and ∆t as

∆neff,rectangle = neff2 − neff1 =
∂neff
∂w

∆w +
∂neff
∂t

∆t (2.11)

which is essentially corresponds to the width of the rectangle ABCD, or the
horizontal distance A′C ′.

2.4.2.2 High-order MZI: Estimating Effective Index with information on
Group Index

The maximal range of the neff for a given ng is E′F ′ (Fig. 2.8 (b)), which is
the maximal distance between two edges of the parallelogram at the given ng.
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The distance is dependent on the shape of the parallelogram. When A is higher

than C (n(g,A) > n(g, C)), using Eq. 2.7 we can derive
∂ng
∂t

∆t < −∂ng∂w ∆w.

Then E′F ′ is the horizontal distance between line A′B′ and C ′D′, and the range
of neff is determined by the range of linewidth ∆w. When A is lower than C

(n(g,A) < n(g, C)), using Eq. 2.7 we can derive
∂ng
∂t

∆t > −∂ng
∂w

∆w. Then

E′F ′ is the horizontal distance between line A′C ′ and B′D′, and the range of neff

is determined by the range of linewidth ∆t.

When
∂ng
∂t

∆t < −∂ng
∂w

∆w,

∆neff,parallelogram =

− ∂neff∂w

∂ng
∂t

∂ng
∂w

+
∂neff
∂t

∆t (2.12)

When
∂ng
∂t

∆t > −∂ng
∂w

∆w,

∆neff,parallelogram =

∂neff
∂w

−

∂ng
∂w

∂neff
∂t

∂ng
∂t

∆w (2.13)

For the same geometry variation, an estimate of ng reduces the uncertainty on
∆neff . Fig. 2.8 (c) shows that we can separate three groups of solutions with the
boundA′B′C ′D which are all located in the previous rectangle bound. As we will
show in Chapter 5, thickness varies slowly across the wafer. The device-to-device
thickness variation is much smaller than the device-to-device width variation. In
this case,

∂ng
∂t

∆t < −∂ng
∂w

∆w is true for local variations. From Equation 2.11 we
can calculate the neff boundary without knowledge on the ng of the waveguide. Us-
ing 2.12, we can calculate the boundary knowing ng. The ratio of ∆neff between
two situations is:

∆neff,rectangle
∆neff,parallelogram

= a∆w
∆t + b

where

a =

∂neff
∂w

−∂neff
∂w

∂ng
∂t

/
∂ng
∂w

+
∂neff
∂t

b =

∂neff
∂t

−∂neff
∂w

∂ng
∂t

/
∂ng
∂w

+
∂neff
∂t
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Both a and b in the equations are positive, so that the ratio is increasing with
∆w

∆t
. Intuitively, the smaller is AD compared to AB in Fig. 2.8 (a), the shorter

EF is. A similar conclusion can be made when
∂ng
∂t

∆t < −∂ng
∂w

∆w, where the

ratio is increasing with
∆t

∆w
. So if the ∆t is much smaller than the ∆w, we can

reduce the boundary of neff from knowing ng. This is very helpful because with a
small ∆neff (refer Equation 2.5), we can design a high-order MZI to extract the
local variation that improves the accuracy of extraction.

2.5 Geometry Extraction on a Fabricated Silicon Wafer

2.5.1 Extracting Effective Index and Group Index from Two
MZIs

The total process variation (intra-die, die-to-die, and wafer-to-wafer) on an iso-
lated waveguide on SOI platform is large. The variation can be several tens of
nanometers for both linewidth and thickness. As discussed in the previous sec-
tion, to capture the large variation using an MZI, we should choose a sufficiently
low order m. However, as discussed in Section 2.3.2.2, this low-order MZI suffers
from a low accuracy on ng extraction. On the other hand, high-order MZI can offer
good accuracy of ng extraction. So a combination of the two devices can give us
both essential optical parameters. So we can extract neff and ng using a low order
MZI and a high order MZI:

1. Extract a good estimate of neff from the low-order MZI

2. Extract an accurate ng from the high-order MZI

Even though the devices are close together, they do not have the same neff

and ng because of local variations. To accurately map the waveguide geometry,
we need to extract both neff and ng from the same waveguide. In the following
discussion, we will present how to obtain accurate neff and ng both of the high
order MZI in three step below.

1. Extract a good estimate of neff from the low-order MZI. Also, extract an
accurate ng from the high-order MZI.

2. Obtain the neff die map by an interpolation of the estimated neff from the
low-order MZI. The map offers the average neff at each location where we
can remove the local variation.

3. Use interpolated neff,µ at each location as a reference, and extract accurate
neff from the high-order MZI using its ng to limit the neff boundary.
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We will discuss why we set up this step-by-step extraction procedure in the fol-
lowing section.

2.5.2 Extracting Inter-die and Intra-die Variability in Three
Steps

In a wafer-scale fabrication process, we can identify different levels of process
variations. As we will explain in Chapter 5, for each die, all the variations that
originate at levels such as lot-to-lot, wafer-to-wafer, and intra-wafer (die-to-die)
variations have the same impact on every device in the die. Since these variations
has the same impact on every device in the die, we categorize these higher-level
spatial variations together as the global variation. Meanwhile, we get also the intra-
die (device-to-device) variation that affects devices differently on the same die. We
can further decompose the intra-die variation into location-dependent variation and
local variation. The location-dependent variation is the variation depending on the
location of the device on the die. It can be caused by the continuous variation
of thickness, photoresist spinning effects or plasma distributions, and other equip-
ment non-uniformity that affecting the fabricated geometry varied spatially. On
the other hand, the local variation we define here induces local disparities between
devices placed close together (less than a few hundred microns apart). It includes
intrinsic variability such as thickness fluctuations and width variations caused by
pattern density non-uniformity, which in Chapter 5 are categorized into intra-die
variation. The sum of the three variations V gives us the process variation of a
device.

Vtotal = Vinter−die + Vlocation−dependent + Vlocal (2.14)

The total process variation is considerably larger than the local (intra-die) vari-
ation. The total linewidth and thickness variation of an isolated waveguide on
SOI platform can amount to tens of nanometers, [20] while intra-die variation is
typically only a few nanometers. [5, 13, 20, 21]

With our two MZIs, we address variations on the different levels in three steps.
The first step, we extract neff from a low-order MZI. Since the ng extracted from
the low-order MZI is very inaccurate, we estimate the range of neff without the
information of ng by substituting geometry variation by the total variation in Eq.
2.11:

∆neff,total =
∂neff
∂w

∆wtotal +
∂neff
∂t

∆ttotal

Given the range, we derive fairly accurate value of neff from the low-order MZI.
In a second step, we obtain the neff map over the die by interpolation. The map
offers the average neff of waveguides placed at each location where we can remove
the local variation, and the inter-die variation and location-dependent variation
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together determines the average value. In the third step, we use interpolated neff,µ
at each location as a reference. Now, rather than the total variation we can only
deal with the much smaller local variation. Since we can accurately extract ng

on the high-order MZI, the range for neff under the local variation is estimated by
substituting geometry variation using the local variation in Eq. 2.12 and 2.13.

∆neff,local =

− ∂neff∂w

∂ng
∂t

∂ng
∂w

+
∂neff
∂t

∆tlocal

Because our analysis decreases the bound of extraction, we can use a much higher-
order MZI to get neff and ng simultaneously and accurately.

2.5.3 The Specification of the Two MZIs

Figure 2.9: Left top: low-order and high-order MZI we used for geometry extraction. Left
bottom: locations of two devices on a die. Right: locations of dies on the wafer. Red grid
indicates dies on the wafer. The black circle is the boundary of the wafer.

The MZIs each consist of two waveguide arms and two 50-50 MMI coupler (Fig.
2.9 left). Our devices are fabricated by the IMEC multi project wafer (MPW)
service. We design the waveguide with a linewidth of 450 nm. According to the
technology handbook, the fabricated waveguide has a sidewall angle of 85◦. Also,
the 450 nm waveguide on the mask is measured to have 470 nm mean value and±
20 nm variations in fabrication. The nominal thickness is 215 nm and the variation
is ± 10 nm. The pre-estimated neff,0 of 470 nm × 215 nm waveguide is 2.340.
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Using Eq. 2.11 we calculated the variation of neff,total is

∆neff,total =
∂neff
∂w

∆wtotal +
∂neff
∂t

∆ttotal

= 0.002055× 40nm+ 0.003916× 20nm

= 0.16.

From the third-order model we calculate that the ∆neff,total is also 0.16. The arm
length difference of the low-order MZI is ∆L < 1.55µm

0.16 = 9.7µm and the order
of ml <

neff,0
∆neff,total

≈ 15.00.
Only a few references report typical fabricated geometry maps of silicon waveg-

uides on die-level. Thickness maps in SOI depend largely on the qualities of the
source wafer. Linewidth maps depend much more on the actual fabrication pro-
cess and will be very different for devices fabricated with deep UV lithography
or e-beam lithography, and vary between fabs. From the research of Lu et al. [5],
the thickness varies slowly over the die, and the maximum difference between
neighboring thickness is 0.5 nm. So we assume as a worst case that the thickness
is slowly changing locally with only ∆tlocal = 2.00 nm. We also assume that
∆wlocal = 15.00 nm, which is significant. Using Eq. 2.12, we calculated the
variation of neff,intra−die. Notice that we have no pre-estimate of the nominal
value of w and t locally so that they can be any value within the specified fabrica-

tion window. We calculated −

∂neff
∂w

∂ng
∂t

∂ng
∂w

+
∂neff
∂t

for w ∈ [450, 490] nm and

t ∈ [205, 225] nm. Its value is in between 0.0045 and 0.0074. Therefore,the max
local neff variation we can surely extract is

∆neff,intra−die =

− ∂neff∂w

∂ng
∂t

∂ng
∂w

+
∂neff
∂t

∆tintra−die = 0.0074×2 = 0.0148,

which is the same calculated using the third-order model. The arm length differ-

ence of the high-order MZI ∆Lh <
λ

∆neff,local
= 104.7µm where the order is

around m ≈ 158. The confidence limit estimated with the information on ng on
the order is 2.93 × that calculated by the original method without the information
on ng. Based on the estimation, we design the low-order MZI to have an order
around m = 15 at 1550 nm and order of the high-order MZI is m = 150.

We assumed that we cannot obtain accurate ng on the low-order MZI so that
the designed low-order MZI is only tolerant to ± 20 width variation and ± 10
thickness variation. One improvement can be made by estimating the lower-order
ng from the accurate high-order ng. We can derive a ng die map by fitting all
the high-order ng on the die, and use that as a reference to estimate the range of
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the low-order ng. The ng estimation gives information on ng that should easily
increase the range of neff a few times when we use the low-order MZI. Therefore,
the two-MZI pair can be tolerant to process variation much larger than ± 20 width
variation and ± 10 thickness variation, which makes the design very robust. This
can be useful when we do not have a priori knowledge about the technology. The
design is sufficiently tolerant that it can be extended for ’blind’ first iterations.

2.6 Measurements and Results

2.6.1 Laser Calibration and Stability Test

In parameter extraction experiments using optical measurements, the value of the
parameter should be only determined by the circuit layout and device geometry.
However, an erroneous wavelength shift in the spectral measurement would lead to
a serious error in the extraction of a parameter such as the effective index and group
index. Problems such as laser drift and instability may rise such a measurement
error.

The long-term usage of a tunable laser is likely to cause wavelength drift when
it is lack of a good wavelength calibration. The drift is usually a linear transforma-
tion of sweeping wavelength that might be led by the aging of the mechanics. As a
result, we would observe as wavelength shifting and broadening. Such an issue is
not that noticeable if absolute value peak wavelength or free spectral range is not
the focus. However, it will cause significant errors in our measurements. There-
fore, laser calibration before and after the wafer-level or die-level measurement is
very important.

Meanwhile, we also need to make sure that the laser is stable throughout the
measurement. Month-long wafer-scale measurement might suffer from the bad
thermal control or unstable mechanics of the wavelength tuning. In the end, it
might lead to a variation of the swept wavelength during the lengthy measurement.
Therefore, thre should also be a stability test in the measurement workflow. We
describe the procedure of the laser calibration and the stability test is in Appendix
A.

2.6.2 Extraction of Die Maps

We automated the optical measurements on 21 dies on the same wafer. The op-
tical measurement was conducted in our clean room with the room temperature
controlled at 20 degree Celsius.

On each die, we distributed 44 copies of the MZI pair (Fig. 2.9 left bottom)
and repeated the fitting for all MZI blocks. With the estimated process variations
on different levels, we set up the bound for neff and follow the three-step procedure
to extract neff and ng of high-order MZIs (Fig. 2.5 right). Each point in the scatter
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plot represents extracted neff and ng of one waveguide on the die. All the points are
gathered in one group as confined by the bound. The average fitting uncertainty
for neff is 1.1×10−5 and the average fitting uncertainty for ng is 1.0×10−3. These
fitting uncertainties propagate to fitting uncertainties of 0.33 nm in width and 0.18
nm in thickness. Adding the mapping error of the geometry model in section 2.2,
the total extraction uncertainty and error for width w and thickness t are:

Errorw = 0.31 + 0.06 = 0.37nm

Errort = 0.18 + 0.08 = 0.26nm

Figure 2.10: Extracted neff and ng of the high-order MZI. Left: die (X=0, Y=0); Right: die
(X=-2, Y=2).

In reality, a fabricated waveguide has varied width and thickness along its
length. Therefore, the width and thickness we extracted are only averaged values
over the waveguide. Even more, neff and ng we extracted reflects the difference
of the optical lengths of two waveguides, which are given by the integral of the
effective index and the physical length. So, even we can use our technique to ex-
tract width and thickness with sub-nanometer accuracy, these values only reflect
the averaged values of waveguides in the MZI circuit.

Using the geometry model, we mapped neff and ng to width w and thickness
t of the high-order MZI arms. Extracted linewidth on the die (X=0, Y=0) in the
wafer center (Fig. 2.9 right) ranges from 468.8 nm to 471.9 nm and thickness
ranges from 211.4 nm to 212.3 nm. The standard deviations are 1.26 nm and 0.30
nm respectively. Extracted linewidth on the die (X=-2, Y=2) near the boundary
of the wafer ranges from 461.4 nm to 466.8 nm and thickness ranges from 212.1
nm to 214.0 nm. The standard deviations are 1.26 nm and 0.30 nm respectively.
For both dies, we observed a very weak correlation (correlation coefficient = -
0.2856) between the linewidth and the thickness. We fitted width and thickness to
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its location on the die with a linear model, and the green grid is the fitted map (Fig.
2.11) that indicates the location-dependent variation. We did observe a systematic
trend for widthw on this die, but the trend is quite flat on each die with a systematic
variation of less than 1 nm. Meanwhile, the width w shows an obvious local
variation with a maximum of 3 nm. For thickness t, both dies exhibits location-
dependency which might be the result of slow varying systematic variation over the
wafer. Local variation has a maximum of 0.5 nm, well below the local variation
range we set in the extraction. The maximum location-dependent difference in
thickness on the die (X=0, Y=0) is 0.4 nm while on the die (X=-2, Y=2) is 1.5 nm.

Figure 2.11: X and Y coordinates give the locations of the MZIs on two dies. Blue solid
dot: extracted value. Green grid: fitted map of extracted values using a linear polynomial.
(a) extracted width map of die (X=0, Y=0) (in the center of the wafer). (b) extracted
thickness map of die (X=0, Y=0). (c) extracted width map of die (X=-2, Y=2) (near the
edge of the wafer). (d) extracted thickness map of die (X=-2, Y=2).
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Width w [nm] Thickness t [nm]
Die number (X=0, Y=0) (X=-2, Y=2) (X=0, Y=0) (X=-2, Y=2)

Mean, µ 469.34 463.88 211.58 212.86
Standard deviation, σ 1.26 1.18 0.30 0.42

Extraction Error 0.37 0.26

Table 2.4: Statistical results for the manufacturing variations of a 200-mm wafer fabricated
through a 193-nm DUV lithography process

2.6.3 Extraction of a Simple Wafer Map

We also extracted width w and thickness t wafer map of one pair of MZIs that
shares the same location on every die. The dots represent the locations of the mea-
sured devices. The extracted wafer map (Fig. 2.12) shows an explicit location
dependence of fabricated geometry. We fit a parameter wafer map of w, t using a
second-order bivariate polynomial. The slow-varying trend of linewidth matches
the dome-like radial symmetric pattern of the wafer-level systematic variation. The
width systematic variation ranges from 459 to 465 nm while the random part has
a maximum 2 nm contribution. The thickness also present a strong location de-
pendence. Its systematic variation ranges from 211.5 to 214.5 nm. Its random
variation has a maximum of less than 1 nm.

2.7 Conclusion
In this chapter, we showed how to extract waveguide geometry from optical trans-
mission measurement with a sub-nanometer accuracy. We replaced the linear map-
ping model between (w, t) and (neff , ng) with an accurate third-order geometry
model to obtain accurate waveguide geometry from its effective index and group
index. The curve fitting method is less sensitive to measurement noise and helps
in removing grating coupler envelope. We discussed how to set parameter bounds
under a given process variation, which helps to choose the correct set of extracted
parameter values from multiple solutions. With the information of the group in-
dex of a waveguide, we can reduce the parameter bounds for the effective index,
allowing us to use a higher-order MZI to improve fitting accuracy. We proposed a
procedure to separate different levels of process variation so that our method can
deal with a total variation of several tens of nanometers and still obtain accurate
linewidth and thickness extraction. We applied the method to measurement data
from two dies and presented the linewidth and thickness map on die-level. We also
applied the method to extract one pair of MZIs in 21 dies and presented a simple
wafer map of fabricated geometry.

One work we need to do in the future is to valid extracted geometries with
FIB measurements. One initial validation is in [3] where he also used MZIs to
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extract waveguide effective and group index. He measured waveguide with 470,
604 and 805 nm width and 211 nm thickness with XSEM measurements. He has
found very good matching between measured and simulated effective and group
index over the C-band, which proves that we can get geometry parameters with
confidence from spectral measurements of MZI circuits.

Extracting waveguide width and thickness helps to analyze the process vari-
ations on a silicon photonics chip. Often, we also need to know the fabricated
quality of directional couplers to analyze the process variation of couplers and to
estimate the impact of variations on the performance of the optical filters. Next
chapter, we will discuss how to build the behavioral model of the directional cou-
pler and how to extract coupler parameters accurately from optical measurements.

Figure 2.12: We extracted the linewidth and thickness on the same device over 21 dies on
the wafer. Left top: systematic linewidth variation; Left bottom: random linewidth
variation; Right top: systematic thickness variation; Right bottom: random thickness
variation
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3
Compact Model and Parameter

Extraction of A Directional Coupler

A high-level integration of photonics requires a separation of components design
and circuit design. A behavioral model describes the characteristics of a compo-
nent accurately with a minimal set of parameters. It simplifies the circuit design
workflow and facilitates parameter extraction and performance evaluation of com-
ponents and circuits.

In this chapter, we will describe the behavioral model of a directional coupler,
one of the essential building blocks in passive photonic integrated circuits. We val-
idated the model with FDTD simulations and on-chip measurements. Extracting
coupling coefficients is not trivial in the presence of measurement noise, alignment
error, and grating coupler variation. We compared different designs and methods
to extract behavioral parameters of the directional coupler. Using a curve fitting
method and good grating coupler model, we can extract parameters of the direc-
tional coupler with high accuracy from a Mach-Zehnder interferometer circuit.

3.1 Behavioral Model of the Directional Coupler

3.1.1 Directional Coupler

A directional coupler (DC) is one of the fundamental building blocks in photonics
circuits. It is a four-port 2 × 2 reciprocal passive optical component used for
splitting and combining optical power. A DC can be easily designed to have an
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arbitrary coupling ratio. It is interesting for a ring resonator where a low coupling
ratio is needed to achieve a high resonator quality factor. It is also interesting for
a feed-forward filter design such as a lattice filter where several coupling ratios
are synthesized to achieve an optimal filter shape. The arbitrary coupling ratio
is otherwise quite difficult to design using other types of couplers. Compared to
a multimode interference (MMI) coupler, a DC on Silicon-On-Insulator (SOI) is
also significantly more compact. A 50-50 DC on SOI is normally around 10 µm
while a 2× 2 MMI can stretch more than 100 µm. A DC is also waveguide-based
and has less back-reflection than MMI and Y-junction like splitters. An additional
benefit of directional couplers compared to the MMI is that it operates based on
two modes (even and odd supermodes). We can engineer it to have zero loss.
If you can get a lossless coupling from the waveguide modes to the even or odd
modes, there is no further intrinsic loss mechanism in the device for any coupling
ratio. These merits make DC frequently used in ring resonators, Mach-Zehnder
interferometers (MZI), and optical filter circuits.

Figure 3.1: The upper plot shows the perspective view of a symmetric DC. Red arrows
present the flow of light. Part of the light is coupled from bottom waveguide to the above
one. The cross-section is amplified in the lower plot.

A DC consists of two waveguides with an identical cross-section (Figure 3.1).
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They are brought so closed to each other that light starts coupling evanescently.
The evanescent coupling is determined by the cross-section geometrical param-
eters. Waveguide with a large width or thickness confines light more, and less
light will be coupled to another waveguide. A narrow gap between waveguides in-
creases an overlap between the evanescent field and the adjacent waveguide, which
couples light between waveguide faster. The power is gradually transferred from
one waveguide to another along the propagation so that the power coupling is cou-
pler length dependent. Meanwhile, apart from the coupling in the straight section,
there is also a small couping in the bends that adds to the total coupling.

3.1.2 The Behavioral Model of the Directional Coupler

To describe the characteristics of DC, we need to build a behavioral model for
it. Photonics would benefit from a higher level of integration that means not only
an increasing complexity but also functionality. Design for high-level integration
requires a good separation of component design and circuit design. The behav-
ioral model is meant to simplify the design workflow for a circuit designer. Ac-
curate design for photonic building blocks requires computationally expensive,
full-vectorial electromagnetic simulations (e.g., FDTD simulations). To design
complex circuits, we need efficient behavioral component models, as FDTD sim-
ulations for complex circuits are impossible. If we can use a few parameters to
capture the behavior of every component in the circuit sufficiently accurate, then
a designer does not have to repeat time-consuming electromagnetic simulations of
a component. Instead, one can focus on circuit design and still rely on the overall
simulations to be accurate.

The behavioral model is also useful for performance evaluation and process
control monitoring that we will discuss in Chapter 4. For a component like a DC,
that is sensitive to the component geometry changes, a process variation can lead
to a significant performance variation. The variation in each DC accumulates in
a circuit, which deteriorates the circuit performance. For example, it can lower
the extinction ratio (ER) and increase the crosstalk in optical filters. Therefore, in
many cases, we want to monitor the fabricated quality of DC to reflect the perfor-
mance of DC-based optical filters. Also, the statistics of DC behavioral parameters
helps to estimate the yield of DC-based circuits and the compensation required to
tune circuits to get a desired optical response. To monitor such parameter statistics,
we need to build a behavioral model of DC.

A behavioral model should use a minimal set of parameters that captures the
behavior of the component. More parameters are not only unnecessary but can
also include over-fitting of the behavior, which makes it likely to extract incorrect
parameters from a measurement. According to the Coupled Mode Theory (CMT)
[1], a DC with two identical parallel waveguides has an odd super mode and an
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Figure 3.2: Mode profile of the TE electric field of (a) even and (b) odd supermode.

even super mode (Figure 3.2).
The coupling between them brings power Kcross in one waveguide to another

as:
Kcross = A · sin2(κ′L), (3.1)

where L is the length of the coupler, κ′ is the field coupling coefficient is the
amplitude coupling per unit length that determines the strength of the coupling
in the straight coupling section. The field coupling coefficient depends on the
difference between the effective indices of the odd (nodd) and even (neven) modes
as:

κ′ =
π

λ
(nodd − neven) (3.2)

As in Figure 3.3, a DC consists of not only a straight section but a couple of
bend sections as well. Both contribute to the overall coupling of the component.
So, the model should consider the power coupling in these bends sections, too.
Additional contributions from these bends result in the expression of the power
coupling Kcross that can be expressed as:

Kcross = A · sin2(κ′L+ κ0) (3.3)

where κ′ is the field coupling coefficient of the straight DC section, and κ0 is
the lumped power coupling contributed by two bends. The coupling in a DC is
dispersive. The light of longer wavelength is less confined in the waveguide and
has a faster coupling in the DC. We expand such wavelength-dependency in κ′ and
κ0 into a polynomial series as:

κ′(λ) = κ′|λ=λ0 +
dκ′

dλ
(λ− λ0) +

1

2

d2κ′

dλ2
(λ− λ0)2 (3.4)

κ0(λ) = κ0|λ=λ0
+
dκ0

dλ
(λ− λ0) +

1

2

d2κ0

dλ2
(λ− λ0)2 (3.5)
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Figure 3.3: Layout of a DC consists of parallel straight waveguides with coupler length of
L and two bends. The behavioral model separate contribution of straight section from two
bends. Also, the dispersion is considered in the coupling coefficients.

For this work, we use second-order polynomials and neglect higher orders be-
cause we found the higher-order terms to be very small both in simulation and ex-
periment. However, the model can easily be extended to more dispersive devices.
Substituting it into the equation above, the power at the ’cross’ port becomes:

Kcross(λ) = A · sin2(κ′(λ) · L+ κ0(λ)) (3.6)

The power at the ’through’ port becomes:

Kthrough(λ) = B · cos2(κ′(λ) · L+ κ0(λ)) (3.7)

A and B can also be length-dependent since loss becomes larger with longer length.
We ignore this aspect here for the moment because the length of the DC that we
discussed in the chapter is very short. We just assume that A = B = 1.

3.1.3 Verification of the Behavioral Model

In this section, we will verify the behavioral model with FDTD simulations and
on-chip measurements.
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3.1.3.1 Verification from FDTD simulations

First, we verified the model by comparing it to the three dimensional (3D) FDTD
simulations. We fixed the cross-section of the DC (450 nm × 220 nm oxide-clad
silicon waveguides with a 250 nm gap) and used the same bend radius for all
DCs. We swept the coupler length in the Lumerical FDTD simulation and ob-
tained the scattering matrix of the device, from which we have the cross-coupling
power transmission. The cross-section and the bend radii were same, so all the
devices had the same field coupling κ′(λ) and bend coupling κ0(λ) coefficients.
According to Eq. 3.3, the cross-coupling power Kcross follows a sinusoidal re-
lation with the coupler length (L). We obtained the bend coupling coefficient κ0

from the zero coupler length DC. The fitting is more accurate if we choose at least
one length value residing on the right side of the maximum power coupling. Then,
we have samples to cover more than one fourth of a cycle of the sinusoidal curve.
As shown in Figure 3.4 (a), κ′(λ) and κ0(λ) are derived by fitting the Kcross vs
L graph at 1550 nm, where we observed a very good fitting. We plotted the graph
for each simulated wavelength and observed very good fitting for all wavelengths.
The κ′(λ) obtained at 1550 nm is 0.042.

Figure 3.4: (a) The red stars in the graph show the power couplings calculated using the
FDTD simulations. The blue plot shows the fitted power couplings using our behavioral
model. Such graphs are generated for each wavelength and fitted to extract the values of
field coupling κ′(λ)) and bend coupling κ0(λ). The plot was calculated for a wavelength
of 1550 nm. (b) A comparison showing a perfect match between the DC spectra generated
using the commercially available FDTD solver from Lumerical and our dispersive
behavioral model.

To confirm the extracted values of κ′(λ), the cross-section was simulated using
the Fimmwave Film Mode Matching (FMM) solver. The FMM solver is desirable
to simulate rectangular structures because it has no intrinsic grid and discretization,
which reduces the discretization error. It is also very fast to calculate the even
and odd mode of a longitudinally-invariant section. But it cannot easily capture
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sloped sidewalls and bends, so we used it only to simulate modes of rectangular
waveguide-based structures. We calculated the difference between the even and
odd mode effective indices and obtained that κ′ = 0.0427 at 1550 nm using κ′ =
π
λ (nodd−neven). The value is close to the extracted value of 0.042 extracted from
the FDTD simulations.

We derived κ′(λ) and κ0(λ) from FDTD simulations over a wide wavelength
range from 1500 to 1600 nm. We obtained κ0 at one wavelength from the simula-
tion that the coupler length is zero. We used power transmission at one wavelength
from eight couplers with different coupler length to plot the Kcross vs. L graph
and derive κ′. We repeated the process for all wavelength to get κ′(λ) and κ0(λ).
Using Eq. 3.6 and 3.7, we found that spectral responses calculated by our model
match pretty well to the responses calculated by the FDTD solver from Lumerical
(Figure 3.4 (b)). The good matching validated that separating length-dependent
straight coupler and lumped bends contributions are accurate to model the cou-
pler. Also, using the derivative up to the second-order is sufficient to describe the
dispersion of the coupling.

Figure 3.5: The microscopic picture of the 8 DCs of lengths 0.15 µm, 10 µm, 20 µm, 30
µm, 40 µm, 60 µm, 70 µm and 80 µm fabricated using ebeam lithography. DC circuits
were fabricated at RMIT Melbourne.

3.1.3.2 Verification from Measurements

In the second part, we checked the model with reality and extracted its parameters
from measurements. To validate the model from fabricated devices, 8 DCs (Figure
3.5) of lengths 0.15 µm, 10 µm, 20 µm, 30 µm, 40 µm, 60 µm, 70 µm and 80 µm
were fabricated using ebeam lithography through the Australian Silicon Photonics
prototyping service at RMIT Melbourne. All DCs had the same designed cross-
section (450nm × 220nm) and the same bend sections. Fabricated devices were
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air-clad from the top.

Figure 3.6: (a) The plot shows the measured and the fitted power coupling for different of
coupler length L. (b) The extracted field coupling coefficient κ′. (c) The plot shows the
extracted lumped coupling coefficient κ0 of the bend.

We validated the model the same way as we validated the model with FDTD
simulations. We used the power coupling at a fixed wavelength for multiple DC
lengths and fitted the Kcross vs. L graph. The parameters are extracted from the
fitting. As in Figure 3.6 (a), we repeated the process for all wavelengths to get the
coupling coefficients as shown in Figure 3.6 (b) and (c). The coupling coefficients
increase with increasing wavelength as we expected. The extracted values of field
coupling are generated for each wavelength and fitted to extract the values of field
coupling κ′(λ)) and bend coupling κ0(λ). However, they are not varying smoothly
with the wavelength because the fitting is performed independently for each wave-
length. In this procedure, no effort was made to remove the oscillations in the
transmission spectrum from reflection from measurement noise, variations in the
grating couplers (GC), and interference fringes caused by back-reflections. Still,
the extracted κ′(λ)) and κ0(λ) from measurement are comparable in magnitude
with the results we got from FDTD simulations. However, we need to improve the
method to extract accurate and to smooth dispersive coupling parameters to get a
more convincing validation, which we will discuss in the following section.
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3.2 Methods to Extract Directional Coupler Param-
eters

After validating the model of DC, we now need a reliable method to extract model
parameters from optical measurements for further analysis, which is not trivial. As
we discussed in the last section, measurement noise can significantly deteriorate
the extraction accuracy of DC parameters. Also, the process variation of grating
couplers adds significant error in a normalized 2 × 2 DC transmission. In the
following, we will discuss what a better extraction method and the optimal circuit
design to extract DC parameters is.

3.2.1 Extraction from ’Naked’ DCs
3.2.1.1 Curve Fitting Method

The first way to extract parameters from ’Naked’ DCs is introduced in the last
section. Using the power coupling Kcross at a fixed wavelength for multiple DC
lengths L, we can extract the parameters by the fitting of the Kcross vs. L graph.
Dispersive coupling is derived by repeating the process for all wavelengths. How-
ever, this method is very sensitive to any effect that can introduce a wavelength-
dependent device-to-device variation in the transmitted power: grating coupler
variation, interferometric oscillations due to parasitic cavities created by back-
reflection and detector noise in the spectrum. Besides, to fit the Kcross vs. L

graph, we need to sweep a sufficient number of coupler length to get a good fit. In
our case, we used eight couplers. As explained, at least one coupler length value
should reside on the right side of the maximum power coupling to cover more
than half a cycle of the sinusoidal curve. A large number of devices requires not
only more measurements, but also more space on-chip that leads to an increasing
process variation between DCs and increasing modeling error.

Fitting the power coupling for every individual wavelength is not a good strat-
egy, because the wavelengths are treated independently, while we know the coeffi-
cients vary only slowly with wavelength. Therefore, an alternative method is to ex-
tract parameters by fitting the measured spectrum with the behavioral model. The
curve fitting method finds the parameters of the DC model by matching the mea-
sured spectrum with the simulated spectrum. The curve fitting method addresses
the major drawbacks of the first method. Firstly, there is only one set of solution
of DC parameters set that offers the optimal matching between measurement and
simulation. Secondly, the dispersive coupling is more tolerant of measurement
noise. Rather than measuring the ER at a few wavelengths, the curve fitting uses
the information on the entire measured spectrum, and it is much more tolerant to
measurement noises. Thirdly, fitting the spectrum with a model smooths the error
in the dispersive coupling coefficients. Since the coupling is smooth over wave-
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length as also validated by the FDTD simulations, when we fit the entire spectrum
with the model, the fitting would average the spectral noise.

Figure 3.7: (a) Layout and port positions of the DC circuit. (b) Measured and the fitted
spectra from the coupled port of the DCs with coupling lengths of 10, 20, 30 and 40 µm.
(c) Extracted field coupling coefficient using a ’naked’ DC. (d) Extracted lumped coupling
coefficient.

To separate κ′(λ) from κ0(λ), the curve fitting method fits the transmission
spectrum of a few DCs simultaneously. In principle, we could extract all the pa-
rameters just from two DCs of any coupler length (the additional devices make the
method more robust), while the first method required at least eight devices to get a
decent fit. So, it is more practical and cost-saving. From the same measurements
to validate the DC model, we chose DCs of lengths 10 µm, 20 µm, 30 µm and 45
µm for the fitting where the choice of the coupler length is arbitrary. We are not
taking into account device-to-device variability, so κ′(λ)) and κ0(λ) are assumed
identical for these four lengths. It is a much simpler procedure since we can ex-
tract all six parameters in a single operation. Measured spectra of four devices
were fitted simultaneously to the circuit model shown in Figure 3.7 (c) using the
non-linear least-squares minimization and curve-fitting (lmfit) tool for Python. It
can be noticed that the extracted κ′(λ) (Figure 3.7 (c)) and κ0(λ) (Figure 3.7 (d))
using both methods are comparable with an exception that extracted parameters
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vary much more smoothly over the wavelengths using the second approach. The
comparable results are a good validation of the behavioral model.

3.2.1.2 Extraction Error Led by the Grating Couplers Variation

In the measurements of the naked DC circuits, we measure the spectrum with the
DC connected to GCs on two ends. The transmission includes the GC envelope.
We normally would assume that all GCs are identical, so that GC transmission
envelopes from ’in’ to ’through’ and ’in’ to ’cross’ (Figure 3.7 (a)) are the same.
Then, we could remove the GC envelope by normalizing two transmissions from
’through’ and ’cross’ port:

Pthrough,norm =
Pthrough,withGC

Pthrough,withGC + Pcross,withGC

Pcross,norm =
Pcross,withGC

Pthrough,withGC + Pcross,withGC

However, the transmission spectra of the GC are not identical due to process
variation and alignment variations during the measurements. In [2], transmission
spectra are shown for the optical coupling between a grating coupler and a fiber
for 64 grating couplers on a single SOI wafer. The standard deviation of maximum
wavelength λmax on a wafer can be 1.9 nm while the maximum coupling Cmax
has a standard deviation of 0.07 dB. This variation leads to the normalization error
of the DC transmission spectra.

Figure 3.8: The figure is taken from [2]. It shows transmission spectra for the optical
coupling between a grating coupler and a fiber for 64 grating couplers on a single SOI
wafer.
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We can estimate the extraction error led by this GC variation using the circuit
simulator Caphe [3]. We design the circuit where the ’naked’ DC is connected
with two GCs. Since the size of the DC is small, we eliminated and ignored any
loss in the directional coupler (which can be wavelength-dependent). We design
the same circuit as the one we measured in Fig. 3.7 (a), which consists of three DC
circuits with coupler length of 6.65, 12.91 and 19.17 µm. Each DC has the same
set of coupling coefficients calculated for a DC cross-section of 450 nm× 220 nm
with a gap of 250 nm. The corresponding coupling coefficients are displayed in
Table 3.2.

As mentioned in Section 2.3 of Chapter 2, the transmission spectra from fiber
to GC can be very well fitted by a fourth-order polynomial as:

PGC,logarithmic =

4∑
i=1

pi · (λ− λmax)i + Cmax (3.8)

Where λmax is the wavelength of maximal coupling and Cmax is the value of
the maximal coupling on logarithmic scale. We assumed that the process variation
between two GCs in a circuit is smaller than the variation on a single wafer shown
in [2]. In each DC circuit, we assume the difference between maximum wave-
lengths λmax between two GCs transmission spectra ∆λmax = λmax,in−through−
λmax,in−cross = 1 nm. The maximum coupling difference ∆Cmax is led by the
process variation or an alignment error. We assumed ∆Cmax = Cmax,through −
Cmax,cross = 0.3 dB between two GCs in the circuits, which is roughly 4σ of
the variation reported in [2]. Since the shapes of the GC envelopes are almost
identical, we can assume the coefficients pi in the polynomial are the same for all
GCs.

We also add the background amplitude noise in the spectrum to mimic the
spectral fringes due to reflection and back-coupling in the circuit, and measure-
ment noise. We set the noise level in the simulated spectrum similar to what we
usually measured from the spectral measurement of the naked DC circuit. The
noise follows a normal distribution with a standard deviation of 0.2 dB. Then, we
could generate spectra that emulate the real measurements where measurement
noise, alignment errors in the circuit simulator, and process variation of GCs are
taken into account.
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Figure 3.9: Red solid: simulated measurements with variations that mimic the variations
you get from a measurement. Blue dash: normalized power transmission at ’through’ port.
There is a clear mismatch between normalized spectra and actual spectra. (a) L=6.65 µm.
(b) L=12.91 µm. (c) L=19.17 µm. The mismatch increases noticeably with the difference
of maximum wavelength between two GCs transmission spectra ∆λmax. Blue, green and
red curves are normalized DC transmissions with GC λmax differing by 1,3 and 5 nm.

From the generated simulated measurements, we normalized the power at cross
port Kcross using Eq. 3.8. Figure 3.9 shows when the variations of GCs present
themselves in the circuit, there is a clear mismatch between actual Kcross that
generated from circuit simulator without adding GC (blue dash) and the normal-
ized Kcross,norm (solid). The mismatch increases with the assumed difference
of maximum wavelength between two GCs transmission spectra ∆λmax. For
∆λmax = 1nm, as shown in Figure 3.10, a good fitting is obtained between nor-
malized spectra and the simulated spectra from fitting. Nonetheless, as shown in
Table 3.2, the GC variation leads to a 3.45% relative error in the extracted coupling
κ′. So, we need to find a way to reduce the impact of the GC variation and extract
DC parameters with high accuracy.
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Figure 3.10: Red solid: normalized power transmission at ’through’ port. Blue dash:
Caphe circuit simulation. (a) L=6.65 µm. (b) L=12.91 µm. (c) L=19.17 µm.

3.2.1.3 Grating Coupler Model: Does It (Always) Work to Remove the GC
Envelope?

One way to remove the impact of GC variation is to also include a model for GC
in the circuit model. If we can fit the GC parameters with confidence, we know
the shape of each GC. Then, we can remove the GC envelope.

To do that, we apply the fourth-order polynomial model of the GC and fit each
DC circuit that consists of two GCs and a DC. For the moment, we assume the
maximum coupling wavelength λmax and the maximum coupling Cmax will vary.
The shape of the GC transmission envelope will not change, which means that the
polynomial coefficients of the GC model are assumed same for both GC envelopes
in the circuits. Figure 3.11 shows the result of fitting of the power at ’through’
port. Very good fitting is observed for all three DC circuits.
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Figure 3.11: Red solid: Simulated measurement generate with GC variation and
measurement noise. Blue dash: Caphe circuit simulation that incorporates polynomial GC
model. (a) L=6.65 µm. (b) L=12.91 µm. (c) L=19.17 µm.

∆λmax [nm] ∆Cmax
Values Used to Generate Simulated Measurements 1.0 0.30
DC (L=6.65 µm) 1.1 0.61
DC (L=12.91 µm) 0.1 -0.16
DC (L=19.17 µm) 1.4 0.80

Table 3.1: GC parameters we assumed to generate the simulated measurements and the
extracted parameters.

However, as shown in Table 3.1, ∆λmax and ∆Cmax we extracted are far from
the ones we used to mimic the GC variation. So, we did not extract the true GC
envelopes from the circuit. The good curve matching and significant mismatch in
parameters extracted means it is hard to separate the GC envelope from a ’naked’
DC circuit. As the spectrum of DC transmission is gradually changed over wave-
length, we can also fit its transmission on log scale by a series of polynomials.
Consequently, different combinations of DC parameters and GC parameters might
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lead to a similar circuit response. Therefore, it is not possible with the current
techniques to remove the GC envelope from such as circuits and get accurate DC
parameters. Again, it has been evidenced by the extracted DC parameters in Table
3.2, where there is a big difference between the extracted and the actual values of
the coefficients.

Figure 3.12: Red solid: simulated Measurement generate with GC variation and
measurement noise. Blue dash: Caphe circuit simulation that incorporates polynomial GC
model. (a) L=6.65 µm. (b) L=12.91 µm. (c) L=19.17 µm.

Simulated
measurements

Remove GC with the model Remove GC by normalization
Values Relative Error [%] Values Relative Error [%]

κ′ 0.0406 0.0411 1.23 0.0392 3.45
dκ′

dλ 0.2382 0.1419 40.43 0.2673 12.22
d2κ′

dλ2 1.0047 0.1890 81.19 1.9896 98.03
κ0 0.2548 0.2071 18.72 0.2360 7.38
dκ0

dλ 1.2107 1.6782 38.61 1.6782 38.61

Table 3.2: Parameters extracted using a GC model and using normalized transmission from
the ’naked’ DC circuits.
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3.2.2 MZI with a 1 × 2 MMI and a DC: Extraction from the
Extinction Ratio

The similarity in the GC and DC transmissions make it hard to remove the impact
of GC from a ’naked’ DC circuit. Therefore, our idea is to design a circuit whose
transmission spectrum differs significantly from GC transmission.

Figure 3.13: Layout of the MZI circuit with two identical DCs.

The first circuit we look at is the DC-based MZI. [4] 1 As in Figure 3.13, the
imbalanced MZI consists of a DC splitter and an MMI combiner with 50% com-
bining ratio at 1550 nm. When the phase difference in two arms is the odd times
of π, a constructive interference occurs in the MZI output resulting in a maximum;
when the phase difference is the even times of π, a destructive interference oc-
curs. When both splitting and combining ratios are 50%, a complete constructive
or destructive interference occurs. We need to mention that the phase difference
between through and cross port is π. When the splitting or combining ratios are
different, we can extract the imbalance from the wavelength dependent ratio be-
tween adjacent minima and maxima of the output spectrum. The output field Eout

is calculated using the matrix formalism:

[TEout ] = [Tcombiner] · [Tinterferometer] · [Tsplitter] · [TEin ] (3.9)

Eout =
[

1√
2

1√
2

] [e−jφ1 0
0 e−jφ2

] [√
1− κ2 jκ

jκ
√

1− κ2

] [
0
Ein

]
(3.10)

In [4], a detailed derivation is given on how to determine the coupling coefficient κ
from the extinction ratio between the upper and lower envelope of the normalized
intensity (The method is illustrated in Figure 3.14). The DCs are assumed to be
lossless. From the wavelength dependent ER, we can determine the wavelength
dependent cross power coupling Kcross:

Kcross =
1

2
± 1

2

√
1− ER− 1

ER+ 1
(3.11)

1This method is also described in: http://photonics.intec.ugent.be/publications/publications.asp?ID=3105
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Figure 3.14: The figure is taken from [4]. The figure shows the method to obtain the
wavelength dependent coupling coefficient κ′ as well as the lumped coupling coefficient
κ0 of a DC from the ER in the output intensity of an MZI.

The design of the circuit makes it possible to extract coupling coefficients from
the ER without a transmission normalization. We need to fit or interpolate the up-
per envelope and the lower envelope from the measured ’cross’ transmission with
the influence of the GC. Kcross can be calculated from the ER, which is the dis-
tance between two envelopes. Such approach separates DC related ER features in
the spectrum from the envelope of the GC, which also proves that we can separate
DC and GC transmission with proper circuit design.

There are a few major drawbacks of this method. First, for each coupler length
L, there are two solutions for the cross power coupling Kcross. We can only guess
the right group of the solution by choosing the samples that are close to the curve
sin2(κ′ ·L+κ0). The guess could be not objective. We can substitute the estimated
κ′ and κ0 in the sinusoidal curve. Still, it is hard to pick up the right solution when
the Kcross is near 50%. Second, an accurate ER depends on the accurate mea-
surement of maxima and minima in the spectrum because the positions of maxima
and minima determine the accuracy of the upper and lower envelope. However,
the noise and limited resolution of the spectrum all lead to errors in determining
maxima and minima locations. This error is particularly large when the coupling
ratio is around 50%. Thirdly, the method calculates the power coupling at a few
wavelengths and interpolates the coupling over the spectrum. Again, the noise
in the spectrum leads to significant errors in coupling coefficients, which can be
observed in Figure 3.15.
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Figure 3.15: The figure is taken from [4]. Measured wavelength dependent coupling
coefficient κ′ (a) and lumped coupling coefficient κ0 (b) of a DC versus wavelength. The
coefficients are not smooth over wavelength because they are obtained from interpolated
upper and lower transmission envelopes.

3.2.3 From MZI with two Identical DCs: Spectrum Curve Fit-
ting with a GC Model

Even though the approach to extract coupling from MZI is not desirable from a few
reasons, the circuit itself has the DC and GC contribute differently to the features of
the transmission spectra. This section, we will illustrate our experiment to remove
GC envelope and improve extraction accuracy using a GC model.

Figure 3.16: Layout of the MZI circuit with two identical DCs.

We design an MZI with two identical DCs (Figure 3.16). Similarly, the exper-
iment consists of three MZIs with DC coupler lengths L of 6.65, 12.91, and 19.17
µm. As assumed in 3.2.1.2, we add measurement noise of 0.3 dB and include GC
variations by assuming the difference of maximum wavelength λmax between two
GCs transmission spectra is 1.0 nm. As shown in Figure 3.17, we fit the simu-
lated measurement at the ’through’ port with a circuit model of the MZI with the
polynomial GC model. Excellent matching between simulated measurements (red
solid) and circuit simulations (blue dash) presents in the figure. Also, the extracted
the ∆λmax [nm] and ∆Cmax match well with the parameters we used to introduce
GC variation. It proves that we can remove the GC envelope using the curve fitting
for this design.
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Figure 3.17: Fitting of MZI spectra with the GC model. Red solid: simulated measurement
generated with GC variation and measurement noise. Blue dash: Caphe circuit simulation
that incorporates polynomial GC model. (a) L=6.65 µm. (b) L=12.91 µm. (c) L=19.17
µm.

After successfully removing the GC envelope, we fitted three ’through’ trans-
mission spectra simultaneously with Caphe circuit simulations. Figure 3.18 presents
the result of the fitting. Simulations and measurements match excellently. The
spectral response of the MZI is sinusoidal that is significantly differed from the
GC envelope. So, it is possible to separate such an impact.

∆λmax [nm] ∆Cmax
Values Used to Generate Simulated Measurements 1.0 0.30
DC (L=6.65 µm) 1.0 0.30
DC (L=12.91 µm) 1.0 0.29
DC (L=19.17 µm) 1.0 0.31

Table 3.3: GC parameters we assumed to generate the simulated measurements and the
extracted parameters.
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Figure 3.18: Fitting of MZI spectra after removing GC envelope with the GC model. Red
solid: simulated Measurement generate with GC variation and measurement noise. Blue
dash: Caphe circuit simulation that incorporates polynomial GC model. (a) L=6.65 µm.
(b) L=12.91 µm. (c) L=19.17 µm.

This circuit design and curve-fitting give a high accuracy of the DC coupling
coefficients (Table 3.4) in the presence of measurement noise and the GC variation.
If we use the normalization method, the extracted parameters from the MZI circuit
have significantly larger extraction errors, as shown in Table 3.4. Also, compared
to all the methods mentioned above, this method ensures the highest accuracy. The
result confirms that to extract the DC parameters with high accuracy, we need both
the curve-fitting method and good circuit design to deal with measurement noise
and the GC variation.
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simulated
measurements

Remove GC with the model Remove GC by normalization
Values Relative Error [%] Values Relative Error [%]

κ′ 0.0406 0.0404 0.49 0.0432 6.40
dκ′

dλ 0.2382 0.2463 3.40 0.2096 12.01
dκ′2

d2λ 1.0047 0.8681 13.60 2.4744 146.28
κ0 0.2548 0.2495 2.08 0.2117 16.92
dκ0

dλ 1.2107 1.0612 12.35 1.6782 38.61

Table 3.4: Parameters extracted using a GC model and using normalized transmission from
the MZI circuits that each has two identical DCs.

3.3 Conclusion
In the chapter, we discussed how we built the behavioral model of DC. We val-
idated the dispersive model from both FDTD simulations and on-chip measure-
ments. To extract the coupling coefficients accurately in the presence of measure-
ment noise and a GC variation, we should combine a sensible circuit design and the
use of curve fitting method. We found out that we can use the curve fitting method
to extract parameters from the MZI circuit that comprises two identical DCs. The
circuit allows us to remove the GC variation in the spectra and improves the ex-
traction accuracy significantly. We provided a detailed discussion and presented
results on the coupling coefficients extraction.

The method discussed in the chapter requires at least three circuits with differ-
ent coupler lengths to extract one set of the coupler parameters. If we remove the
GC envelope using normalization, we need two optical measurements for each cir-
cuit. Therefore, at least six measurements are needed to extract one set of values.
Also, the distance between extraction circuits indicates a local variation that ham-
pers the assumption that all DCs in the extraction circuits suffers the same process
variation. It will introduce an error in the extraction. In the next chapter, we will
propose a circuit that allows us to address these problems.
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4
Process Control Monitoring Using a

Compact Silicon Photonics Circuit to
Extract Multiple Parameters

In Chapter 2 and 3, we presented a few designs and techniques to extract waveg-
uide and directional coupler parameters. In this chapter, we present a compact
circuit to simultaneously extract multiple parameters of on-chip waveguides and
directional couplers from optical measurements. The compact design suffers less
from local variation with in the circuit which greatly improves the accuracy of
extraction. Also, the circuit greatly reduces the duration of wafer-scale optical
measurements, making it useful for process control monitoring and detailed wafer-
level variability analysis. The parameter extraction from the complicated spectrum
requires a global optimization to replace the standard curve fitting method. We will
discuss the design requirements and illustrate and how to setup the extraction using
the Restart-CMA-ES global optimization algorithm. Since the circuit is designed
to extract detailed wafer maps that will be illustrated in Chapter 5, we will also
discuss the workflow to extract wafer maps in the last part of the chapter.
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4.1 Background and Challenges in Process Control
Monitoring

4.1.1 Progress in Process Monitoring for Photonics Chips

To monitor the performance of fabricated circuits and extract process variations, it
is essential to do process control monitoring (PCM). PCM monitors the essential
properties and variations of the fabrication process. PCM extracts technology spe-
cific parameters across the wafer (and between wafers and lots) that offer the input
data for device-level and circuit-level variability analysis that we will describe in
Chapter 5. The devices or circuits for parameter extraction should be compact
so they can be placed at various locations to construct a granular map of the pro-
cess variation on the fabricated chips as input for location-dependent variability
analysis.

As we explained in Chapter 2, for variability analysis, we preferably measure
parameters on the final fabricated circuits and at a large number of sites to ob-
tain the variability contributions at different length scales. Optical transmission
measurements provide a desirable alternative to measure fabricated geometry. We
introduced in Chapter 2 an Mach-Zehnder interferometers (MZIs) to extract the
average effective and group indices along the path of a delay line. Because silicon
waveguides are extremely sensitive to geometry variations, the effective and group
indices can be mapped uniquely onto waveguide linewidth and thickness, which
allow us to derive small variations in the fabricated waveguide geometry with a
sub-nanometer accuracy as described in Chapter 2.

In addition to waveguide parameters, the parameters of a directional coupler
(DC) are also essential in the performance of optical filters. In Chapter 3, we
described different methods to extract obtain coupling coefficients of a DC. A
typical optical filter measurement captures the power transmission of at least two
DCs (preferably 3 or more) with different coupling length to separate the length-
dependent coupling and the contribution of the bends. To eliminate the effect of
the grating couplers (GCs), we measured the two outputs of the directional coupler
and normalized the transmission to the total power. In total, 3 DCs and 6 optical
measurements are required for the extraction, and then we have to assume the
properties of these three DCs are identical. Any variation in linewidth, thickness,
and gap among the DCs will introduce extraction errors. Therefore, it is desirable
to bring three DCs as closely together on the chip to reduce the extraction error
caused by the local variations.

4.1.2 Challenges in Current Monitoring Circuit Designs

There are two major challenges in current designs described in Chapter 2 and
Chapter 3 of monitoring circuits. First, the footprint of the design needs further
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reduction. A compact monitoring circuit reduces local variation within the circuit
that improves extraction accuracy. In the two MZIs design for neff and ng extrac-
tion, we assumed two MZIs are on the same location on the die and they only
suffer random device-to-device variation between them. In the design to extract
DC parameters, we assumed that DCs in three MZIs experience the same fabri-
cation variation so that they have identical cross-section and bend sections. Such
assumptions are less convincing when the monitoring circuit is not compact, so
different location in the circuit suffers significantly different variation. Process
variation has a significant deterministic contribution that can be determined by its
location on a wafer. We will describe in Chapter 5 that the fabrication variation is
correlated between nearby sites. For example, on the intra-die level, the linewidth
is correlated in a several-hundred-micron range, because the local pattern density
affects it on the scale of 100 µm (Chapter. 5 Section 5.6). To extract the detailed
location dependence of the deterministic variation and to observe such a short-
range spatial correlation, we need to design the monitoring circuit as compact as
possible. Besides, we want the circuit to be so compact that we can easily squeeze
it in various locations on-chip and place many replicates of it very close to the
region of interest.

The second challenge is the significant time cost of the optical measurement for
process monitoring, especially when extracting parameters from multiple circuits.
The time cost of the optical measurement becomes substantial when we are col-
lecting a detailed wafer map. If each die requires hundreds of monitoring circuits,
a wafer would easily contain thousands of such circuits. The automated measure-
ment on all circuits on-wafer would require several months. In particular, when
you use separate circuits described in previous chapters, for example, to extract
waveguide parameters and DC parameters, the number of measurements can be
multiplied a few times further. If we could reduce the number of optical measure-
ments for each monitoring circuit, we will significantly reduce the measurement
time.
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4.2 Design of the Monitoring Circuit

4.2.1 Footprint of the Two-Stage MZI Monitoring Circuit

Figure 4.1: (a) The layout of the folded two-stage MZI. We used low-reflection GCs [1] to
reduce measurement noise due to parasitic back-reflections. The large dotted frame
indicates the region to extract process variation of the waveguide. The small dotted frame
on the right indicates the region to extract process variation of the DC. (b) The layout of
the two MZIs to extract waveguide parameters used in Chapter 2. The design has a
footprint of 350 µm × 180 µm. The region to extract process variation of the waveguide
covers an area of 55 µm × 180 µm. (c) The layout of the three MZIs to extract DC
parameter used in Chapter 3. The design has a footprint of 285 µm × 280 µm. The region
to extract process variation of the DC covers an area of 150 µm × 220 µm.

To reduce the footprint of test structures and the number of optical measurements
for performance evaluation, we propose a two-stage MZI design, shown in Fig-
ure 4.1(a), with which we can simultaneously extract effective and group indices
of a waveguide and parameters of the used DCs. The design wraps the low-order
and high-order MZI into one circuit with two inputs and two outputs. Including
low-reflection GCs [1], the circuit has a footprint of 400 µm × 100 µm which
can be further reduced by quick adjustment of the layout. The region to extract
process variation of the waveguide includes arms of both the low-order stage and
the high-order stage. Grating couplers and entrance waveguides are not included
because they do not determine the extracte waveguide and DC parameters. It cov-
ers an area of 120 µm × 40 µm. It is 1.6× smaller in terms of footprint and 2.1×
smaller in terms of the region to extract variation compared to the two-MZI design
in Figure 4.1(b) used in Chapter 2 for waveguide parameter extraction. For DC
parameter extraction, the region of interest is the small rectangle that covers three
DCs with an area of 45 µm × 40 µm. Our monitoring circuit is 2.0× smaller
in terms of footprint and 18.3× smaller in terms of the region to extract variation
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compared to the three-MZI design in Figure 4.1(c) used in Chapter 3. The design
is organized to be very compact which reduces the local variation between waveg-
uides and DCs, which in turn improves the extraction accuracy. Moreover, the
circuit requires only 2 optical measurements instead of 8 to extract all waveguide
and DC parameters, which significantly reduces the cost of the automated optical
measurements.

4.2.2 Design Principle

We design the two-stage MZI using the same rules for the low and high order as de-
scribed in Chapter 2. We used a combination of a low and a high order MZI stage
to extract the effective and group indices of straight waveguides. The fabrication
variation can shift the spectrum of an MZI by more than one free spectral range
(FSR), making it difficult to identify the correct discrete interference order, result-
ing into multiple solutions for the effective index. So, we designed the order of one
MZI stage sufficiently low, such that its spectrum will not shift more than one FSR
under the expected process variation. This low-order stage offers a local reference
for the effective index. The second, high-order stage has many more interference
orders within the measurement range, offering more spectral features for accurate
extraction of both effective and group indices. The order of the high-order stage is
designed such that we can still estimate effective index reliably based on the local
reference effective index extracted from the low-order stage. The low-order stage
provides a local reference point for the effective index, and the high-order stage
enables accurate extraction.

We based our designs on the specifications in imec’s technology handbook
for the iSiPP50G silicon photonics platform. For the waveguides, the standard
deviation in linewidth is specified as 5.3 nm over the wafer, while the thickness has
a standard deviation of 0.7 nm. For a safe design based on a 6σ spread, we targeted
waveguides of 470±15 nm line width and 210±5 nm thickness. We assume the
waveguide is rectangular with 90◦ sidewall, where the specified sidewall angle is
above 85◦. As we are mostly interested in relative variations on the wafer and
between wafers, this deviation from the vertical is not a big issue. As explained in
Chapter 2, the ng extraction from the low-stage is inaccurate. Without information
of ng on the low-order stage, we estimate the tolerance of its neff by Equation 2.11
in Chapter 2:

∆neff,total =
∂neff
∂w

∆wtotal +
∂neff
∂t

∆ttotal

= 0.0019 nm−1 × 30 nm+ 0.0040 nm−1 × 10 nm = 0.097.
(4.1)

Then Llow order < λ
∆neff,total

= 16.0µm. We estimate the local variation from
the maximum difference between an extracted parameter with an interpolated wafer
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map. From Equation 2.12 in Chapter 2, we know that when the width variation is

significantly larger than the thickness variation that ∆w > − ∂w
∂ng

· ∂ng
∂t

∆t, the

range of neff is determined largely by ∆t. From Chapter 2, we also know that
thickness varies smoothly over the wafer, with local variations of less than ± 0.6
nm on the two dies we measured. So here we assume the maximum local variation
(within the MZI circuit) is below ±0.8 nm. In the high-order MZI, the extraction
of ng is much more accurate, as we cover more interference orders in the measure-
ment range. For w ∈ [455, 485] nm and t ∈ [205, 215] nm, we can now, knowing
the accurate local ng, estimate the range of the high-order neff by Equation 2.12 in
Chapter 2:

∆neff,local =

− ∂neff∂w

∂ng
∂t

∂ng
∂w

+
∂neff
∂t

∆tlocal

= 0.0064 nm−1 × 0.8 nm× 2 = 0.0102. (4.2)

Then Lhigh order < λ
∆neff,local

= 152.0µm. From the analysis, we choose the
arm length difference of the low-order stage as 15 µm and the high-order as 150
µm.

To extract DC parameters, we put three DCs connecting the two MZI stages,
and the coupler lengths correspond to a nominal 25%, 50%, 75% cross coupling
power at 1550 nm. The gap between the waveguides in the DC is 250 nm, and
the corresponding coupler length in three DCs are 6.65 µm, 12.91 µm, 19.17 µm.
To further reduce the footprint of the device, we also folded the MZI as shown in
Figure 4.1(a) so that we reduced the distance between the pairs of arms and the
three DCs. This should reduce local variation and improve extraction accuracy.

4.3 Extracting Multiple Parameters Using the Restart-
CMA-ES method

4.3.1 Circuit Model

We extract the parameters of the folded MZI circuits by matching a simulated
spectrum with the measured spectrum. This requires a behavioral model for the
circuit and its constituent components. As in Figure 4.2, for a waveguide arm of
the MZI, we use two compact model parameters, namely effective index neff and
group index ng at λ0 = 1550 nm. The effective index neff at a given wavelength is
then:

neff (λ) = neff − (λ− λ0) · ng − neff
λ0

(4.3)
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Figure 4.2: The circuit model of the device. Two MZI stages have different neff and ng led
by the local fabrication variation.

As we have explained in Chapter 3, a DC has coupling contributions from two
parts: the straight coupling section and its two bends. When we neglect insertion
loss, the power at the coupled port is:

Kcoupled(λ) = sin2(κ′(λ)Lcoupler + κ0(λ)) (4.4)

As explained in Chapter 3, the DC model has six parameters, namely the
length-specific coupling coefficient of the straight coupling part κ′ and its first
and second-order derivative ∂κ′

∂λ and ∂2κ′

∂λ2 , and the lumped power coupling of the
bend κ0 and its first and second-order derivative ∂κ0

∂λ and ∂2κ0

∂λ2 .
We implemented the compact model of the two-stage MZI in the IPKISS cir-

cuit simulator CAPHE of Luceda Photonics [2]. We then try to match the simu-
lated spectrum to the measured optical spectrum by adjusting the model parame-
ters. To remove the effect of GCs in the spectrum, we measured both the spectra
from port in1 to out1 and in1 to out2 and normalized the transmission spectra to
the sum of the two spectra. The solid red curve in Figure 4.8 shows a typical
normalized measured spectrum from port in1 to port out1.

4.3.2 The Problem to Use the Standard Curve Fitting Method

Standard curve fitting methods (e.g., from the scientific python package ‘scipy‘)
are capable of extracting parameters from a single MZI response as described in
Chapter 2. However, it becomes difficult to use these curve fitting to extract pa-
rameters from the two-stage MZI. As shown in Figure 4.3, the spectrum of the
device is more complicated. Extracting the circuit parameters is an optimization to
minimize the target function that is the difference between the simulated and mea-
sured spectrum. To find the right and unique parameter set, we are not interested
in a local minimum of the target function. As displayed in Figure 4.3, the classical
curve-fitting methods often fail to handle the non-convex parameter landscape and
will obtain a local optimum instead of the global optimum.
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Figure 4.3: A bad match between simulated and measured spectra is obtained by the
standard curve fitting method. Red: measured spectrum. Blue: simulated spectrum by
CAPHE.

4.3.3 Parameter Extraction Using the Restart CMA-ES Algo-
rithm

4.3.3.1 CMA-ES Algorithm

Instead, we can use smart global optimization algorithms that adaptively choose
the samples to drastically reduce the number of simulations for the non-convex
parameter landscape optimization. Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) is an optimization method that adaptively chooses its search-
ing path and searching range (Figure 4.3). The algorithm chooses samples of the
population of a new generation based on the samples offering the best optimization
of the previous generation [3]. The CMA-ES greatly reduces the sample number
in the extraction and is especially powerful to extract multiple parameters simulta-
neously. Also, unlike other optimization technique, it has only a few parameters to
set up, which is easy and intuitive to use. The technique has been implemented in
many programming languages, and you can access the open source code from [4].
The technique is very efficient when we apply it to extract a spectrum with com-
plex features, but it does not always guarantee to find the global optimum.
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Figure 4.4: Illustration of an actual optimization run with CMA on a simple
two-dimensional problem. The spherical optimization landscape is depicted with solid
lines of equal f-values. The population (dots) is much larger than necessary but clearly
shows how the distribution of the population (dotted line) changes during the optimization.
On this simple problem, the population concentrates over the global optimum within a few
generations. The figure is from Wikipedia. [5]

4.3.3.2 Parameter Extraction using the Restart-CMA-ES Algorithm

A variation, the Restart-CMA-ES method, is a global optimization method which
is suitable for our purpose because it guarantees to locate the global optimum.
In particular, we adopted the technique described in [6]. The Restart-CMA-ES
method will restart the optimization after one search if it only finds a local op-
timum. We decide that the optimization reaches the global optimum when the
objective function is below a predefined value that is small enough to distinguish
a global optimum and a local optimum. How to choose the predefined value will
be discussed in Section 4.4.2. After each restart, we could also increase the pop-
ulation size, so the search characteristic becomes more global after each restart.
The loop stops when the error between the simulation and measurement is be-
low the defined threshold, which indicates the global optimum is obtained. We
validated the algorithm with simulated samples with ±0.2 dBm noise to emulate
the typical measurement noise. It works robustly for given waveguide variation
(w∈[465,485] nm, t∈[205,215] nm) and DC gap ∈[100,400] nm.
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4.4 How to Set Up the CMA-ES Algorithm

The Restart CMA-ES global optimization technique is very powerful and robust.
In theory, it guarantees to locate the global optimum with high accuracy if we
build the correct circuit model, set a right parameter boundary and use a sufficient
amount of evaluations. In practice, when we are extracting a wafer map, the pro-
cess control monitoring requires to repeat the extraction to obtain parameters from
thousands of circuits accurately. Noise in the spectral measurements also means
the mismatch between simulation and measurement is not zero. We want to obtain
accurate parameter, and meanwhile consider the cost of the strategy which is down
to the choice of algorithm parameters.

The CMA-ES algorithm does not require a tedious parameter tuning for its ap-
plication. [5]. In fact, the choice of internal parameters in the algorithm is not left
to the users. Instead, it is part of the algorithm design. On the user side, we can
choose the population size that determines the convergence rate. Initial step-size is
also an option left to users. Termination criteria such as function tolerance, maxi-
mum evaluations, minimum change in the parameters can be chosen to change the
cost of the algorithm. We will discuss how to choose these parameters below.

4.4.1 Initial Guess and Step Size

The CMA-ES implementation chooses the search direction and step size adap-
tively. The step size here is the step size of the first generation. It is an initial
standard deviation of the variable. We have normalized all the variables according
to the variable range such that the same standard deviations can be reasonably ap-
plied to all variables. The variable range is set between 0 and 2, which means the
variable v with a range from v −∆v to v + ∆v should be linearly mapped to 0 to
2.

When we choose a small step size, the algorithm can quickly converge to a lo-
cal optimum. This is very useful when we have a good initial guess. For example,
when we have a solution from a previous optimization and we want to improve the
fitting error of the solution, we can use a refined step size and search in the neigh-
borhood with more evaluations. This helps to quickly converge to the solution.

For most of the cases, we did not know where the solution is in our search range
determined by the process variation. We are rather looking for the ’global’ opti-
mum. According to the tutorial, [5], the initial step size should be about one-fourth
of the search domain width, where the optimum of the strategy is to be expected.
In terms of the initial guess, We could only assume it within the searching range.
One way is to assume the initial guess right in the middle of the parameter space.
However, we do not want to fix the position of the initial guess. If the right so-
lution is near the boundary of the searching range, the initial guess in the middle
makes it quite unlikely to find it. Instead, we assume a random initial guess to
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add robustness to the algorithm. At each restart, we choose it randomly follow-
ing an uniform distribution. Choosing the initial guess randomly within the range
makes the algorithm more tolerant and more likely to find the optimum after a few
restarts.

4.4.2 Global or Local Optimum?

The standard to judge if an obtained optimum is global or local is to look at the
mismatch between the simulation and the measurement. ’f-value’ in the CMA-
ES algorithm is the mismatch between the measured spectrum and the simulated
spectrum. In the ideal case, there should be no mismatch between these two. In
practice, measurement noise and mismatch between the circuit model and the cir-
cuit response introduce mismatches. Measurement noise is around 0.2 dBm for
most of our measurement, which is around 5% relative error on each wavelength.
There is also mismatch between the circuit model we assumed and the real cir-
cuit behavior. For instance, the assumption that three DCs share the same set of
coupling parameters is based on the assumption that there is no local variation in
the circuit. The deviation from the assumption introduces a mismatch. Also, in
the procedure to remove the GC envelope, we assumed an identical GC response
for all GCs in the circuit. The mismatch in the GC performance introduces error,
especially in the region of low grating coupling efficiency. The small coupling
leads to small optical transmission in the spectrum range, thus reducing the signal-
noise-ratio and increasing the mismatch. We can remove the part of the spectrum
with a low grating coupling efficiency to alleviate the issue.

The mismatch between the spectrum simulated at a local optimum and the
measured one is much larger than the mismatch caused by noise and modelling
errors. For example, a local optimum can be a spectrum that is one interference
order off from the right order, and it leads to significant mismatch that is at least
0.10 × number of wavelengths in the spectrum. For instance, the local optimum
we found using the curve fitting in Figure 4.5 (b) has a mismatch of 0.15× number
of wavelengths. In practice, we tested with thousands of spectra measured on the
wafer, the mismatch driven by noise, or GC is below 0.02 × time of wavelengths
of the power spectrum. When it is over that value, we assume that the optimization
did not find the global optimum. We use this standard to decide if the algorithm
needs a restart and determine if we get a global optimum after a few restarts.
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Figure 4.5: Two types of optimum. Red solid curve is the measured spectrum with 200
wavelengths. Blue dash is the simulated spectrum. (a) A very good match that corresponds
to the global optimum. The value of the target function ’f-value’ of the global optimum is
2.65, which is below 0.02 × time of wavelengths. (b) A bad match that corresponds to a
Local optimum obtained by CMA-ES. The local optimum is has the smallest ’f-value’
among of all observed local optimums, whose ’f-value’ is 30.73, which is 0.15 × time of
wavelengths of the power spectrum.

4.4.3 Population Size

Population size is the number of evaluations sampled in the parameter space in
each generation. It determines how global the search is. Restart-CMA-ES is a
global optimization method. However, ’global’ is a word that requires attention.
There are two ways to operate the Restart-CMA-ES: increasing the population
size after each restart which makes the search more global, or using the same size
after each restart. As shown in Figure 4.4, the radius of the search circle reduces
generation by generation to approach the optimum. If you have a large population,
there are more samples in the searching circle which captures the more terrain in
the circle. More samples likely to find the global optimum

The ’global’ approach increases the population size after restart so that the
samples in the population cover more details of the searching area. The method
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is more robust and reliable to find the optimum. However, most of the time, the
choice has a slow convergence to the right solution. [3] Sometimes, it fails even
to find a local optimum within 20,000 evaluations. So if we did not have a good
initial guess, the ’global’ approach requires too many evaluations to find the global
optimum. On the other hand, the restart scheme with the same size of the search
span is more ’local’, it converges faster and is more efficient. However, it has a
larger tendency to find one local optimum rather than a global one.

The default population size of each generation is given as: 4 + floor(3 ×
ln(N)). In our case, there are 10 parameters in a circuit simulation, so the default
population size is 10. To see how convergence is related to the population size, we
tried population size of 5, 10, 20, 40, 100 and did the optimization without restart.
For each population size, we run 10 times of optimization. As in Table. 4.1, the
number of evaluation increases with the population size almost linearly when the
population size is above 20. Below 20, the number of evaluations does not change
significantly. On the other hand, we also test the the successful rate to obtain global
optimum without restart. The rate to obtain a global optimum increases with the
population size. In our test, the rate did not significantly improve the population
size above 20, which might because we tried only 10 times of optimization for
each population size. Still, it is reasonable to choose population size as 20 which
fast converges and at the same time ensures a good coverage of searching space.

Figure 4.6: Population size vs. number of evaluations to find an optimum. The
optimization stops when the tolerance in the function value is below 10-7.
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Population Size 5 10 20 40 100
Number of Evaluations 4946 5218 5452 7430 13820
Successful Tests 5 6 8 8 8

Table 4.1: The number of evaluations required to find an optimum and the rate to find a
global optimum under different population size.

We set the ’local’ method with a population size of 20. For a majority of our
measurements, the ’local’ method without increasing population size is capable of
finding the solution with a maximum number of evaluations in each restart set at
20,000. We allow the algorithm to restart a maximum of 3 times so it would not
run forever if there is an error in measurement or there is a fault in the optimization
set up. If it did fail to find a solution in some spectrum, we switched to the ’global’
approach to process a difficult spectrum. We set the ’global’ method with the initial
population size of 20. After each restart, the population size is 50% larger than the
previous generation. The global method is also limited to a maximum of 3 restarts.
As shown in Figure4.6, an optimum can be found within 20,000 evaluations even
with the largest population size we used in the ’global’ approach. So we limit the
evaluations to 20,000. If we did not find the global optimum after three restarts,
we would just rerun the global algorithm. Most of the time it works within two
reruns.

By using the ’local’ and ’global’ method to target different spectra, we can
combine the merits of both approaches.

4.4.4 Termination Criteria

Termination criteria tell the program to stop when it meets one or more preset
criteria. There are a few options we used to stop the optimization.

• ’TolFun’ : It is the tolerance in the function value. Stop if the range of the
best objective function values of the last 10 + [30 ∗ n/λ] generations and all
function values of the recent generation is below TolFun. n is the number
of variables in the searching space. λ is the step size. The smaller TolFun
means more evaluations that increases optimization cost and reduces the
fitting error. The optimal TolFun depends on the problem.

We did a convergence test to find out the optimal TolFun for our problem.
We set the TolFun as 10-12, which is a very small number so that the opti-
mization can run sufficiently long to get the solution with low fitting errors.
As in Figure 4.7 (a), the optimization falls into the vicinity of the solution
after around 2,500 evaluations, when the TolFun is around 10-3. Followed
evaluations continue to reduce the fitting error as shown in Figure 4.7 (b).
From Figure4.7 (a) and (b), we observed that after the algorithm start to



PROCESS CONTROL MONITORING USING A COMPACT SILICON PHOTONICS CIRCUIT

TO EXTRACT MULTIPLE PARAMETERS 4-15

search in the close vicinity of the global optimum and will not jump to an-
other adjacent local optimum, it takes around 2,000 iterations to lower Tol-
Fun by 2 magnitudes and the fitting error by 1 magnitude. We can calculate
the fitting error for width and thickness from the fitting errors of neff,2 and
ng,2. The TolFun approaches 10-6 after 4,000 evaluations. The fitting errors
of both width and thickness drop below 0.1 nm, which is sufficiently small
for variability analysis. To be on the safer side, we find TolFun as 10-7 en-
suring a solution with sufficiently low fitting errors on one hand, and still
being cost-effective on the other hand.

• ’maxfevals’: It is the maximum evaluations of one restart. More evaluations
do not only increase the odds to find the optimum, but also helps to reduce
the fitting error (which is proportional to the radius of searching) with more
time approaching the optimum. However, if we set the evaluation maximum
necessarily large, it is a waste when the algorithm cannot find an optimum.
It is better to restart the searching for such cases. On the other hand, we
should allow the algorithm to find an optimum with sufficiently small fitting
error under most situations, which reduces the reprocessing of unsuccessful
samples in the following steps. We set the number to be 20,000. As shown
in Figure 4.7 (c), most of the time, the algorithm can find an optimum in
around 8000 evaluations with sufficient parameter accuracy. We use 20,000
as the maximum to make sure in the majority of the cases, the optimum is
found and the fitting error is reduced to an acceptable level.

As shown in Figure 4.8, we obtained excellent matching between simulated
and measured spectra using the restart-CMA-ES with increasing population after
each restart. To extract ten parameters with high accuracy, usually, the optimiza-
tion requires less than 20,000 evaluations. The behavior parameters have been
extracted with good accuracy (Table 4.2). Since the circuit is very simple, we can
test in the future a simple and very fast transfer matrix method without having to
run a full-fledged circuit simulator. If we apply a simple evaluation of an analytical
formula, the extraction should be greatly accelerated.
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Figure 4.7: (a) The blue curve is the minimal target function value after each evaluation.
The light blue curve is the ’TolFun’ (fbest-f(min)) which is the difference between target
function and minimum target function found. We stopped the optimization when the
’TolFun’ value reaches 10-12. (b) x(1) to x(8) are neff,1, ng,1, neff,2, ng,2, dκ

′

dλ
, dκ

′2

d2λ
, κ0, dκ0

dλ
,

dκ2
0

d2λ
normalized to their variation range. All normalized parameters range from -1 to 1. In

this case, the optimization finds a good solution after around 2500 evaluations. Further
evaluations can reduce the fitting errors of the parameters. (c) Curve 1 to 8 indicates
standard deviation of the normalized parameters of the circuit. The fitting errors of
variables are defined as the twice of the normalized standard deviation of variables. At
3000 evaluations, the converted width and thickness fitting errors are both below 0.1 nm.
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Obtained Fitting Obtained Fitting
Value Error Value Error

neff,1 2.356 1.456·10−6 dκ′

dλ 2.149·10−1 9.147·10−5

ng,1 4.228 1.322·10−4 dκ′2

d2λ 1.990 4.060
neff,2 2.356 2.284·10−7 κ0 2.315·10−1 7.852·10−5

ng,2 4.220 2.105·10−5 dκ0

dλ 1.438 1.266·10−2

κ′ 4.173·10−2 5.863·10−6 dκ2
0

d2λ 8.110·10−1 6.325·10−2

Table 4.2: Obtained parameter values and fitting errors using the Restart CMA-ES method.

Figure 4.8: A good match between simulated and measured spectra is achieved by the
restart-CMA-ES method. Red: measured spectrum. Blue: simulated spectrum by CAPHE.

Then, we mapped the width and thickness of the high-order stage arm from
neff,2 and ng,2 (Table 4.3). As explained in Chapter 2, the extraction of geometry
parameters includes several errors, from the model, the simulations, the mapping,
and the fitting procedure. The modeling error is the mismatch between the com-
pact circuit model and the actual fabricated circuit behavior; for example, assum-
ing identical parameters κ′ and κ0 for the three DCs while the fabricated DCs have
some disparity. The simulation error is the difference between the actual waveg-
uide geometry (the shape, dimension and material properties) and the rectangular
geometry we used in the mode solver. This error is hard to compensate, but it is
relative and will not affect the trends in the extracted parameters. The mapping
error is the difference between the simulated waveguide geometry and extracted
waveguide geometry. The mapping error of width and thickness are 0.06 nm and
0.08 nm respectively when we apply a third-order polynomial fitted model. The fit-
ting error is estimated by twice the standard deviation of each parameter obtained
by the fitting, which provides confidence limits of approximately 95%. Extracted
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Parameter Extracted Fitting Mapping Total
Value Error Error Error

Width 474.68 nm 0.01 nm 0.06 nm 0.07 nm
Thickness 208.35 nm 0.01 nm 0.08 nm 0.09 nm

Table 4.3: Extracted waveguide width and thickness of the high-order stage arm.

width and thickness each have a 0.01 nm fitting error.

4.5 Results on a Silicon Photonics Die

We automated the optical measurements on 117 copies of the two-stage MZI on the
same die (Figure 4.9). We measured test circuits in our clean room with the tem-
perature controlled at 20 degree Celsius using a calibrated laser. We first extracted
all ten parameters for each circuit. Then, we interpolated the neff,1 extracted from
the lower-stage to get a reference wafer map of the neff. After that, we used the neff

wafer map as a reference at each location for the high-order stage and revised the
derived high-order neff,2 values to bracket them in the boundary defined by the lo-
cal variation. Figure 4.10 presents the extracted effective and group indices of the
high-order stage. We then used the geometry model to map neff,2 and ng,2 to width
w and thickness t of the high-order MZI arms. The extracted linewidth on die
(X=0, Y=0) in the wafer center ranges from 468.9 nm to 479.5 nm (Figure 4.11.
a) and thickness ranges from 207.6 nm to 209.6 nm (Figure 4.11. b). The standard
deviations are 1.9 nm and 0.5 nm respectively.

Figure 4.9: Locations of the folded two-stage MZIs on a die.
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Figure 4.10: Extracted neff,2 and ng,2 of die (X=0, Y=0) (in the center of the wafer).

Figure 4.11: (a) Extracted width map and (b) thickness map of the die. x and y indicate the
locations of the MZIs on the die. Blue dots: extracted value. Green grid: fitted map of
extracted values using a linear function.

4.5.1 Our Workflow to Extract Wafer Map

Our ultimate purpose is to use the PCM circuit practically to obtain fabricated
wafer maps as we will show in Chapter 5. We have discussed how to extract mul-
tiple parameters from a single circuit. To extract the parameters on a complete
wafer is challenging for a couple of reasons. First, the extraction from a compli-
cated spectrum requires many evaluations, which can be time-consuming. If we
cannot reduce the cost of circuit simulation, extraction from thousands of circuits
will be impractical. Second, the number of PCM circuits on the wafer is enormous.
Even with very efficient circuit simulator, it would still take a month to generate
a wafer map. Third, global optimization could be time-consuming if we apply to
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the same strategy for all types of spectrum. In Appendix D, we discussed in de-
tail to how to extract parameters on a fabricated wafer. From these discussion, we
propose our workflow to extract fabricated wafer maps in this section.

Fig 4.12 shows the workflow to obtain the process wafer map. We parallel the
extraction of the die map to speed up the extraction. We organized the result from
every die to plot a process wafer map. We applied the workflow and obtained the
wafer maps of a 8-inch wafer. The extracted results will be presented and discussed
in the following Chapter 5.

1. Generate normalized spectrum from the measured spectrum to remove the
grating coupler envelope.

2. Use the ’local’ Restart CMA-ES to extract all the behavioral parameters.
Set the maximum evaluation of each restart to 20,000. You get reference neff

from the lower arm and accurate ng on the high-order stage. Label the miss-
ing measurements and samples with a large mismatch between simulation
and measurements.

3. Use the more ’global’ Restart CMA-ES optimization to process the spec-
trum with a large mismatch. Set the maximum of the evaluation sufficiently
large that it guarantees to find the global optimum.

4. Fit the neff of the low-order stage with a plane, which removes the local
variation. Use the plane as a reference and correct the neff of the high-order
stage. Make sure the corrected neff is within half order distance from the
reference plane.

5. After you have one process sample on each die, plot a simple wafer map to
see if there is a strange deviation from the expected wafer map.

6. Re-extract parameter for the circuit with the fitting error above our set limit
(e.g., width 1 nm and thickness 0.5 nm). Use the parameter previously ex-
tracted as the initial guess. Also, limit the range of the parameter sufficiently
small to improve efficiency.

7. Map neff and ng to obtain waveguide geometry, plot the linewidth and thick-
ness die map for visual inspection

8. Label the circuit with more than 1 nm offset from the fitted thickness plane
die map. Correct the corresponding neff to push the thickness of the sample
back to the reasonable thickness range.

9. Parallel the extraction procedure for multiple dies at the same time.
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10. Remeasure circuits that are missing. Check if the circuit with a large mis-
match in fitting has a saturated spectrum. Check if a large fitting error occurs
on certain circuits on many dies.

11. Process remeasured circuits.

12. Organized data from all the process dies and plot a wafer map.

4.6 Conclusion
In conclusion, we discussed how to design a compact folded two-stage MZI that
can be used to extract fabrication parameters. We applied the Restart-CMA-ES
global optimization algorithm to extract multiple waveguides and DC parameters
from only two optical measurements of the circuit. We illustrated how to setup the
algorithm in practice to obtain the global optimum efficiently. We then mapped
the fabricated geometry parameters from the extracted effective and group indices.
The compact device is especially useful for process monitoring and extracting de-
tailed wafer maps for performance evaluation and variability analysis.

The wafer-scale optical measurement and extraction of process wafer maps are
very time-consuming and prone to errors. To efficiently use the PCM circuit for
process monitoring on wafer scale and obtain fabricated wafer maps, we discussed
the benefits of applying the step-wise workflow and parallelization to process the
data. We described our workflow to extract fabricated wafer maps. In the following
Chapter 5, we will present the obtained accurate wafer maps which we obtained
using the extraction workflow.
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Figure 4.12: Workflow to extract process wafer map.
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5
Process Variation and Spatial

Variability of Silicon Photonics

Silicon Photonics is very sensitive to process variation. Using the parameter ex-
traction method described in 4, we present in this chapter an extracted granular
map of process variation on a Silicon Photonics wafer. We proposed a hierar-
chical model to separate the layout-dependent and location-dependent systematic
process variation and random process variation on different spatial levels. Using
the model, we decomposed variations and found out quantitatively how each of
them contributes to the total process variation. We also observed that die-level
systematic linewidth variation are correlated with local pattern density. Based on
our findings, we could generate a virtual fabrication wafer map based on real fab-
rication statistics for a realistic yield prediction that we will discuss in the next
chapter. Our observation does not only reflect the quality of the fabrication pro-
cess and indicate directions of improvement, but also gives a few guidelines for
designers to design consciously to reduce the impact of the process variation.

5.1 Background of the Research

5.1.1 Variability in Silicon Photonics

As in Fig. 5.1, process variability presents in photonic circuits at different levels.
Process variation such as exposure dose, resist age, plasma density, and chemical
mechanical polishing (CMP) slurry composition lead to non-uniformity in device
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Figure 5.1: Describing variability presents at different levels. Extracted from [3]

geometry such as linewidth, layer thickness, sidewall angles, and doping profile
variation. The process non-uniformity introduces variability in optical properties
of a device such as effective index and group index of a waveguide or coupling co-
efficients of a coupler and center wavelength of a filter. The performance variation
at device-level would propagate and accumulate at circuit-level such that optical
delay has a random component and path imbalance presents in the circuit, which
deteriorates the circuit performance, making only a fraction of circuits perform as
intended. This fraction further shrinks with the increasing circuit size. In particu-
lar, wavelength filters such as ring resonators, lattice filters, array waveguide grat-
ings (AWG) and so on suffer significantly from process non-uniformity leading to
increasing channel cross-talk, insertion loss, power consumption and deviation of
channel wavelength. On the Silicon-on-Insulator (SOI) platform, 1 nm change in
linewidth can lead to 1 nm spectrum shift, while 1 nm change in thickness even
leads to around 2 nm spectrum shift [1].Table. 5.1 lists within-wafer fabrication
variations from various platforms. 6σ of both width and thickness variation within
a wafer are usually over 15 nm. Neglecting the impact of process variation could
lead to circuit failure even with tuning to compensate the error [2]. Process vari-
ation becomes a limiting factor to the high fabrication yield, i.e., the fraction of
functional fabricated circuits. Without a good analysis and a practical method to
predict, then mitigate its impact, process variation will increase the cost of large-
volume production and limit the scale of the integration.
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Process Within-wafer variations
σ∆w σ∆t Fabricated Length

imec 193-nm dry lithography [4, 5] 2.59 nm 2 nm
imec wafer-scale corrective etching [6] 0.83 nm
imec wafer-scale corrective etching [7] 3.64 nm

imec 193-nm immersion lithography [8] 2.53 nm
200 mm wafer, 193-nm dry lithography [9] 0.78 nm

300 mm wafer, 193-nm immersion lithography [9] 2.65 nm
BAE 248-nm lithography [10] 4.17 ± 0.42 mm
IME 248-nm lithography [11] 5 mm
imec 193-nm lithography [12] 2.4 nm

248-nm lithography [13] 2 nm
248-nm DUV lithography process [14] 3.86 nm 1.32 nm

Table 5.1: Literature results for within-wafer fabrication variations.

5.1.2 The Need of the Fabrication Wafer Map for Layout-Aware
Variability Analysis

Variability analysis is the study to relate fabrication non-uniformity to the fab-
ricated device and circuit performance variability. Since there is a lack of de-
tailed wafer maps and statistics of fabrication variations, initial variability studies
often assumed that fabricated geometry parameters on a photonic chip such as
linewidth and thickness [15, 16] or device behavior parameters such as coupling
coefficients [17] are totally random and location-independent. Also, since back
then there is no way to extract detailed wafer map to analyze the statistics of fabri-
cation and what kind of distributions the random parameters are, we often assume
that the random parameters follow the normal distribution.

In practice, non-uniformity on a wafer is strongly location-dependent and layout-
dependent. For example, a wafer is processed with chemical mechanical polishing
so that there is a gradual change in the thickness profile across the wafer. In this
case, the thickness variation is determined by its location on the wafer or in a die.
Also, the conditions of the lithographic process are correlated for structures nearby.
As we will show in Section 5.6, the width variation is correlated with the pat-
tern density around the design, which is the average density of the layout nearby.
So the actual layout on the chip influences the process variation and also con-
tributes to a systematic variation repeated on each die. These layout-dependent and
location-dependent variation have similar impact on the adjacent structures and
circuits on-chip. These structures will suffer correlated process variation and be-
have similarly. In summary, process variation consists of both location-dependent
and layout-dependent systematic contributions and random contributions that are
independent of location.

A realistic variability analysis and yield prediction should incorporate both the
spatially correlated deterministic variation and the random variation [3]. Recently,
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studies shift to layout-aware yield prediction that considers the spatial correlation
of process variability. Like studies described in [14, 18], in next chapter, we can
generate a virtual wafer map to emulate the real process variations. Circuit pa-
rameters are revised by its location so that its performance is also influenced by
position. Using the Monte-Carlo simulation that locates circuits on various wafer
positions, we could calculate the performance variability and estimate the yield of
the circuits.

This missing link here is how to generate a realistic virtual wafer map. To
generate it, we need to do two things: First, obtain an accurate and granular wafer
map of the process variation. Second, build a realistic model that decomposes
variation into sensible categories to makes sense of the large and noisy data set of
the fabrication map.

5.1.3 Method We used to Obtain the Fabrication Wafer Maps

Location-dependent variability analysis requires an accurate and granular fabrica-
tion wafer map to offer rich details for analysis. Linewidth and thickness are the
most interesting in variability analysis because they are fundamental parameters
that reflect the fabrication quality and determine the behavioral variability of fab-
ricated passive circuits. Getting a linewidth or thickness wafer map is not trivial.

As described in Chapter 2 and 4, we are able to use automated optical measure-
ment to extract geometry parameters on wafer-scale. We can obtain behavioral
parameters such as effective index and group index from the measured spectral
transmission of interfering structures. Then, we can map behavioral parameters to
linewidth and thickness. The wafer maps we analyzed in this chapter are derived
by the compact circuits and the workflow illustrated in Chapter 4. With the com-
pact design, we should be able to distribute the compact monitoring circuits over
the wafer to extract multiple process parameters and generate detailed wafer maps
with a sub-nanometer accuracy.

We present a granular wafer map of process linewidth and thickness variation.
To make sense of the data, we will present in the following section a hierarchical
model to separate process variation into systematic and random contributions on
different spatial levels. We will also describe a procedure to separate spatial vari-
ations, and the result qualitatively and quantitatively shows interesting features of
each contribution. We observed a moderate correlation between intra-die system-
atic linewidth variation and local pattern density.
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5.2 Classification of Process Variation

5.2.1 Environmental, Temporal, and Spatial Variations

Variation is the difference in a parameter between its designed value and fabri-
cated value. Process variability can be environmental, temporal, or spatial. Envi-
ronmental variability is the change in the operating conditions such as temperature
variation within chip led by varying thermal profile, variation in surrounding tem-
perature, power supply voltage fluctuation and even cosmic radiation variation.
Temporal variability is the parameter change over time. It includes nano-second
effect such as the SOI history effect and self-heating effect, to year-long effect
such as dielectric material deterioration. Spatial variability is the non-uniformity
that depends on circuit location on the wafer or the distance between two circuits.
Environmental and temporal variability is often addressed by reliability models
while the spatial variability requires a statistical model that is the focus in this
research.

5.2.2 Systematic Variation and Random Variation

Process variation consists of systematic variation and random variation. System-
atic variation, or deterministic variation, denotes a repeatable deterministic pattern
that can be determined by a circuit’s location. On the wafer level, the slow-varying
profile of process variation over the wafer such as chamber effects and the slow-
varying plasma density distribution that contributes to deterministic across-wafer
patterns. It can also be repeated pattern on every die induced by a non-ideality in
the photomask and optical proximity effects. The systematic variation can also be
due to non-ideality of the lithographic system such as defocus and misalignment;
and pattern density-dependent effects such as CMP.

Random variation or stochastic variation refers to stochastic residuals after re-
moving the systematic part from the raw data. It is unpredictable and random
in nature, and it cannot be determined by its location. Non-uniformity such as
macro-scale random fluctuation in the fabrication process such as exposure dose
from die-to-die, to micro-scale difference such as random linewidth led by sidewall
roughness [19] and photoresist granularity [20]; and atomic-scale oxide-thickness
variation [21].

Systematic and random variation impact the device and circuit performance in
different ways. Systematic variation is determined by the device or circuit loca-
tions on a wafer. It contributes to the spatially related difference on the wafer. It
directly adds to a spatial correlation among devices. On the other hand, random
variation is independent of circuit position and from the modeling point of view,
it is usually treated as independent fluctuation. In practice, the classification of
systematic or random variation is not absolute. Often, the location of the design or
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spatially related process features (such as local pattern density) is not available to
the designers. So, it is impossible to estimate the variation with certainty. In such
cases, systematic variations are treated as random. In addition, as we proposed to
separate variation on different spatial levels, the systematic variation is supposed
to be fitted perfectly by the proposed analytic model, the random variation is the
residual after fitting the total variation with the model. However, the mismatch
between the model and the real systematic variation can lead to an overestimated
random variation. For example, we could assume that on the wafer level, the sys-
tematic width variation is radial symmetrical that can be described by a bi-variate
polynomial. If the real variation cannot be fully described by the polynomial, when
we decompose the variation, the mismatch would partly contribute to the random
variation at the die level.

5.3 Hierarchical Spatial Variability Model

5.3.1 Physical Origins of Different Variations

The spatial variability is the non-uniformity that depends on circuit location on the
wafer or the distance between two circuits. As shown in Fig. 5.2, a process-related
device parameter has its variations from sources at different spatial levels. Lot-to-
lot fabrication suffers a variation from tool drift, resist aging, or a change of wafer
supplier. Wafer-to-wafer variation is mainly led by tool priming, the difference
in the layer thickness of wafers and non-uniformity in the chamber environment.
Wafer-level non-uniformity originates from layer thickness, photoresist spinning
effects, and plasma distributions. Fluctuation in exposure dose and imaging focus
add to the random die-to-die variation. On the die level, low-frequency change in
layer thickness, local pattern density, and error in the photomask lead to a system-
atic pattern that repeats on each die. Also, intrinsic randomness in layer thickness
and waveguide sidewalls raise the device-to-device random variation. Besides, the
wafer-die interaction accounts for deformation around wafer-edge or other effects
we will discuss in this chapter.
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Figure 5.2: Illustration of sources of process variability on different spatial levels.

Figure 5.3: Illustration of decomposing spatial variability of device parameter at different
levels. The hierarchical model is based on [22].

Since physical origins of process variation work on different spatial scales
quite independently, process variation allows for a spatial decomposition. Based
on observation of the extracted wafer map, we revised spatial models described
in [22] and [23], and proposed an additive hierarchical spatial variability model of
fabricated integrated photonics as shown in Fig. 5.3. The model decomposes to-
tal spatial variation into lot-to-lot, wafer-to-wafer, die-to-die and device-to-device
variations with systematic and random components [22]. We also include a wafer-
die interaction in our variability model that helps to reduce the random contribution
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in the variation. It captures a die-level variation that is highly correlated within a
die, but the correlation varies randomly with the die location on the wafer. The
decomposition helps to identify the origin of process variation to improve the fab-
rication and facilitates the generation of faithful virtual fabrication maps for yield
prediction.

5.3.2 Lot-to-Lot and Wafer-to-Wafer Variation

In the state-of-the-art semiconductor fabs today, manufacturing involves various
batch processes that apply to multiple wafers together to increase the one-time
wafer throughput. For examples, the chemical vapor deposition (CVD) heats sev-
eral wafers in the furnace with reactive gas to deposit a thin layer on the surface
of wafers. [24] The batches are usually referred to as lots. One lot convention-
ally contains 25 wafers, and wafers in a lot are processed with the same process
condition. Between lots, there would be a change in the process condition which
leads to a lot-to-lot variation. Within one lot, tool priming and non-uniformity in
the chamber environment bring the difference between wafers in one batch, which
causes within-lot variation. In processes such as lithographic imaging and reac-
tive ion etching (RIE), each wafer is processed individually. Naturally, there is a
wafer-to-wafer variation. In theory, determining the systematic signature of lot-to-
lot and wafer-to-wafer variations requires time-series models [24] and long-term
monitoring of lots of wafers. Due to the complexity of the process involved in
the processing, it is challenging to separate systematic and random variation. In
practice, without losing generality of the further discussion, we assume variability
above wafer-level is random and follows the normal distribution.

VLTL + VWTW = N (0, σ2
LTL,WTW ) (5.1)

5.3.3 Intra-wafer systematic variation

Across the wafer, there are many steps that lead to the process variation of circuits.
Interestingly, these non-uniformities follow a radial pattern by the nature of the
equipment. Many processes followed a ’center-fed’ or ’edge-fed’ style which has
different boundary conditions near the edge. For example, post-exposure bake
(PEB) in the lithography smooths the standing wave induced roughness on the
sidewall. PEB temperature is higher in the middle of the wafer and decreases
outwards [25]. Similarly, chamber wall conditions also cause etching rate non-
uniformity. The second cause for the radial pattern in variation is the rotation of the
wafer. Wafers are rotated during some processes to reduce non-uniformity [24].
Errors in the position and rotation of the wafer stage during exposure increase
from the wafer center outwards. Similar patterns are also in variations in wafer
stage vibration and the distortion of the wafer with respect to the exposure pattern.
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We also observed in several wafers that width variation shows radial pattern over
the wafer. It means that the etching rate in the etching suffers non-uniformity.
One explanation can be that in the center of the wafer, patterns that consume more
plasma than near the edge, because outside the wafer there is no pattern to etch.
The decreasing plasma concentration in the center leads to slower etching rate,
therefore broader waveguide linewidth. An alternative reason for radial plasma
distribution is the field profile of the magnetic RF fields that heat the plasma: the
heating is not perfectly uniform. These variations across the wafer produce the
systematic intra-wafer variation that varies slowly across the wafer. The variation
exhibits a symmetric radial pattern, which often has a dome-like or bull-eye shape.
We can describe the systematic variation by a bi-variate polynomial as:

VIWS =

i,j∑
i+j≤2&i,j≥0

pij · xiw · yjw (5.2)

5.3.4 Intra-Wafer Random Variation

On the wafer level, there is also random variation led by the exposure fluctuation,
depth of focus change in the lithographic imaging from die to die. We define it as
the averaged randomness over a die, so within a die, structures endure the same
amount of Intra-Wafer Random (IWR) variation. Since when a step moves to the
next location, lithography process patterns a die layout, the linewidth of the pattern
suffers more significant IWR variation than parameters like thickness. We model
IWR as a normal distributed random variable:

VIWR = N (0, σ2
IWR) (5.3)

5.3.5 Wafer-Die Interaction Variation

Wafer-die interaction captures differences in intra-die variation as one move from
one die to another across a wafer. [23] For example, lithographic imaging does
not only fluctuate in the exposure dose but also varies on the incident angle on
the wafer. The slightest deviation from a vertical incidence on a die would lead
to an exposure dose profile that is location-dependent. As a result, on top of the
IWR variation that is the same within each die, there is also a variation that is
determined by its location in the die. However, unlike IDS variation, the actual
dependency is a result of the process parameters such as the angle of incidence in
the lithographic imaging which might vary randomly from die to die.
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Figure 5.4: Illustration of the wafer-die interaction. After removing the systematic
variation on the wafer and the die level, the residuals on each die can be fitted by a plane,
which is the WDI variation. The normal of each plane pointing upwards and has a little
deviation from the zenith direction. The normal can be described by inclination θ and
azimuth φ.

In principle, WDI variation can also be systematic where the die variation may
be attenuated or accentuated depending on its location on the wafer. For example,
the edge of the wafer is often less uniform and less controlled. Consequently, the
die variation on edge might be significantly worse than near the center. In our
study, we did not observe in our data the systematic variation in WDI. We found
that the random WDI on each die can be adequately represented by a plane as in
Fig. 5.4. The plane as be expressed as:

VWDI = f(xd, yd) = a ∗ xd + b ∗ yd (5.4)

θ = arctan( ba ) (5.5)

φ = arccos( −1√
a2+b2+(−1)2

) (5.6)

where the a and b are coefficients in the plane equation, phi and θ are the inclina-
tion and the azimuth of the normal of the WDI plane.

5.3.6 Intra-Die Systematic Variation

Variability from die-to-die and wafer-to-wafer were the dominant sources of vari-
ability in the IC industry. [26] As an increasing level of the integration accommo-
dates more components, the field size has to grow gradually. Increasing die size
reduces the controllability of the fabrication process on the die level and increases
the intra-die variability that becomes more significant.

A significant component of the intra-die variation is systematic. It originates
from the layout and pattern-dependent errors on the die level, such as an error on
the photomask. Also, the CMP rate is related to the pattern density which varies
the oxide thickness on wafer [27]. Fabs add dummy samples to patternless space
to mitigate the non-uniformity in pattern density to reduce thickness variation. We
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also observed the significant correlation between the pattern density and the intra-
die systematic (IDS) width variation. We will discuss such correlation in 5.6. In
theory, if we can trace back the IDS variation to all of its physical origins and
study how they correlated, we can derive the IDS as a function of the parameters
fi(xdie, ydie) that describes the physical origins. In practice, due to the limited
access and knowledge on the process, we can explain part of the correlation with
causes such as the pattern density. We could treat the part cannot be explained as
a correlated random variation with a correlation length. Then, we imitate the vari-
ation by a coherent noise map with a right correlation length l. The IDS variation
can be expressed as:

VIDS(xdie, ydie) =

i∑
pi · fi(xdie, ydie) + CoherentNoiseMap(l) (5.7)

where (xdie, ydie) are coordinates of the location on the die; pi maps the impact
of the parameter fi(xdie, ydie), such as pattern density over the die, to the IDS
variation VIDS(xdie, ydie).

5.3.7 Intra-Die Random Variation

Intra-die random (IDR) variation is the device-to-device disparity or local mis-
match. IDR variation includes intrinsic variability like atomic oxide thickness
variation, line-edge roughness (LER) due to photoresist granularity. The IDR
variation dominates at the sub-micron level while the size of a photonic device
is beyond several tens of micron. The distance between devices is far beyond the
correlation length of the IDR variation. We can regard then each device suffers
IDR variation independent of their location. We can model IDR variation as a
normal distribution independent to the other variation components:

VIDR = N (0, σ2
IDR) (5.8)

5.4 A Workflow to Separate Spatial Variations on
Different Levels

After we have the hierarchical model, the next step is to separate levels of variation
from the measured or extracted data on a fabricated wafer. There are a few methods
in literature to separate variations of CMOS integrated circuits. [28] uses filtering,
spline, and regression-based approaches to separate wafer-level effect. Then, they
separated the die-level effect by the spatial Fourier transform method. This method
requires a good choice of parameters in the separation procedure, which is neither
easy nor intuitive and sometimes subjective. Also, the extracted systematic vari-
ation is an interpolated map which is not analytic nor can be related to process
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Figure 5.5: Proposed workflow to decompose variation on different spatial levels.
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parameters immediately, making it difficult to apply the extracted model for yield
prediction. [29] found in CMOS fabrication, systematic variations on intra-wafer
and intra-die level can both be described by parabolic function. From our obser-
vation on the measured photonics wafer, we cannot simply describe the IDS varia-
tion as a parabolic function. The IDS variation is largely dependent on the pattern
density that is not parabolic. Also, we observed that WDI variation introduces a
within-die variation that cannot be described by IWR variation.

Based on the hierarchical spatial variability model and observation of our mea-
sured data on the fabricated map, we will introduce below a workflow to separate
systematic and random variations.

5.4.1 Intra-Wafer Systematic Variation

First, we separate the intra-wafer systematic variation. IWS variation is the slow
varying radial symmetric non-uniformity across the wafer. There are two ways to
derive the IWS variation: First, fit all the data on the wafer with the IWS model.
Second, fit a simple wafer map for each unique sample on a die, and then get the
IWS wafer map by averaging simple wafer maps. The first should work even with
the presence of lower-level variations in the raw data. The low-frequency profile
should filter out the high-frequency variation on low levels and will not induce a
significant error in estimation. However, the second method gets the IWS map by
averaging simple wafer maps is preferred. In case we have more samples over the
wafer for a certain die location, we would not overweight the location to obtain the
IWS map.

Figure 5.6: The illustration of devices on the die. Red, blue and yellow circles represent
three unique samples on the die. Red circles on the wafer map represent locations of the
sample on the wafer.

Using the second method as shown in Fig. 5.7, we take devices at an unique
location (Fig. 5.6 Left) in a die over all of dies on the wafer (Fig. 5.6 Right), and fit
a simple parameter wafer map using a second-order bi-variate polynomial in (5.2),
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which averages out the intra-wafer and intra-die random variation. Then, average
all the simple wafer maps to derive the IWS variation which is also a bi-variate
polynomial.

Figure 5.7: The workflow to decompose IWS variation.

5.4.2 Intra-Die Systematic Variation

The second step we separate the IDS variation. We removed the IWS from the raw
data. In the residual, there are contributions from IWR and IDR which both follow
the normal distribution with a zero mean. As defined in Section 5.3.5, WDI on
each die is a plane with a small random deviation from horizontal. By definition,
WDI variation also has a zero mean. Therefore, IDR, IWR, and WDI can all be
averaged out over all the dies on the wafer. As shown in Fig. 5.8, at each unique
die position, we average the data over all the dies. The randomness in the residual
from the last step is averaged out, and we could obtain the IDS that is the repeated
contribution on each die. Fig. 5.8 shows that the average offset between the raw
data and the IWS map gives the IDS variation.
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Figure 5.8: Left: Black solid curves indicate IWS variation. Points with the same color are
parameters measured on the identical locations on different dies. Right: The average offset
between measured parameter and IWS variation is the IDS variation.

5.4.3 Intra-Wafer Random Variation, Intra-Die Random Vari-
ation, and Wafer-Die Interaction

We remove the IDS from the data. The residual from the first two steps is the sum
of IWR, IDR, and WDI.

IWR is the die-to-die randomness and has identical values within a die. Device-
to-device random IDR variation can be averaged over a die. WDI is a plane with
a zero mean as defined, so it has centrosymmetry around the die center. WDI can
also be averaged out over a die. So we can average all the residuals on a die to
derive IWR variation of the die. However, since we only have limited samples on
an uneven sampling grid, the IWR variation derived by averaging the residue is
biased by the sampling.

A better way is to derive IWR variation is to fit the residual with a plane. As
shown in Fig. 5.9, the center of the fitted plane is the IWR variation, which is the
unbiased average of the residual. The fitted plane subtracting the IWR leaves the
WDI variation with a zero mean. The remaining residual is the offset from the
plane of the fitting, which is the IDR variation.
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Figure 5.9: The workflow to decompose IWR, WDI, and IDR variation using the fitted
plane. The center of the fitted plane derives the IWR of the die. The fitted plane
subtracting the IWR is the WDI of the die. WDI has zero value at the die center. IDR is the
residual of the fitting.

5.4.4 Evaluation of Decomposed Data

The purpose of variation decomposition is to understand how a process condition
such as polish, pattern density leads to the wafer and the die topography variation
qualitatively and quantitatively. Visual inspection on topography across the wafer
gives an insight into the uniformity of the polishing and effect of the slow-varying
plasma concentration. The die-level pattern could also be inspected visually that
offers an indication of the layout and pattern density related non-uniformity. We
modeled the wafer level systematic variation as a low-frequency bi-variate polyno-
mial while modeling the die-level systematic variation as a function of the layout
factors for detailed understanding. The focus of the wafer-die interaction should
be on minimizing the wafer- and die-level variations which also helps to identify
the remaining systematic variation. The residual is random noise, and we should
ensure the layout-correlation is low by correlation examination, to gain confidence
that the systematic sources of variation have indeed been taken into account. In
many pieces of research on CMOS variability, they neglected the wafer-die in-
teraction since it has a negligible contribution to overall variation. But in our
observation, we need to pick it up from the residual since we found a clear and
significant pattern in it. So, it is necessary to do a correlation analysis on the “ran-
dom” residual. We can add further terms in our model if a new pattern can be well
observed and understood in the residual.
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5.5 Results and Analysis on a Silicon Photonics Wafer
using 193 nm Lithography

In this section, we applied the model and use the workflow to analyze the detailed
wafer maps we extracted from a 200 mm silicon photonics wafer. We will mainly
focus on two fundamental process parameters: linewidth and thickness. The anal-
ysis confirms the validity of the hierarchical model and the proposed workflow.
The result helps us to understand the process variation of different spatial scales
quantitatively.

5.5.1 Specifications of the Monitoring Circuit

To get process parameters such as linewidth and thickness, and behavioral param-
eters of the DC, we used the folded two-stage MZI described in Chapter 4 as our
monitoring circuit. Our design was fabricated by imec’s deep UV lithography on
a 200 mm Silicon-on-Insulator wafer. The wafer consists of 52 complete dies. We
scattered 117 duplicates of the PCM circuit (Fig. 5.11) on a 5mm× 10mm block
in each die with a die size of 21.84mm × 21.84mm. We distributed some cir-
cuits densely (80 µm horizontally and 400 µm vertically) in a mesh that consists
of several horizontal and vertical arrays to identify the correlation length of the
process variation. We also include some sparsely distributed circuits to capture the
long-range systematic variation.

We measured the wafer in our cleanroom using an automatic optical measure-
ment setup (Fig. 5.10). Before and after the wafer measurement, we calibrated the
tunable laser by CO2 and NH3 gas cells. We also did a stability test to make sure
the laser did not drift during the several-week-long measurement. More details
about calibration and stability test of the tunable laser can be found in A.

After setting up an alignment reference, the machine would move and align
input and output fibers to the top of grating couplers of a PCM according to co-
ordinates of two GCs extracted from the .gds file of the design. We measured all
the PCM circuits on the wafer in the controlled environment of 25 degree Celsius.
Optical transmission of the circuits is measured from 1500 nm to 1600 nm. As
explained in 4.3, we need at least 500 wavelengths over the spectrum to extract
circuit parameters from curve fitting. So, the spectral resolution can be as low as
200 pm. On the other hand, since we want to reduce the measurement time of
the wafer, we want to lower measurement resolution which means less time spent
to sweep laser. The lowest sweeping step of the laser can be correctly set is 20
pm. In the case, each measurement contains 5000 wavelengths in the spectrum
and takes around 2 minutes, which is limited by the sweeping of laser wavelength
and the alignment to the coupler. The whole wafer measurement consists of 12168
measurements on 6084 samples. It takes a minimum of 17 days to complete the
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Figure 5.10: (a) Automatic setup in the cleanroom. (b) A close-up of the wafer under
wafer-scale measurement.
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Figure 5.11: Location of the monitoring circuits on the die and the wafer. Inset is the
layout of the cascaded MZI monitoring circuit.
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wafer measurement. The time of the wafer-scale measurement can be greatly re-
duced with improvement on the measurement hardware. A tunable laser with fast
wavelength sweeping and alignment instruments such as hexapods piezo-actuators
with fast control loops can decrease the one spectral measurements from minutes
to seconds.

5.5.2 Results of Decomposed Variations
5.5.2.1 Raw Data

Figure 5.12: On-wafer positions of valid samples those have maximum width fitting error
of 1.00 nm and thickness fitting error of 0.50 nm.

We processed the optical measurements with the technique described in 4. Among
all 6084 samples on the wafer, we got 5841 valid samples. Some samples are
missing one or both optical measurements, which may occur due to unsuccessful
alignment in the automated process. Some optical measurements have a bad es-
timation of the dynamic range which results in saturation in the spectrum. There
are also measurements fitted with relatively large fitting errors due to very poor
alignment. After removing those ’invalid’ samples, we got 5841 valid samples
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(Fig. 5.12). We set the standard of valid samples with the maximal fitting errors
for width and thickness are 1.00 nm (Fig. 5.13 (a)) and 0.50 nm (Fig. 5.13 (b))
respectively. Among the valid samples, the average fitting error is 0.15 nm for
width and 0.08 nm for thickness.

Figure 5.13: Histogram of the fitting error on the extracted linewidth and thickness. (a)
The maximum fitting error of linewidth is 1.00 nm. (b) The maximum fitting error of
thickness is 1.00 nm.

Derived interpolated wafer map in Fig. 5.15 is a granular wafer map obtained
for processed silicon photonics wafer. We observed that the linewidth tends to be
wide in the center, and it narrows down towards the perimeter of the wafer. The
trend of width variation follows a dome-like shape. The average width is 464.7
nm, where the target value claimed in the technology handbook of the run is 470.0
nm. The measured width has a standard deviation (SD) of 4.6 nm. The maximum
value on the wafer is 476.0 nm, while the minimum is 450.8 nm. The thickness
of the wafer varies like a slope with its left-bottom leaning towards right-top. On
the edge of the wafer, the change in thickness reveals some abruptness may due to
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the imperfection of the polishing near the wafer perimeter. The average thickness
is 210.3 nm where the target value is 215.0 nm. The measured width has an SD
of 0.8 nm. The maximum value on the wafer is 214.3 nm, while the minimum is
208.4 nm.

Fig. 5.14 displays the histogram of both parameters. Obviously, both distribu-
tion are not simply normal distributions.

Width Thickness
Mean [nm] 464.7 210.3

Standard Deviation [nm] 4.6 0.8
Max [nm] 476.0 214.3
Min [nm] 450.8 208.4

Max-Min [nm] 25.2 5.9

Table 5.2: Statistics of measured width and thickness.

Figure 5.14: Histogram of measured width and thickness over the wafer.
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Figure 5.15: Interpolated wafer map of (a) linewidth and (b) thickness. Black dot indicates
the site of samples.
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5.5.2.2 Intra-Wafer Systematic Variation

Since we did not have multiple wafers to separate the variation above wafer level,
here we did not separate the design value and variation above the wafer from the
raw data. We put all these contributions on the wafer level. On the intra-wafer
level, exposure dose, layer thickness, plasma density or CMP pattern has a low-
frequency non-uniformity and lead to a gradual change in width and thickness
profile. We fitted the raw extraction data of each unique device on every die with
a second-order bi-variate polynomial, which gives a simple wafer map. Then,
we averaged 117 simple wafer maps to get the IWS wafer map. As shown in Fig.
5.16 (a), IWS width variation shows a quite symmetric radial pattern with its center
near to the center of the wafer. The Equation 5.2 can describe the dome-like shape.
Coefficients of the polynomial are displayed in Table. 5.3

The very radial systematic width IWS contour might be a result of the plasma
concentration profile over the wafer. Linewidth is narrow under a high local plasma
concentration thus fast etching rate. In the wafer center, patterns fill up the chip
and consume plasma, lowering the plasma concentration. So, in the center of
the wafer, the etching rate is slow, and the linewidth is wide. Towards to rim,
the plasma concentration is high because there are no patterns to etch outside the
wafer. So, the plasma concentration should have a reverse dome-like profile, which
in turn lead to a dome-like width variation profile. The IWS variation contributes
to a significant of width variation. The maximum difference led by IWS variation
among measured samples is 16.4 nm, consisting of 65% of the total variation. If
we use the polynomial model to calculate the IWS width on all 52 complete dies,
the maximum difference is 19.4 nm.

IWS variation of thickness (Fig. 5.16 (b)) is like a slanted plane leaning from
the left bottom towards the right top. The polishing process might be the reason
that shapes the trend. Also, the small variation in the cut of Si layer in the SOI
production might cause a variation in layer thickness. The IWS variation counts
for a maximum of 2.6 nm difference among measured samples, which is 44% of
total thickness variation. The model calculates that the maximum difference over
52 dies is 3.2 nm.

Width Thickness
p20 -1.90·10−0 1.68·10−10

p11 -9.65·10−11 -1.05·10−10

p10 4.36·10−5 -1.30·10−5

p02 -1.57·10−9 1.39·10−10

p01 -2.06·10−5 -4.25·10−6

p00 471.0858 209.7866

Table 5.3: Coefficients of the bi-variate polynomial to describe the IWS width and
thickness variation.
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Figure 5.16: IWS variation of (a) width and (b) thickness.
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IWS Width [nm] IWS Thickness [nm]
Max (samples) 471.3835 211.9885
Min (samples) 454.9698 209.4005
Max (52 dies) 471.4 212.6
Min (52 dies) 452.0 209.4

Max-Min (samples) 16.4137 2.5880

Table 5.4: IWS width and thickness variation. We listed both maximum and minimum
IWS variation among samples on the wafer. We also applied the polynomial to calculate
the IWS variation on all possible positions on the 52 dies.

The IWS model we built here is from the analysis of the data we measured on
a single wafer by the EP5814 imec run. The results we obtained from two wafers
from EP4695 illustrated in Chapter 2 Figure 2.12 and [30] also show very similar
patterns. The radial pattern of the IWS width variation and the slanted plane of the
IWS thickness variation on each wafer we measured are good initial validation of
the IWS model.

To further validate the IWS model, we have also put the CMZI circuit on the
wafers of a dedicated run, where we could design in the full field of the mask.
We distributed the monitoring circuits over the entire die to obtain more insights
on the die-level variation we will discuss next. From this run we will also obtain
more wafers to analyze the IWS variation. Since IWS is a systematic variation that
repeats on every wafer, from multiple wafers we can average the coefficients of the
polynomial fitting of each wafer to derive IWS model coefficients. The variation
on each coefficient explains the wafer-to-wafer variation that is not studied in this
research.

5.5.2.3 Intra-Die Systematic Variation

On intra-die level, systematic variation reflects the repeated fabrication variation
introduced by the photomask error or pattern density caused etching speed non-
uniformity. As introduced in Section 5.4, after removing the IWS variation from
raw extraction data, we extracted the IDS by averaging the residuals of the same
sample on all dies. From Fig. 5.17, we observed that the IDS width variation are
very correlated locally. The maximum IDS width variation is 1.52 nm, and the
minimum is -2.52 nm. The repeated variation on die-level counts for a maximum
of 4.04 nm difference, which is 16% of total width variation. The IDS width is
significantly larger near array waveguide gratings and spirals, where the pattern
density is large (i.e. large fraction is etched). The variation tends to be negative
near the east boundary that is also the border of the die (where there is a strip
between two dies with no tiling placed) where the pattern density is low. We have
observed a moderate to a strong correlation between pattern density and IDS width
variation. We will describe it in detail in Section. 5.6.
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IDS thickness variation has a maximum of 0.40 nm and a minimum of -0.51
nm. The maximum difference is 0.91 nm which is 15% of total thickness variation.
We did not observe a correlation between IDS width and thickness variation. Also,
we did not find an association between pattern density and IDS thickness variation.

Figure 5.17: Scatter plot of the intra-die systematic width variation. The plot is overlay
with the layout in gray scale. The color of the marker indicates the value of the IDS width
variation.

Figure 5.18: Scatter plot of the intra-die systematic thickness variation. The plot is overlay
with the layout in gray scale. The color of the marker indicates the value of the IWS
thickness variation.
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IDS Width [nm] IDS Thickness [nm]
Max 1.52 0.4
Min 2.52 -0.51

Max-Min 4.04 0.91

Table 5.5: Intra-die systematic variation.

5.5.2.4 Intra-Wafer Random Variation

Intra-wafer random variation is the die-to-die random variation. The IWR width
variation might be led by a focus or exposure fluctuation in the imaging of lithog-
raphy process from die to die. As in Fig. 5.19 (a), IWR width variation shows no
spatial correlation. It has a maximum of 3.83 nm and a minimum of -3.40 nm. The
difference in the variation can be as large as 7.23 nm that is equal to 28.7% of the
total width variation.

IWR thickness variation shows an interesting deviation from the systematic
flat plane on the wafer level. We observed that prominent variations tend to appear
near the edge of the wafer. We did not know the exact process of the fabrication.
This offset might be caused by the faster polishing rate near the border of the
wafer and imperfection in the process to correct the thickness using the corrective
etching [7]. Except for dies near the edge, other dies on the wafer have minimal
IWR variation with similar value compared with the fitting error (0.08 nm).

One way to improve the modeling of the IWR thickness variation is to divide
the variation into two location-dependent parts: a contribution from dies on the
edge of the wafer and a contribution from dies in the middlecenter. They can be
assumed as normal distributions with different standard deviation. The die on the
edge is likely to have a large deviation. Now, we have only one wafer map to
analyze, so that we could not verify our findings on the edge. Also, the number of
dies on the edge from one wafer is insufficient to obtain the statistical properties
like the standard deviation of the randomness on the edge. As mentioned, we can
improve the IWR variation model with more wafers to arrive.

IWR Width IWR Thickness
Mean [nm] 0.04 0.00
SD [nm] 1.68 0.33

Max [nm] 3.83 0.84
Min [nm] -3.40 -1.04

Max-Min [nm] 7.23 1.88

Table 5.6: Statistics of IWR width and thickness variation.
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Figure 5.19: IWR variation of (a) width and (b) thickness.
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5.5.2.5 Wafer-Die Interaction Variation

After we removed the systematic width variation at wafer and die level, we could
observe that within each die the residual is not totally random. Instead, it shows a
strong spatial correlation and the trend obviously can be fitted by a plane. The R
squared value of the fitting has an average of 0.92. It means a significant contribu-
tion (92%) in the residual can be explained by the plane, which we deem as WDI
width variation. If we neglect the plane-like component, we would significantly
overestimate the random variation on die level.

Figure 5.20: Histogram of the R squared value of fitting the width residual with a plane.
The R squared value has an average of 0.92. It means a significant contribution (92%) in
the residual can be attributed to the WDI variation.

Fig. 5.21 shows the residual after removing systematic variation of width on
four randomly chosen dies. The plane that fits the die residual has a very small
deviation from being a horizontal plane. We observed that the direction of the
plane normal does not correlate with its location. As explained in Section 5.3.5,
we describe the plane by inclination θ and azimuth φ. Fig. 5.4 shows that θ is
a random variation with mean value of 179.9999844 with a standard variation of
1.216e-5. φ behaves like a uniform distribution with range between −π and π. No
association between location of the die and its angles is observed.
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Figure 5.21: The figure shows the width residual on four randomly chosen dies on the
wafer. Blue dots are residuals after removing IWS and IDS variation from the raw data.
Fitted the plane is the WDI of the width variation plus the IWR offset. The distance
between the fitted plane and the blue dot is the IDR variation. WDI contributes largely to
the residual, and it explains the correlated spatial variation in the residual.

Figure 5.22: Histogram of (a) inclination and (b) azimuth of the WDI width variation.
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Unlike residual in the width variation, thickness shows very little plane-like
contribution on the die level. Figure 5.24 shows that we fitted the residual with a
plane. The R squared value of the fitting has an average of 0.09 (Fig. 5.23), so that
the WDI variation contributes little in the residual who is mostly (91%) random.
The contribution of the WDI might be the low-frequency non-uniformity on the
die level due to polishing that is not captured by the IWS.

Figure 5.23: Histogram of the R squared value of fitting the thickness residual with a
plane. The R squared value has an average of 0.09. It means a little contribution (9%) in
the residual can be attributed to the WDI variation.

WDI variation is systematic within a die, but random from die to die. As by
definition, the WDI is zero at the die center. We estimate the contribution of the
WDI variation by its maximum on the die, which can be calculated by the diagonal
of the die and the inclination angle of the WDI.

VWDI,max = |0.5× diagonal × sin(θ)| (5.9)

Obviously, the WDI variation increases with the size of a die. The die we mea-
sured has a size of 21840 µm × 21840 µm. The diagonal has a length of 39866
µm. We use the average inclination θ to calculate the maximum WDI variation on
a die. The maximum WDI width variation estimated is 4.2 nm while maximum
WDI thickness variation is 0.8 nm.
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Figure 5.24: The figure shows the thickness residual on four randomly chosen dies on the
wafer. Blue dots are residuals after removing IWS and IDS variation from the raw data.
Fitted the plane is the WDI of the width variation plus the IWR offset. The distance
between the fitted plane and the blue dot is the IDR variation. WDI contributes little to the
residual, and the residual are mostly location-independent randomness.

Width Thickness
WDImax [nm] 4.2 0.8

µθ 179.9999844 179.99999687

Table 5.7: Maximum WDI on a die estimated by the average inclination angle.

5.5.2.6 Intra-Die Random Variation

IDR variation is the random variation between circuit or device. It is the residual
after removing all the systematic variations and random variations on larger spatial
scales. We did correlation test of the residual which is IDR variation. For both IDR
width and thickness variation, we did not observe spatial correlation. The IDR
width variation has standard deviation of 1.10 nm. The IDR thickness variation
has a standard deviation of 0.34 nm.
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Figure 5.25: Histogram of the IDR width variation on the single wafer.

Figure 5.26: Histogram of the IDR thickness variation on the single wafer.

IDR Width IDR Thickness
Mean [nm] 0.00 0.00
SD [nm] 1.10 0.34

Max [nm] 6.24 2.11
Min [nm] -9.61 -1.56

Max-Min [nm] 15.85 3.68

Table 5.8: Statistics of IDR width and thickness variation.

5.5.3 Discussion

The analysis above helps us to understand the location dependency of the process
variation. Obviously, process variation is not simply random and cannot be sim-
ply described as a normal distribution. Instead, the location-dependent systematic
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variation contributes significantly to the performance non-uniformity. It is hard to
directly compare the value of systematic variation to the statistic moments of ran-
dom variation. Nevertheless, we can calculate the contribution of the systematic
variation in the total variation, and estimate random contribution that takes up the
remaining part.

IWS and IDS works on different scale, and a die is much smaller compared to
a wafer. We can think that when IWS is the maximum, we can also find all IDS
values in the roughly same wafer location. So, IWS and IDS can approximately
reach maximum and minimum at the same location. Then, we can represent the
contribution percentage of the systematic variation by using sum of systematic
variation divided by the total variation measured.

Variation Percentage [%]
Width Thickness Width Thickness

IWS [nm] 16.41 2.59 65.1 81.1 43.9 59.3IDS [nm] 4.04 0.91 16.0 15.4
IWR [nm] 1.68 0.33 5.2

19.9
10.6

40.7IDR [nm] 1.10 0.34 3.4 10.9
WDIblock [nm] 3.4 0.6 10.5 19.2

Max Variation [nm] 25.2 5.9

Table 5.9: A comparison of different spatial levels of variation.

For width variation, the sum of systematic variation is 20.45 nm which is
equivalent to 81.1% of the 25.2 nm total variation measured on the wafer. It clearly
shows that the systematic contribution is the main source of process variation. On
the other hand, the random variation contributes to 19.9% in the variation mea-
sured. Still, in the random contribution, the biggest part is the WDI variation,
which is location-dependent within a die but the dependency is random from die
to die. For thickness, the sum of systematic variation is 3.50 nm which is equiv-
alent to 59.3% of the 5.9 nm total variation measured on the wafer. Also, the
systematic contribution is the main source of the thickness process variation. On
the other hand, the random variation contributes to 40.7% in the variation mea-
sured. Random variation in the thickness is far more non-negligible than that in
width. The big contribution from the systematic variation further proves the im-
portance of the location-dependent variability analysis. This also indicates that if
we can compensate the pattern of the systematic variation, we can significantly
limit the process varaition in the future.

In terms of spatial level, most variation of both width and thickness is on the
wafer level. To a circuits on chip, wafer level variation behaves like common-mode
variation that impact different parts of the circuits similarly. Die-level variation
impact the circuit components differently. For example, a circuit like MZI are
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sensitive to differential-mode phase imbalance that changes the phase in two phase
arms differently rather than the common-mode variation that contributes to the two
phase arms equally. The die-level variation should be carefully considered and
compensated in the circuits that are MZI-based.

As we mentioned in the introduction of the chapter, 1 nm change in linewidth
can lead to 1 nm spectrum shift, while 1 nm change in thickness even leads to
around 2 nm spectrum shift. The total width variation is four times that of the
thickness, so that width variation leads to more than 25 nm spectrum shift and it is
the main source of the performance degradation on our wafer.

5.6 Correlation between Pattern Density and Intra-
Die Systematic Width Variation

Intra-die systematic variation counts for a large portion of the total fabrication
variation. Since it works on die level, it determines the device and circuit disparity
in a die. The variation increases difference between components in the same cir-
cuit and a good understanding of its process origin is very helpful to reduce such
variation.

One of the possible cause of the IDS variation is the varying profile of the
pattern density (PD). An area of high PD consumes plasma fast, which leads to a
low plasma concentration and a decreasing etching rate. Also, high PD area creates
more reaction products (wastes) which slow the etching rates and create deposited
residues. Given the low etching rate, the sidewall of the structure is less eroded so
that a waveguide will be patterned with a wider linewidth in the dense-patterned
locality on the chip. Varying PD leads to a change in the plasma concentration and
etching rate, which ultimately results in die-level linewidth variation. Since the
pattern is duplicated on each die, the pattern is systematic on die level.
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5.6.1 How to Generate Pattern Density from the Layout Mask

Figure 5.27: Layout of the our block. There are high-density patterns like AWG and
spirals on the left and top left. On the right edge, the pattern is less dense.

When comparing the pattern on the design (Figure 5.27) and IDS width (Figure
5.17) variation, a clear correlation between PD and IDS width variation can be
visually observed. To study quantitatively what the strength of correlation is and
in which range the pattern impacts fabricated width, we correlated the PD map with
IDS width map. PD by definition is the portion of area with design in a window
over the windowed area on-chip. In a passive photonic chip, we can approximately
think that the pattern is defined on waveguide layer. So, the PD on a photonics chip
is:

PD =
Area of Waveguide Layer in the Window

Window Area
(5.10)

The equation shows that the value of PD is dependent on how we choose the
window area. The choice is quite subjective. First, it is decided by the window
size. When we choose a large window, the value of PD at each location is averaged
over a large area. So, the PD would have a low-frequency profile. In addition
to size, the shape of window also decides how the PD is calculated. When a
semiconductor fab tries to determine if the pattern is too dense locally in the design
rule checking (DRC) procedure, it would normally use a moving rectangle window
to calculate the PD.

Our purpose is to find out how pattern or the density of pattern affects the
fabrication variation that differs width from devices next to each other. Obviously,
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the fabricated linewidth is mostly influenced by the pattern close to it. The pattern
long distance away should have little impact on the fabrication locally. The choice
of window should reflect the distance-dependent impact. If the window size is
over-estimated, the impact of distant pattern will be over-calculated. If the window
size is under-estimated, we will under-estimate the impact from a distance. So,
the PD calculated with the chosen window should be most correlated to the IDS
width variation. The window with proper size should tell that within which range
the pattern affects the IDS variation. In other words, it should tell outside which
window, pattern density will have little influence on our fabricated design. To
study in which range PD affects fabrication, it is more realistic and reasonable
to use a round window so that it imitates the impact of pattern on the etching
rate, which relies on its distance to the point of interest. To be more precise, a
pattern close to the point of interest should have a stronger impact, and the impact
should reduce gradually with the distance. So we assume that the impact of pattern
on local PD can be filtered by a 2-dimensional Gaussian filter so that the impact
decreases gradually over distance:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5.11)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution. The Gaussian filter works as a round window with entrance weighting
decreasing as the pattern moves away from the window center. σ intuitively is the
window size and presents the radial length of the round window in which pattern
that has an strong impact on points of interest.

To generate the PD map using a Gaussian filter, we generate the PD map from
a high-resolution bitmap sampling of the gds file of the die layout. The resolution
should be high enough to distinguish the pattern on the waveguide layer and the
tiling so that the pattern density calculation is accurate. First, we deleted all the
layers except for waveguide layer that represents pattern in the gds file. We have
complete pattern information from our block covering one eighth of area of the die.
However, little information on the pattern outside our block on the die is given. We
assumed that outside the block, the area is covered by tiling with same density as
the tiling on our block. Then, we exported the gds to a very high resolution grey
scale bmp file. After that, we processed the exported image using the Gaussian
filter with various standard deviation (Fig. 5.28). The image presents the pattern
density map under a given window size σ.
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Figure 5.28: We filtered the pattern image with 2d Gaussian filter with different sigma.
(a),(b),(c),(d) are examples of PD calculated using sigma of 0, 69, 138, 276 µm
respectively. The blue circle is the window that has a radius of 3 σ, which indicates the
assumed region that pattern density has impact on the IDS width variation.

5.6.2 Window Size and Correlation Strength

After we obtained the filtered pattern image, we calculated the correlation between
two arrays: the IDS width variation of the samples on the die and corresponding
PD determined by σ. Fig. 5.29 exhibits an example of PD contour with IDS
width variation of the pattern in the block with σ = 69µm. We swept σ from
0 to 918.5 µm to find out the optimum window size σ. We observed that the
correlation quickly increases with σ increasing from 0. When σ = 69µm, IDS
width variation become most correlated with the pattern density. As the σ is further
increased, the two variables become less correlated. σ = 69µm is the optimal
window size that reflects the impact of pattern density on IDS width variation.
When σ = 69µm, PD is moderately positively correlated with local pattern density
with a correlation coefficient of 0.57. Three arrays of samples on the east edge
might be have inaccurate PD calculated since we have little information of the
pattern outside the east border. If we remove those samples from our correlation
analysis, the correlation further increases to 0.62, which means that PD and IDS
width variation has a strong positive correlation.
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Figure 5.29: Contour plot of filtered PD vs. IDS width variation. 3D contour presents the
PD image processed by the Gaussian filter with radius of 69 µm. The stem plot with black
head shows the IDS width variation.

Figure 5.30: Pattern density vs. IDS width variation when the filter radius is 69 µm. Left:
all 117 samples. Right 87 samples where east border samples ar excluded.
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Figure 5.31: Correlation between IDS width variation and the PD calculated using the
Gaussian filter. The IDS width variation and the PD are chosen at the same location on the
die.

From Equation 5.11, we can conclude pattern density at one point only affects
the etching rate within a circle whose radius is 3σ. The patterns outside the 3σ

radius circle have little impact on the etching rate thus the IDS width variation. In
our case, IDS width variation is immune to any pattern outside the 3σ ≈ 200µm

circle. This has interesting implication that if we put a circuit about 200µm away
from a highly dense pattern, it would not suffer much from the pattern. So when
we evaluate the pattern density in the design, we should use a Gaussian circular
window instead of using the large rectangle window, a Gaussian filter with proper
size reflects more how pattern affects fabricated with. Even simpler, we can just
force the design to be ˜200 µm away from dense patterns.

5.7 Conclusion
In this chapter we discussed about the hierarchical spatial variability model and ap-
plied the model to analyze measured data on a fabricated 200 mm Silicon photonic
wafer. We first discussed the variability in integrated Photonics and introduced the
necessity to obtain fabrication wafer map for layout-aware variability analysis.
Then, we described the recent progress to obtain the fabrication wafer map with
optical measurements.

We focus our study to separate variability on various spatial levels into system-
atic and random variation. We discussed the physical origins of process variation.
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Based on that, we proposed a model to separate variability on intra-wafer, intra-die
level and introduced wafer-die interaction term to reduce random variation in our
analysis. We also illustrate our workflow to separate variation components.

We applied the model and the workflow to process the measurements on a 200
mm wafer fabricated by the imec 193 nm lithography. The result shows that the
intra-wafer systematic variation is the major source of variation for both linewidth
and thickness. We observed the width variation has a systematic dome-like profile
across the wafer. Thickness non-uniformity across the wafer looks like a slanted
plane with a few mismatches around wafer edge. On die level, we found repeated
systematic width pattern are closely related to the local pattern density. Our analy-
sis showed that the intra-die systematic width variation are affected by the pattern
within a distance of ˜200 µm to the site. Our findings helps to identify the process
variation and create new design rules to alleviate the impact of the non-uniformity.
If the systematic variation we observed can be further identified and compensated
in the process, we can foresee the photonics wafer with less fabrication uniformity
in the future.
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6
Realistic Yield Prediction

of Silicon Photonics

Silicon photonics is sensitive to process variation. Being able to estimate the yield
at the design stage is crucial to improve the design for better process tolerance.
Also, the prediction helps to estimate and reduce the cost of chip development and
production. There are two significant issues in the yield prediction for silicon pho-
tonics. First, the simulation cost of Monte-Carlo experiment is very high to obtain
the statistics on a fabricated wafer for the prediction. Second, a yield prediction
can only be realistic when it is layout-aware. In this chapter, we will first discuss
methods based on the stochastic analysis to reduce simulation cost for yield pre-
diction. In the second part, we will illustrate the CapheVE framework to make
layout-aware yield prediction.

6.1 Challenges in Yield Prediction

Silicon photonics is the technology to integrate a large number of optical functions
on a chip using CMOS technology. It has the potential to reach low-cost, high-
volume manufacturing. However, it is very sensitive to process variations that
limit the complexity of circuits and volume of functioning products.

As we introduced in the previous chapters, variability due to fabrication pro-
cesses affects the performance of photonic circuits and limits the complexity of
the circuits that can be implemented. Being able to estimate the yield at the design
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stage is crucial to improve the design for better process tolerance. Also, designers
would like to obtain a sensible estimation on yield to calculate the cost and return
of the production at the design stage. Variability analysis and yield prediction can
also help to estimate the power budget to compensate for the process variation us-
ing techniques such as thermal tuning. Therefore, a proper variability analysis on
the performance of the photonic components and circuits has become crucial.

The Monte Carlo (MC) method [1] is considered the standard approach for
variability analysis, thanks to its accuracy and ease of implementation. Unfortu-
nately, the MC analysis has a slow convergence rate, so it requires a large number
of data points (simulations or measurements). Therefore, MC has a very high com-
putational cost, considering that accurate simulations of photonic devices can be
time and resource-intensive. In Section 6.2, we will introduce how to use stochas-
tic analysis algorithms to reduce the simulation cost of yield prediction.

Another problem in yield prediction is how to include layout-awareness in the
prediction workflow. As process variations are highly location-dependent, the per-
formance of the fabricated circuit is primarily determined by the layout of the cir-
cuit and its position on the wafer. Just assuming the process variations to be purely
random will only give a qualitative estimation of the statistics. A realistic yield
prediction requires to capture the random and the location-dependent variations
quantitatively. In Section 6.3, we will illustrate how to make layout-aware yield
estimation using the CapheVE framework and our wafer-scale variability model
described in Chapter 5.

6.2 Stochastic Analysis Algorithms to Reduce the Sim-
ulation Cost of Yield Prediction

The standard approach of variability analysis is based on the MC method. It in-
jects random values into the many circuit parameters to extract performance met-
rics (e.g., crosstalk, insertion loss, bandwidth). MC repeats this experiment by
sampling with the probability distributions assigned to the input parameters. After
the experiment is repeated a sufficiently large number of times, the MC experiment
will generate a probability distribution of the output for analysis. The Monte-Carlo
method [1] is easy to implement and has good accuracy. But the method has a slow
convergence, i.e., it requires tens of thousands of experiments to provide accurate
statistics of the outcome. In photonics, an experiment in the MC method is either
a measurement or a simulation, which can be quite expensive. Therefore, repeat-
ing the experiment thousands of times is impractically expensive for variability
analysis.

To lower the cost of variability analysis, we can replace expensive simulations
or measurements with cheap models. These models use analytical functions to de-
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scribe relations between device or circuit performances and design parameters. In
this section, we will introduce two methods to build a cheap stochastic model. We
will give a brief introduction to the generalized polynomial chaos (gPC) method.
We will also introduce the stochastic collocation (SC) method with an example to
do variability analysis on the directional coupler (DC) with parameter uncertain-
ties.

6.2.1 Polynomial Chaos Expansion Methods

To build the cheap stochastic model, one of the modeling technique in variability
analysis is the gPC method. The gPC expansion has been applied in several do-
mains as an efficient alternative to the classic MC method [2–4]. It is a non-sample
based approach that expresses a stochastic process as a series of orthogonal basis
functions [5]. Recently, it has been proposed for the variability analysis of pho-
tonic devices [6, 7] and circuit tolerance optimization [8], which saves computation
cost considerably.

The gPC-based modeling approach aims at expressing a stochastic process as
a series of orthogonal basis functions with suitable coefficients and gives an ana-
lytic representation of the variability of the system on the random variables under
consideration [9]. Let u(~x, ε) be a quantity of interest of a device or circuit under
process variations, for example, the bandwidth of a filter, the coupling coefficient
of a DC, or the effective index of a waveguide. The vector ~x is a set of constant
design variables, such as the width or thickness of a waveguide, the gap of a DC,
or the nominal radius of a ring resonator. ε is a random vector describing process
variations, such as the variations in the waveguide width, thickness, the gap of a
DC, and the radius of a ring. The idea of gPC is to approximate u( ~x, ε) by a set of
basis functions as:

u(~x, ε) =

∞∑
i=0

ai(~x)φi(~ε) (6.1)

where φi(~ε) is a multivariate polynomial and ai is the corresponding coef-
ficient. i is the non-negative integer multi-index. A perfect approximation is
achieved with an infinitely large polynomial order. However, for practical applica-
tions, the equation above must be truncated to a limited number of basis functions
M + 1 via suitable truncation schemes, leading to:

u(~x, ε) ≈
M∑
i=0

ai(~x)φi(~ε) (6.2)

We can prove that M + 1 = (d+p)!
p!d! , where d is the number of random vari-

ables, and p is the order of the polynomials. The coefficients ai can be obtained
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either intrusively by stochastic Galerkin method or sample-based methods such as
stochastic collocation method and regression method. To obtain the coefficients,
we need to evaluate at least M + 1 simulations or experiments. The optimal con-
vergence rate of a gPC model can be achieved when we choose a basis functions
φi(~ε) corresponding to the distribution of the random variables ε [5]. For some
well-known distributions, such as uniform, Gaussian, Beta, and Gamma distribu-
tion, the corresponding bases are also known, and they are Legendre, Hermite,
Jacobi, and Laguerre polynomials, respectively. By choosing the proper bases, we
can use a lower order of the polynomials p where a smaller number of evaluations
is required to calculate the polynomial coefficients.

Once we obtain the polynomials-based gPC model, we can perform variability
analysis using the cheap stochastic model efficiently and accurately. Cumulative
distribution function (CDF) and PDF can be efficiently obtained via the (inexpen-
sive) sampling of equation (6.2). One advantage of the gPC method is that intead
of running expensive simulations, stochastic moments like the mean µ and vari-
ance σ2 of Y can be analytically calculated based on the PC expansion coefficients
as:

µ(u(ε)) = a0σ
2(u(ε)) =

M∑
i=0

a2
i . (6.3)

Moreover, the PC model can also be used for sensitivity analysis. Sensitivity
can be determined easily from the PC expansion coefficients [10, 11].

6.2.2 Stochastic Collocation Methods

The stochastic collocation (SC) method is an efficient alternative to characterize
photonic devices under the effect of uncertainty. The fundamental principle of the
SC approach is to approximate the unknown stochastic solution by interpolation
functions in the stochastic space. By repeatedly solving (sampling) the determin-
istic problem at a pre-determined set of nodes in the stochastic space, we can con-
struct the interpolation. This approach offers similar high accuracy and efficiency
as the stochastic gPC method, but at the same time, it is easier to implement, like
sampling-based methods (e.g., MC approach).

6.2.2.1 General Knowledge about Stochastic Collocation Methods

SC methods are based on interpolation schemes to compute stochastic quantities.
Collocation points are a pre-determined set of nodes in the stochastic space [12].
We can construct the interpolation by repeatedly solving the deterministic problem
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at collocation points. Indeed, a stochastic process Y (ξ) can be expressed as

Y (ξ) =

Q∑
i=1

Y (ξi)Li (ξ) (6.4)

where ξ denote theN stochastic parameters and Li(ξ) represents the interpolation
basis functions.

For a photonic device, the process Y could correspond to the functional param-
eters such as the waveguide propagating constants and the coupling coefficients in
coupling devices. The stochastic variables ξi correspond to device properties af-
fected in a stochastic way by fabrication and operational conditions (e.g., waveg-
uide linewidth or temperature).

In (6.4) different types of interpolation schemes can be adopted (e.g. piecewise
linear [12, 13], Lagrange [5, 9] or multivariate simplicial methods [14]). However,
the key issue for this approach is the selection of the support nodes, such that using
the minimal number of nodes one achieves a good approximation.

For example, if the Lagrange interpolation scheme is chosen, the element Li
in (6.4) for a one-dimensional interpolation can be expressed as

Li (ξ) =

Q∏
i=1, i 6=j

ξ − ξi
ξj − ξi

(6.5)

where Li is equal to 1 for ξ = ξj and is equal to 0 for ξ = ξi. Next, for interpola-
tion in multiple dimensions, a tensor-product approach can be used and equation
(6.4) becomes

Y (ξ) =

Qk1∑
i1=1

· · ·
QkN∑
iN=1

Y
(
ξk1i1 , . . . , ξ

kN
iN

)(
Lk1i1 ⊗ · · · ⊗ L

kN
iN

)
(6.6)

where ξki is the i−th node in the k−th direction and the total number of nodes used
in (6.6) is

Q =

N∏
n=1

Qkn (6.7)

As it can be seen from (6.7), the number of nodes required by the full tensor
product increases rapidly with the number of random parameters N . For example,
if three random variables are considered and 10 collocation points are used for each
parameter, a total of 1000 nodes are required by the full tensor product approach.
Hence, the performance of the photonic device under study must be evaluated for
1000 different combinations of the random variables considered, leading to high
computational time.

The required number of nodes can be significantly reduced by adopting sparse
grids in the stochastic space, based on the Smolyak algorithm [12, 15–18]. By
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choosing the collocation points correctly, Smolyak algorithm drastically reduces
the total number of nodes used in the interpolation with respect to the full tensor
product approach while preserving a high level of accuracy.

It is important to remark that the SC models are expanded using interpolation
functions of independent random variables ξ [9]. In the general case of correlated
random variables, decorrelation can be obtained via a variable transformation, such
as the Nataf transformation [19] or the Karhunen-Loéve expansion [20].

The stochastic moments (mean, variance) can be computed utilizing analytical
formulas and then very efficiently, once the analytical form of the interpolation
functions {Li(ξ)}Nn=1 has been decided. For example, if the random variables ξ
are defined in the sample space Ω, the mean of Y (ξ) is defined as

µ (Y (ξ)) =

∫
Ω

Y (ξ)W (ξ) dξ (6.8)

whereW (ξ) is the joint probability density function (PDF) of the random variables
ξ. Using equation (6.4) in (6.8) leads to

µ (Y (ξ)) =

∫
Ω

Q∑
i=1

Y (ξi)Li (ξ)W (ξ) dξ (6.9)

which depends only on the interpolation functions Li (ξ) and joint PDF W (ξ).
Note that, if the choice of the interpolation functions and probability measure does
not allow an analytic computation of the stochastic moments like (6.9), an efficient
numerical solution can be used (e.g., by MC analysis of the interpolation model
or numerical integration). Finally, it is important to remark that it is not possible
to define a priori the speed-up of a generic SC modeling technique compared to
the MC method. Indeed, the number of nodes needed to compute an accurate
SC model (which is directly related to the efficiency of SC methods, as described
above) cannot be decided upfront, since it depends on the following factors:

• the impact of the chosen random variables ξ on the variations of the stochas-
tic process considered Y (dynamic stochastic processes require a higher
number of collocation points);

• the interpolation scheme Li adopted (the more powerful the interpolation
scheme, the fewer nodes are needed);

• the sampling strategy adopted (efficient sampling strategy limit the number
of collocation points used);

• the number of random variables considered (the higher the number of vari-
ables, the more collocation points are needed).
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However, it has been proven in the literature that, for a limited number of
random variables (indicatively less than ten) SC methods are much more efficient
with respect to the MC analysis, see [5, 9, 12]. For stochastic processes depending
on a high number of random variables, the efficiency of SC methods is significantly
reduced.

Two approaches can be used to increase the efficiency of an SC modeling tech-
nique. Using nested sampling schemes allows to adaptively choose the collocation
points (additional details are provided in Section 6.2.2.6 and Appendix C). Adopt-
ing adaptive sparse grids [18] reduces the nodes requirement, which is especially
useful when a high number of random variables is considered. For a more detailed
reference on SC methods, we refer the reader to [5, 9, 12, 18].

6.2.2.2 Directional Coupler Example

We demonstrate the use of SC for integrated photonics through the analysis of a
DC in a silicon photonics platform. As explained in Chapter 3, the power coupling
Kcross(L) in a DC can be expressed as:

Kcross(L) = sin2(κ′L+ κ0) (6.10)

The rate of coupling is defined as the field coupling coefficient κ′, which is
determined by the geometry of the coupler cross-section, such as the waveguide
width, thickness, and gap between the waveguide cores.

We assume that, for simplicity, the two waveguides in a DC are identical. As
a result, the straight section of the DC layout is defined by three parameters: the
waveguide width w, thickness t, and gap g (Figure 6.1). Furthermore, we assume
that, in the lithography process, the centers of the two waveguides are located at
the designed position. It is a good assumption for optical lithography techniques
but might be less accurate for e-beam written devices. With this assumption, the
sum of the gap g and 2× the half-waveguide width w is constant, as shown in
Figure 6.1. Therefore, in our example, we can describe the full geometry of the
directional coupler with only two parameters: w and t.

In this study, we will use the SC technique to find out how geometry variabil-
ity influences the DC performance, namely the coupling coefficient κ′. Indeed,
due to the fabrication variations, the fabricated linewidth w, thickness t, and gap
g are different on the value is chosen during the design phase. To prove the ro-
bustness and modeling power of the proposed approach, we assume the width w
and thickness t of the DC as correlated random variables, rather than independent,
following the Gaussian distribution. It is not an unrealistic assumption: thickness
variations could induce over-etching on the sidewalls.

It is good to note that the SC methods can deal with random variables with
an arbitrary distribution. It is therefore not necessary that the t and w adhere to a
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Figure 6.1: The upper plot shows the perspective view of a symmetric DC. Red arrows
present the flow of light. Part of the light is coupled from bottom waveguide to the above
one. The cross section is amplified in the lower plot. The mean width and thickness of the
DC are w0 and t0, respectively. The width w and thickness t of the fabricated DC are
indicated as dashed boxes. The refractive indexes are nsi = 3.44, nSiO2 = 1.45.
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Gaussian distribution.

6.2.2.3 Simulation Setup

According to the theory of supermodes, we can write the coupling coefficient κ′

as

κ′ =
π

λ
(neff o − neff e) (6.11)

where neff o and neff e are the effective index of asymmetrical and symmetrical
supermodes in DC. For our silicon photonics devices, we assume the wavelength
to λ = 1.55 µm.

Next, the nominal value of the width and thickness are w0 = 450 nm and
t0 = 220 nm, respectively, while we fix the sum of width w and gap g at 650 nm.

To calculate κ of a given geometry, we define the DC structure accordingly and
simulate neff o and neff e in the mode solver Fimmwave using its Film Matching
Mode (FMM) solver. For later performance comparisons, all simulations are per-
formed on a computer with an Intel Core i5 2500 quad-core CPU clocked at 3.3
GHz and 8GB of memory.

6.2.2.4 Problem Definition

As mentioned, we considered the coupling coefficient κ′ of a directional coupler as
a stochastic process depending on two correlated random variables with Gaussian
PDFs: the width w and the thickness t. Hence, the joint PDF of the two random
variables considered is defined as

Wη =
1

2πdet(C)
1
2

exp

(
−1

2
(η − µ)

T
C−1 (η − µ)

)
(6.12)

where η = [w t]
T is the vector of the correlated random variables considered, the

vector µ = [w0 t0]
T contains the corresponding nominal values (mean values) w0

and t0, and the matrix C is the covariance matrix. The symbol det(·) represents
the matrix determinant operator. The covariance matrix is defined as

C =

[
(w0σw)2 ρw0σwt0σt
ρw0σwt0σt (t0σt)

2

]
where the symbols σw and σt are the normalized standard deviations of the w
and t, while ρ is the correlation coefficient of these two random variables. The
correlation coefficient |ρ| < 1 denotes the strength of correlation: the random
variables considered are independent if ρ = 0 and strongly correlated if |ρ| = 1.
Note that, by describing this example in terms of normalized standard deviations,
we make further analysis independent of the actual nominal values of our 2 random
variables.
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Figure 6.2: 2D contour plot of field coupling coefficient vs. waveguide width and
thickness.

When we validate the robustness of the proposed method, σw and σt are cho-
sen equal to 2% and the correlation coefficient ρ = 0.9, which is a challenging
example to study since the coupling coefficient is quite dynamic with respect to
the parameters considered, see Figure 6.2. The proposed method is discussed in
details in the following and summarized Figure 6.3.

6.2.2.5 Variable Transformation

Now, SC methods in the form (6.4) deal with independent random variables. Hence,
to fit the problem into the SC framework, first of all, it is necessary to express the
coupling coefficient in two independent Gaussian random variables, starting from
the correlated random variables η, defined by (6.12). As mentioned, such decor-
relation can be obtained via a variable transformation. Thanks to the Karhunen-
Loéve expansion [20], it is possible to express the vector of correlated Gaussian
random variables η in the vector of uncorrelated Gaussian random variables with
zero mean and unit variance ξ = [ξ1, ξ2]T as

η = µ+ VE
1
2 ξ (6.13)

Where E and V are the diagonal matrix of the eigenvalues and the full matrix of the
eigenvectors of the covariance matrix C, respectively. Since uncorrelated Gaus-
sian random variables are also independent, we have now expressed the coupling
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Figure 6.3: Flow chart of the proposed technique.
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coefficient as a stochastic process which depends on the pair of independent Gaus-
sian random variables (ξ1, ξ2). An accurate description of the Karhunen-Loéve
expansion for Gaussian random variables is given in Appendix B.

6.2.2.6 SC Model Computation
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Figure 6.4: Sampling grid where samples are chosen by the Smolyak Algorithm. Top: the
red exes (×) represent the interpolation nodes for the normalized independent random
variables ξ1 and ξ2 used to build the SC model. Bottom: the blue circles (◦) are the
corresponding values for the correlated random variables w and t used to compute the
coupling coefficients in Fimmwave.
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To compute an SC in the form (6.4), the first step is choosing the interpolation
scheme: the Lagrange interpolation scheme is adopted in this example for its
modeling power and ease of implementation. Next, a rule which guarantees a
good quality of the approximation must be used to choose the collocation points
for each random variable: ξ1 and ξ2. In this example, the Clenshaw Curtis rule
is adopted [15]: the collocation points for each random variable are the extrema
of the Chebyshev polynomials. Now, the total number of nodes could be obtained
using the full tensor products of the nodes chosen for each random variable, but
it would not be efficient. Instead, the nodes are chosen over a sparse grid based
on the Smolyak algorithm. Indeed, the adoption of the Smolyak algorithm allows
building our SC model by using only a subset of all the collocation points given
by the full tensor product [15]. Furthermore, the collocation points chosen by the
Smolyak algorithm based on the Clenshaw-Curtis rule are nested: if additional
nodes are required to model the DC accurately, the nodes already computed are
kept in the new sparse grid, reducing the number of evaluation of the DC coupling
coefficient. See Appendix C for additional details on the Smolyak algorithm. As
a result, only 65 collocation points (Figure 6.4) are required to build the desired
SC model, and the values of the coupling coefficient at the interpolation nodes are
computed using the Film Matching Mode (FMM) solver Fimmwave.

6.2.2.7 Directional Coupler Variability Analysis

Finally, the variability analysis for the coupling coefficient of the directional cou-
pler under study is performed using an SC model depending on the pair of inde-
pendent Gaussian random variables (ξ1, ξ2) and the results obtained are validated
through comparison with an MC analysis based on the Fimmwave FMM solver
On the directional coupler cross-section for a couple of correlated random vari-
ables (w, t). To compare the performance of the two methods, the same set of
10000 samples for the pair of correlated random variables (w, t) (see Figure 6.5).
The corresponding values for the independent random variables (ξ1, ξ2) are used
to estimate the device variability features.

The proposed method shows excellent accuracy compared with the classical
MC analysis, as shown in Table 6.1, Figs. 6.6, 6.7. In particular, the mean and the
standard deviation of the coupling coefficient obtained employing the two methods
are reported in Table 6.1: the relative error in the estimation of the mean and
the standard deviation is only 9.0 × 10−5 and 5.6 × 10−3, respectively. Apart
from stochastic moments, more complicated functions of the stochastic process
under study can be estimated: the probability density and cumulative distribution
function (CDF) of κ obtained utilizing the two methods considered are in excellent
agreement, as shown in Figure 6.7.
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Figure 6.5: Sampling points used to perform the MC analysis through direct Fimmwave
simulations for the correlated random variables (w, t). The corresponding values for the
independent random variables (ξ1, ξ2) are used to evaluate the SC model computed.
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Figure 6.6: Blue circles (◦): coupling coefficient computed via the MC analysis for the
10000 (w, t) samples shown in Figure 6.5. Red (×)-markers: corresponding values
obtained by evaluating the SC model.
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Figure 6.7: The probability density function PDF and CDF of the coupling coefficient for
λ = 1.55µm. The blue solid and red dashed line are PDF and CDF obtained by means of
the SC model, respectively, while the blue circles and red squares represent the same
quantities computed by means of the MC analysis.

Monte Carlo Stochastic Collocation
Mean value 65160 65166
S.t.d value 2616.9 2631.4

Table 6.1: Performance summary of Stochastic Collocation and Monte Carlo simulation.

Furthermore, as presented in Table 6.2, the SC method has dramatically saved
computational cost. Note that, the SC method took a two-step procedure to per-
form the same variability analysis. Initially, SC required 65 simulations to com-
pute the coupling coefficient at the collocation points. Next, we used the SC
model over 10000 samples of the independent random variables in the Monte-
Carlo method. Hence, the total computational time of the SC method is 8 min and
59 s, which represents a speed-up of a factor 146× with respect to the MC analy-
sis performed in Fimmwave for the couple of correlated random variables (w, t),
which required 21 h 53 min 14 s.
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Variability analysis technique Simulator
Number
of points

Computation
time

Monte Carlo
Fimmwave
FMM solver 10000 21 h 53 min 14 s

Stochastic
Collocation

Stochastic
Modeling

Fimmwave
FMM solver 65 8 min 32 s

MC using
stochastic model

SC stochastic
model 10000 27 s

Total time 8 min 59 s

Table 6.2: Computation time of Stochastic Collocation and Monte Carlo simulation.

6.3 Layout-Aware Yield Prediction Using CapheVE

6.3.1 Caphe Variability Extension (CapheVE) Framework

Assuming purely random variations, we could only estimate the yield of fabri-
cated circuits qualitatively. The real process variations are layout-dependent. As
we introduced in Chapter 5, process variations are correlated locally, so the cir-
cuit placed closed-by would behave similarly. Also, the systematic variation is the
major source of contribution to the process variation. So, the process variation
is largely location-dependent. Layout-aware variability analysis should include
location-related information of the process variation to predict the circuit perfor-
mance accurately.

A layout-aware yield prediction should allow us to import the model to de-
scribe the process variation, and revise the circuit performance according to its
location on the wafer. Monte-Carlo simulation is the most straightforward imple-
mentation to do such analysis. We should be able to generate the virtual wafer
maps that mimic the realistic process variations. Then, we can put the layout of
duplicated designs over the virtual wafer where the circuit performance is revised
concerning its location. By comparing all the location-dependent circuit responses
over the wafer with the design target, we can predict the yield of the circuit.

Monte-Carlo simulations require a large sample set. Electromagnetic simula-
tions are too expensive for such an analysis. Instead, we need compact behavioral
models of all the components to calculate circuit response, which is way faster.
Once the global variables such as the waveguide width and thickness change, the
model parameters should also be revised to generate the layout-aware circuit re-
sponse. Therefore, the prediction framework should include four essential ele-
ments [21]:

1. Compact models of all building blocks in the circuits.
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2. The sensitivity of model parameters to the global variables such as waveg-
uide width and thickness changes.

3. A variability model that describes how global variables changes over the
wafer.

4. The circuit layout with locations and orientations of the individual building
blocks.

In the Photonics Research Group, we have implemented such a simulation
scheme on top of the IPKISS design framework by Luceda Photonics [21]. IPKISS
is a parametric design tool for photonic integrated circuits that combines layout,
connectivity, and circuit model into parametric cells. It also has a built-in photonic
circuit simulator, Caphe, that supports both frequency-domain and time-domain
simulations, with efficient circuit models that can be custom-written in Python
[22].

The circuit design flow for a photonic circuit is depicted in the top part of
Figure 6.8. Starting from a component library in a process design kit (PDK), a
circuit is composed of parametric building blocks, and a mask layout is generated
[23]. The resulting circuit is then simulated, and the design is iterated until it meets
the specifications.

Figure 6.8: Adding layout-aware variability modeling to the photonic circuit design flow.
Above the dotted line, the classical photonic circuit design flow is depicted [23], starting
from PDK blocks and composing circuits first as a schematic and then as a layout. Only
the nominal circuit response is simulated. We extend the PDK models with sensitivity data
(either from measurement or simulation) and generate wafer maps of global variables
(linewidth, thickness) as we described in Chapter 5. We can then perform MC simulations
by placing the circuit on different wafer positions (and different virtual wafers). From the
many circuit responses, we can then extract the yield, i.e., the fraction of circuits that meet
the specifications set out in the system requirements.
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When we extend this design flow with variability analysis and yield predic-
tion, we did not impose any restrictions on how the fab has constructed its circuit
models, and how designers generate their layout in the tool. The IPKISS frame-
work, which is written in Python, can be easily extended with additional func-
tionality [24]. Therefore, we created the necessary data structures and processes
without perturbing the original framework and without requiring the fab to change
their circuit models.

The Caphe Variability Extensions (CapheVE) framework combine these four
elements with the existing circuit models and layout. First, it positions the circuit
on the wafer, then evaluates the local linewidth and thickness for each sample point
within the circuit, and for building blocks with multiple samples, these values are
aggregated. Using the sensitivity matrix, CapheVE updates model parameters for
each instance. Then, it launches a circuit simulation. This is repeated for multiple
positions on the wafer. In this process, the original circuit design is not altered.

Based on the results, plotting and data analysis routines from scientific Python
libraries can be used to evaluate the impact of the variability or predict the yield of
the circuit after fabrication. Because the whole process is scriptable from Python,
this simulation routine can easily be embedded in an optimization loop to optimize
a circuit for yield, rather than for ultimate performance.

6.3.2 Cascaded MZI Example

In this section, we use the cascaded Mach-Zehnder interferometer (CMZI) as an
example to illustrate the yield estimation workflow using CapheVE. Since we only
have one wafer to build the hierarchical model, there is still more validation to be
made on IWS and IWR variation with more wafers to measure in the future. So the
example using the CapheVE based on the single wafer data is more an estimation
than a prediction. There are two purposes of such an experiment. First, we want to
validate the spatial variation model proposed in Chapter 5. To do that, we import
the spatial variability model that mimics the process variation extracted on the
EP5814 wafer (Chapter 5) and use the variability model to generate virtual wafers
in CapheVE. If the virtual wafer shares similar statistics with the extracted wafer
maps from optical measurements, the experiment will be a good validation of the
spatial variation model. It also gives us the confidence to use the model for realistic
yield estimation.

Second, we can validate the extraction workflow proposed in Chapter 4. After
the validation of the variability model and the generated virtual wafer maps, we
put the CMZI circuits over the virtual wafer. Then, we run MC simulations to
generate the spectral responses at each location. The circuits locations are the same
as the fabricated wafer. Then, we use the parameter extraction method described
in Chapter 4 to extract width and thickness wafer maps from spectral transmission
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generated by CapheVE. We will compare the extracted wafer maps with the virtual
wafers we imported. By comparing the difference between the two sets of maps,
we can obtain the accuracy of the extraction.

6.3.3 Generate Virtual Fabrication Map from the Hierarchical
Spatial Variation Model

The CapheVE framework allows us to import additive wafer maps to include a
comprehensive model of variations. As we introduced in Chapter 5, process vari-
ability can be decomposed into different spatial levels. From the wafer maps
extracted from optical measurements, we modeled the systematic variations and
random variations quantitatively. Now, we can use the obtained spatial variation
model to reconstruct virtual wafers that mimic the statistics and spatial correlation
in the variation.

As in Figure 6.9 and 6.10, we generate the wafer map of linewidth and thick-
ness at each level separately. Since the variation model is additive, the final wafer
map is an addition of variation maps at each level.

On the wafer-level, intra-wafer systematic (IWS) variation describes the slow-
varying tendency over the wafer, which is one of the dominant variations for both
linewidth and thickness. We generate intra-wafer systematic variation (Figure 6.9
(a) and 6.10 (a)) using the bi-variate polynomials. Intra-wafer random (IWR)
variation explains the difference in die-to-die averages. Generation of intra-wafer
random variation maps is also straightforward. Since no spatial correlation is ob-
served in IWR, we assign each die a random value that follows a zero-mean Gaus-
sian distribution. We set the standard deviation the same as what we extracted
from the measured wafer.

Intra-die systematic (IDS) variation accounts for the short-distance correlation
observed within a die. IDS width variation is correlated with pattern density. The
correlation coefficient is 0.62, so that 62% of the variation can be explained as the
deterministic impact of the local pattern density. As explained in 5, the pattern
density map is generated by processing the pattern of the waveguide layer on the
chip with a Gaussian filter. In particular, the window radius is 65 µm. The pat-
tern density map is stored in a bitmap image file that can be read by Python as
an array. We use the linear relation between the normalized pattern density and
the IDS width to calculate the pattern density related contribution in IDS width
variation map. In addition to the pattern density related contribution, there is still
a remaining 38% contribution in the IDS width variation that we do not know the
origin. This contribution is also repeated on each die, and we assume it is spatially
correlated. (But it could also be mask errors that might occur randomly and are
spatially uncorrelated.) We generate the contribution using the coherent noise map
with a radius of 500 µm and make the pattern repeat on every die. If we have
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further information on how to model this part of the IDS width variation in the
future, we can replace the coherent noise map with an updated model.

Figure 6.9: Generated width wafer map. (a) Intra-wafer systematic variation. (b)
Intra-wafer random variation. (c) Intra-die systematic variation (d) Intra-die random
variation (e) Wafer-die interaction variation (f) Virtual fabricated wafer map.
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Figure 6.10: Generated thickness wafer map. (a) Intra-wafer systematic variation. (b)
Intra-wafer random variation. (c) Intra-die systematic variation (d) Intra-die random
variation (e) Virtual fabricated wafer map.
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Figure 6.11: Generated IDS width map. The IDS map has both a pattern density correlated
contribution and a non-correlated contribution. The figure shows IDS variation over an
area of a block which is one-eighth of a die.

Figure 6.12: Generated IDS thickness map. The figure shows IDS variation over an area of
a block which is one eighth of a die.

We also generate IDS thickness variation map 6.12. Since we did not know
yet how IDS thickness variation is affected by the layout of circuit or process
conditions, we need to generate the IDS thickness variation with an guess. We
generated the IDS variation with the coherent noise map. We use the coherent
noise map to make the variation more arbitrary and less intentional. The amplitude
of the noise is set as the maximum IDS thickness variation we extracted on the
measured wafer.

Intra-die random (IDR) variation denotes the device-to-device variations that
are not location-dependent. However, within a device or a small circuit, both width
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and thickness should still be spatially correlated. We know of no mechanisms
where thickness abruptly changes with 1nm from one point to another. The width
should also vary continuously along a waveguide. We saw the device-to-device
random variation, which seems to be spatially uncorrelated because the correlation
length of such randomness is smaller than the device-to-device distance. There-
fore, we use the spatially correlated randomness generated by the coherent noise
map. The correlation length is set to be 100 µm, which is smaller than the mini-
mum circuit footprint we put on the wafer.

Wafer-die interaction (WDI) variation explains a significant part of location-
dependent width variation within a die. WDI map on each die is a plane whose
normal has a random deviation from the z-axis (Figure 5.22). As explained in
5.3.5, we describe the plane by inclination θ and azimuth φ. θ is defined as a
normal distribution, while φ is a random value between 0 and 2π. We generate
WDI width map from the two random variables. Thickness variation does not have
a significant contribution from WDI, so we do not add WDI variation to thickness
variation map.

Figure 6.9 (a-e) and 6.10 (a-d) present the virtual wafer map of linewidth and
thickness at each level separately. Figure 6.9 (f) and 6.10 (e) present the final wafer
maps.

Figure 6.13 shows the generated virtual width and thickness map over the block
with the CMZI design. The design block is located in the center of the wafer.
Clearly, we do see the impact of several variations here, especially evident in the
width map. We can view in the width map a contribution from the pattern density
correlation. Also, samples on the right side of the block tend to have a large width.
The WDI variation on the die leads the tendency. The IDR variation as randomness
that is seen as the blurry background in the map.

The virtual wafer does not have to be same as the fabricated wafer since every
fabricated wafer is different. Nonetheless, the virtual wafer should mimic the real
wafer in at least two ways:

• It should present the similar statistics of global variables over the wafer as
the real wafer.

• It should present a similar spatial correlation of global variables as the real
wafer.
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Figure 6.13: Generated virtual map on the block with the CMZI design.

The first criterion is evident. The second criterion ensures the yield estima-
tion captures the correlation between neighboring locations on a chip. A realistic
virtual map should have the feature so that it can be used to include the layout-
dependency of variations and help to test process-tolerant circuits.

To compare the statistics of linewidth and thickness on the virtual wafer with
the fabricated wafer, we sample them at the same locations where CMZIs are lo-
cated on the fabricated wafer. The sampled locations are shown in Figure 6.14.
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Figure 6.14: Locations of CMZI on the wafer. It share the same locations as on the
fabricated wafer. There are 117 (circuits per die) × 52 (dies) circuits in total.

Figure 6.15 and 6.16 show the histogram of the variables on the fabricated
wafer and two generated virtual wafers. As shown in Table 6.3, the mean and
standard deviation values on each generate wafer differ slightly, but they matched
fabricated wafer statistically. The match in statistical moments is a good validation
of the variability model. The shape of the width histograms of the generated wafers
match well with the shape of the fabricated wafer. For thickness, there is a larger
population on the extreme side (thickness ¿ 213 nm) of the distribution on the
fabricated wafer. As mentioned in 5, this is because there is a prominent thickness
variation near the edge of the wafer. This deviation is not quantitatively captured
by the hierarchical model yet, which causes the mismatch between histograms of
fabricated thickness wafer and the generated wafers.
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Figure 6.15: Histogram of width on the wafer map. (a) Extracted wafer maps. (b) Virtual
wafer map a. (c) Virtual wafer map b.

Figure 6.16: Histogram of thickness on the wafer map. (a) Extracted wafer maps. (b)
Virtual wafer map a. (c) Virtual wafer map b.

Width Fabricated Wafer Virtual Wafer 1 Virtual Wafer 2
Mean [nm] 464.6792 465.5518 463.1819
Standard Deviation [nm] 4.5894 4.4429 4.7052
Thickness Fabricated Wafer Virtual Wafer 1 Virtual Wafer 2
Mean [nm] 210.3328 210.4073 210.3547
Standard Deviation [nm] 0.8249 0.8132 0.8321

Table 6.3: The mean and standard deviation of sampled width and thickness on a
fabricated wafer and two virtual wafers.

To analyze the spatial correlation of width and thickness, we plot the mismatch
in the variables like width and thickness related to the distance between circuits
across a chip. Here, we focus on mismatch within a chip because the knowledge
on spatial correlation is most interesting to estimate and minimize such impact in
a circuit. Since the circuit size cannot go beyond the size of a die, we only plot
the mismatches between circuits that are on the same chip. We separate the data
into ten groups with an incremental distance of 1000 µm (0-1000 µm, 1000-2000
µm,..., 9000-10000 µm). We calculate the mean, 25, and 75 percentile of each
category.
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Figure 6.17: (a) Width mismatch vs. the distance between devices across the chip on the
fabricated wafer. (b) The mean, 25 and 75 percentile of each category (0-1000,
1000-2000,..., 9000-10000 µm). The lower (orange) and upper (yellow) dots are at the
25%/75% quantiles. The middle circles (blue) indicate the mean. (c) Thickness mismatch
on the fabricated wafer. (d) Mean, 25, and 75 percentile of thickness mismatch on the
fabricated wafer. (e) Width Mismatch on the virtual wafer. (f) Mean, 25 and 75 percentile
of width mismatch on the virtual wafer. (g) Thickness Mismatch on the virtual wafer. (h)
Mean, 25, and 75 percentile of thickness mismatch on the virtual wafer.
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Figure 6.17 compares the distance-related mismatches on the fabricated wafer
(a-d) and on the virtual wafer (e-h). Scatter plots present the difference in width
and thickness, versus distance between them. The width mismatch is gradually
increasing with the distance between two circuits. It is more evident from the
percentile plot in Figure 6.17 (b). Not only on average the mismatch increases
steadily, but also the range of center 50 percent (25 to 75 percentile) of mismatches
increases gradually against the circuit distance. Unlike the width mismatch, thick-
ness mismatch is less distance related. It does not increase much against the dis-
tance between two circuits.

Scatter plots (Figure 6.17 (e) and (g)) of the virtual wafer show similar corre-
lations as of the fabricated wafer. From the percentile map shown in Figure 6.17
(f) and (h), we also see good matches for both width and thickness. The matches
prove the spatial variation model captures the spatial correlation statistically. We
observed in the scatter plot of the fabricated wafers shows a few samples with
larger mismatches in each distance. This should come from the modeling of the
IDR variations. As shown in 5.25 and 5.26, the distributions of IDR behave like
a normal distribution. But there is excessive population outside the 2σ range than
there should be for a normal distribution. This mismatch explains why there are
larger mismatches on a fabricated wafer. If we came up with distribution to de-
scribe the IDR variation better, we could further improve our variability model.

6.3.4 Sampling points for each components

Figure 6.18: The figure shows the layout of the CMZI. To model the effect of variability,
the width and thickness variations are sampled on multiple locations in the layout, both for
the waveguides and for the directional couplers.

After the generation of the variability map, we should determine where in the
layout the global variables such as linewidth and thickness are evaluated. This
requires a data structure to determine a set of sampling points in each component.
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For most (small) building blocks, a single sampling point is sufficient, but longer
waveguides are automatically sampled with regular spacing (which is parametric).

As shown in Figure 6.18, both the waveguide and DC are sampled every 5 µm.
Then, the sampled width and thickness are aggregated over the entire waveguide or
DC. We use the aggregated values as global variable values that change the model
parameters in the next step.

6.3.5 Sensitivity of Model Parameters

After we derived the global variables for each component, we need to calculate
the change to the model parameters. In our case, we need to change neff and ng
of waveguide and coupling coefficients of DC with respect to width and thickness
variations. This would require a sensitivity model to map process variations to
model parameter change.

To describe the sensitivity, we annotated the existing circuit models with a vari-
ability matrix, describing how every circuit model parameter varies with changes
in local linewidth and thickness. These annotations can be of the form of Taylor
series:

C(p) = C0 +

n∑
i=1

1

n!

∂iC

∂Xi
∆X(p)i (6.14)

In practice, we will truncate the polynomial to a finite order n. The perturbation of
a circuit model parameter C by a global parameterX at position p could be imple-
mented as an nth-order perturbation. For this, the sensitivity of C to X should be
known. This can be characterized through measurements, or through simulations.
The actual sensitivity data is not generated automatically; if this is not supplied by
the fab, it is up to the designer to evaluate this by running simulations or experi-
mentally characterize fabricated devices. By default, the sensitivity of component
parameters is set to zero. The good news is: the sensitivity is usually fairly constant
even if the geometry of the devices changes slightly.

In our case, calculate the neff and ng using the Fimmwave film-matching
mode (FMM) solver. We swept waveguide width and thickness and used a third-
order derivative model and the derivative sensitivity model of neff and ng is:

neff = neff0 +
∑3
i=1

∂ineff
∂wi (w − w0)i +

∑3
j=1

∂jneff
∂tj (t− t0)j (6.15)

ng = ng0 +
∑3
i=1

∂ing
∂wi (w − w0)i +

∑3
j=1

∂jng
∂tj (t− t0)j (6.16)

Similarly, we calculated the derivative model for coupling coefficients κ′ and
∂κ′

∂λ using the Fimmwave FMM solver and the lumped coupling coefficients κ0

using the Lumerical FDTD simulations. The sensitivity implementation is not
limited to the third-order derivatives. It can also use higher-order polynomial ex-
pressions, or a custom Python function. The sensitivity data structure is added to
the existing models.
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6.3.6 Yield Estimation on Fabricated CMZI

To test and verify the extraction workflow we proposed in Chapter 4, we use
CapheVE to emulate the fabrication and optical measurements of the CMZI. Table
6.4 shows an example of two CMZIs randomly chosen on the center die on the
virtual wafer. The width and thickness of each component in the circuit are altered
according to its position. From all the 6084 samples on the wafer, the difference in
width in a circuit between low-order arms is always below 0.2 nm. The difference
between low-order and high-order arms is below 5.0 nm, which is a larger value
because of the larger distance between two stages. The difference in thickness in a
circuit is smaller than 0.6 nm. The circuit parameters are revised by the calculated
sensitivity (Table 6.5). The difference in width between the low-order stage and
high-order stage is smaller than the CMZI design can tolerant. So, we should be
able to extract a unique neff from the CMZI spectrum.

component:variable CMZI 1 [nm] CMZI 2 [nm]
arm00: linewidth 3.733 -2.087
arm00: thickness -0.217 -0.162
arm01: linewidth 3.675 -2.098
arm01: thickness -0.224 -0.161
arm10: linewidth 3.658 -2.665
arm10: thickness -0.109 -0.177
arm11: linewidth 3.197 -1.814
arm11: thickness -0.032 -0.123
dc0: linewidth 3.925 -2.141
dc0: thickness -0.113 -0.126
dc1: linewidth 3.776 -2.705
dc1: thickness -0.155 -0.183
dc2: linewidth 3.759 -2.746
dc2: thickness -0.224 -0.230

Table 6.4: Linewidth and thickness variations in a CMZI circuit at two different sampling
locations on the wafer map.

Notice that two arms in the high-order stage arm10 and arm11 have a width
difference. From the data we obtain over the virtual wafer, this difference can be
as large as 3 nm. When we extract the width from fitting the spectrum, we assume
arm width in these two arms is identical. As explained, we extracted the averaged
width of these two arms. Quantitatively, we can link the averaged neff,averaged
with neff on arm10 and arm11 as:

neff,averaged(Larm11 − Larm10) = neff,arm11Larm11 − neff,arm10Larm10
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component: parameter CMZI 1 CMZI 2
arm00: neff 2.360 2.349
arm00: ng 4.224 4.235
arm01: neff 2.360 2.349
arm01: ng 4.224 4.235
arm10: neff 2.360 2.348
arm10: ng 4.224 4.236
arm11: neff 2.360 2.350
arm11: ng 4.225 4.234
dc0: κ′ 0.045 0.045
dc0: dκ

′

dλ 0.211 0.216
dc1: κ′ 0.045 0.045
dc1: dκ

′

dλ 0.211 0.217
dc2: κ′ 0.045 0.045
dc2: dκ

′

dλ 0.212 0.217

Table 6.5: Changes in circuit parameters by process variations at the same wafer locations
of Table 6.4.

The same can apply to the ng .

ng,averaged(Larm11 − Larm10) = ng,arm11Larm11 − ng,arm10Larm10

Assuming the linear relation between width and neff and ng , we can approxi-
mate:

∆waveraged(Larm11 − Larm10) = ∆warm11Larm11 −∆warm10Larm10

∆taveraged(Larm11 − Larm10) = ∆tarm11Larm11 −∆tarm10Larm10

Therefore, the extracted width variation ∆wextracted using the CMA-ES work-
flow should be compared with the averaged width variation on the high-order stage
∆waveraged

Figure 6.19 shows the 117 transmission spectra from port “in0” to port “out0”
generated by the Caphe circuit simulator on the central (X=0, y=0) die. The gen-
erated spectra can shift 2 nm from the nominal spectrum where no variation is
included. Also, the shapes of the spectra are altered by the change in the coupling,
which led to the extinction ratio change.
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Figure 6.19: Red: 117 transmission spectra from port “in0” to port “out0” generated by the
Caphe circuit simulator on the central (X=0, y=0) die. Blue: nominal spectrum.

Figure 6.20: To model the effect of variability, the width and thickness variations are
sampled on multiple locations in the layout, both for the waveguides and for the directional
couplers.

After we obtained the spectra for all the CMZI circuits over the wafer, We used
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the extraction workflow in Chapter 4 to extract width and thickness wafer map.
Figure 6.20 shows the difference between extracted width variation ∆wextracted
and thickness variation ∆wextracted compared to averaged width variation ∆waveraged
and the thickness variation ∆taveraged. The difference in extracted width is less
than 0.15 nm for width and 0.05 nm for thickness. This is a very good validation
of our workflow.

6.4 Conclusion and Future work
In this chapter, we introduced two stochastic analysis methods to do variability
analysis. Compared to the MC methods, the stochastic analysis method could sig-
nificantly reduce the simulation cost. We briefly introduced the gPC methods that
have been used to do variability analysis and tolerance optimization for photon-
ics. We also introduced SC methods in details with an example to analyze the
variability of DC.

In the second part, we introduced how to analyze the variability of photonic
circuits the CapheVE framework. The framework allows us to import the spatial
variability model presented in Chapter 5 to make layout-aware yield estimation.
The generated virtual wafers exhibit a good match in statistical properties and
spatial correlation of the process variations with the fabricated wafer. We used
CapheVE to simulate the CMZI spectral responses over a virtual wafer. Using
the extraction workflow introduced in Chapter 4, we obtained the linewidth and
thickness maps with very high accuracy. It is a good validation of the workflow.

Stochastic analysis methods such as gPC-based methods help to reduce the
cost of MC simulations. However, the fact such method assuming process-related
variables are purely random leaves a question mark how to integrate such methods
with the layout-aware variability analysis such as our approach using CapheVE.
Integration of stochastic analysis methods and layout variability analysis might be
the next step of our research.
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7
Conclusion and Future Work

7.1 Conclusion

Silicon photonics is an attractive platform for photonics integration. Its high ma-
terial contrast and tight light confinement allow a high-level of miniaturization of
circuits and functions on-chip, making it a very competitive integration solution.
This work targets a crucial challenge for large-scale high-volume photonics inte-
gration: how to make a realistic yield prediction, so we can design circuits that can
actually work?.

A realistic yield prediction mimics the effects of the physics and chemistry in
the actual fabrication flow, and therefore should be aware of the layout and the
location of the circuit on a chip. To make such a prediction, we identified three
essential steps. First, extract circuit parameters and fabrication wafer maps accu-
rately and robustly. Second, build a variability model to analyze and reconstruct
the spatial and statistical features of the wafer maps. Third, integrate the variability
model into the design workflow to make realistic yield prediction.

To obtain wafer maps of linewidth and thickness of fabricated wafers, we de-
veloped a method to extract waveguide geometry from spectral measurements of
two configurations of Mach-Zehnder interferometers with sub-nanometer accu-
racy. Using a curve fitting method, we made the extraction of waveguide effective
index and group index less sensitive to measurement noise. We also used curve fit-
ting to remove the impact of grating coupler envelope in the extraction. We offered
analysis to reduce the bounds of the effective index with knowledge of the group
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index. The analysis allows us to use a higher-order MZI to improve fitting accu-
racy. We proposed a procedure to separate different levels of process variations so
that our method can deal with a total variation of several tens of nanometers and
still obtain accurate linewidth and thickness extraction. We also built an accurate
third-order geometry model that we can greatly enhance the accuracy of mapped
waveguide geometry from its effective index and group index.

Often, we also need to know the fabricated quality of couplers to estimate per-
formance variation of the optical filters. To evaluate coupler characteristics, we
introduced a compact behavioral model of the directional coupler and validated
the dispersive model from both FDTD simulations and on-chip measurements.
An accurate behavioral model also helps to replace the expensive electromagnetic
simulations for components. Using the compact model, a designer can focus on
circuit-level design and still has confidence in the simulated response of a cir-
cuit. We tested a few methods and circuit designs to extract the coupler model
parameters. Our experiments and discussions revealed that a combination of the
curve fitting method and an MZI-based circuit design helps us to extract parame-
ters accurately, even in the presence of measurement noise and a grating coupler
variation. We provided a detailed discussion and presented results on the coupling
coefficients extraction.

To simultaneously extract waveguide and directional coupler performance us-
ing the mentioned methods, traditional measurements require at least five circuits,
which take up large footprint, introduce considerable local variation induced ex-
traction error, and longer measurement time. Also, it means such circuits can not
capture the short-distance features of spatial variations on the chip. To solve the
problem, we designed a compact folded two-stage MZI that can be used to extract
fabrication parameters. The compact design suffers less from local variation within
the circuit, which significantly improves the accuracy of extraction. Also, the cir-
cuit greatly reduces the duration of wafer-scale optical measurements, making it
useful for process control monitoring and detailed wafer-level variability analy-
sis. The transmission spectra of the circuit are complicated, which requires robust
and efficient global optimization method to obtain circuit parameters. We applied
the Restart-CMA-ES global optimization algorithm to extract multiple waveguides
and DC parameters from only two optical measurements of the circuit. We illus-
trated how to set up the algorithm in practice to obtain the global optimum effi-
ciently.

The wafer-scale optical measurement and extraction of process wafer maps are
very time-consuming and prone to errors. To efficiently use the circuit for process
monitoring on wafer-scale and obtain fabricated wafer maps, we applied a step-
wise workflow and parallelization to process the data. Using the compact circuit
and the workflow, we extracted detailed wafer maps for performance evaluation
and variability analysis.
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Wafer maps contain rich information about the process variation. We proposed
an additive hierarchical model that can decompose variability on various spatial
levels into systematic and random variation. We discussed the physical origins
of these process variations. Based on that, we proposed a workflow to separate
variability on intra-wafer, intra-die level, and introduced wafer-die interaction term
to reduce random variation in our analysis. We applied the model and the workflow
to process the measurements on a 200 mm wafer fabricated in IMEC’s silicon
photonics platform based on 193 nm lithography. The result shows that the intra-
wafer systematic variation is the primary source of variation for both linewidth
and thickness. We observed that the width variation has a systematic dome-like
profile across the wafer. Thickness non-uniformity across the wafer looks like a
slanted plane with a few mismatches around the wafer edge. At the die level, we
found that systematic width pattern is closely related to the local pattern density.
Our analysis showed that the intra-die systematic width variation is affected by
the pattern within a distance of 195 µm to the site. Our findings help to identify
the process variation and create new design rules to alleviate the impact of the
non-uniformity. If the systematic variation we observed can be further refined and
compensated in the process, we can foresee the photonics wafers with significantly
better fabrication uniformity in the future.

To make a realistic yield prediction, we developed the CapheVE framework
that combines circuit model, parameter sensitivity, circuit layout, and process vari-
ability model. The framework allows us to import the spatial variability model and
generate virtual fabrication wafers. Circuit parameters are altered according to its
sensitivity and layout and location on the wafer. Using CapheVE, we can place
the instances of the circuit over the wafer, and run Monte Carlo simulation to gen-
erate the response for all circuits. We can then use the generated responses for
layout-aware variability analysis and yield prediction. Using CapheVE, we gen-
erated virtual wafers that exhibit a good match in statistical properties and spatial
correlation of the process variations with the fabricated wafer. We also used the
framework to make yield prediction for wavelength de-multiplexer and to validate
the parameter extraction workflow using the compact two-stage MZI.

To reduce the cost of Monte Carlo methods for yield prediction, we tried
stochastic analysis methods to do variability analysis. Compared to the Monte
Carlo method, the stochastic analysis method could significantly reduce the simu-
lation cost. We applied the stochastic collocation method to analyze the variability
of DC. The method reduced the cost of simulation time by 146 times.

In this work, we have also observed surprisingly strong fluctuation in the high-
contrast waveguide transmission spectrum. We observe that fluctuations in the
spectrum increase drastically with the waveguide length. The 7-cm-long waveg-
uides produce fluctuations above 15 dB. We attributed such fluctuations to the
backscattering induced by sidewall roughness. To understand the phenomenon,
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we derived a circuit model that models waveguides as a series of very short cas-
caded lumped sections with a defined loss. To incorporate backscattering, we also
introduced a reflection with a random phase change between sections. Our model
explains and accurately captures fluctuations in long silicon waveguides. To model
the waveguide with backscattering, we also proposed to explain the phenomenon
by the wave transport theory in the random media. We found the light backscatter-
ing in the waveguide is governed by the Fokker-Planck Equation. The initial result
generated by the equation shows a good match with our circuit model.

7.2 Future Work
In the scope of this research, we can still find improvements in the following di-
rections:

1. The folded two-stage MZI is a good circuit for process monitoring control.
We can still improve the extraction accuracy for directional coupler param-
eters by removing the impact of grating coupler variation in transmission.
We need to test if the removal works for this circuit. We also need to test
what is the cost of this method. Incorporating a grating coupler model in the
extraction would add at least five more parameters which might increase the
extraction time significantly.

2. We need more wafer measurements to validate the variability model further.
Also, this could characterize the value of wafer-to-wafer variation in the
model. Now, our extraction circuits are located only in one-eighth of a die
as we participated in a multi-project wafer run. We have included the CMZI
structure on a fabrication run where we should be able to extract parameters
over multiple wafers and full dies. With these information we might improve
the modeling of the die-level variation.

3. Now the simulation cost of the layout-aware yield prediction is still high
because we used the Monte Carlo method that requires a considerable num-
ber of evaluations. Stochastic analysis methods such as gPC-based methods
help to reduce the cost of MC simulations. However, the fact such method
assumes that the process-related variables are purely random leaves a ques-
tion mark how to integrate such methods with the layout-aware variability
analysis such as our approach using CapheVE where we capture location-
dependent correlations between elements in a circuit. Integration of stochas-
tic analysis methods and layout variability analysis it a logical step to push
this research to a next level.

4. While the relevance of this research (i.e. yield prediction) is quite clear, it
can only become a practical reality if it is actually introduced into the design
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flow that is used by a significant fraction of the PIC community. To bring
this about, the techniques should become be made sufficiently robust and
integrated in the tools that are used by actual designers. We worked together
with Luceda Photonics (in the framework of the VLAIO project MEPIC) ,
to make sure that our techniques could solve actual design problems. As a
result of this project, some of the techniques (e.g. the CapheVE framework)
will be incorporated in future releases of Luceda’s IPKISS framework.





A
Laser Calibration and Stability Test

In Chapter 2, we mention that laser calibration is required to get accurate and
consistent behavioral parameters from optical measurements. In this appendix, we
will describe in detail the procedure for the laser calibration.

A.1 Pre- and Post- Measurement Laser Calibration

In parameter extraction experiment using optical measurement, the value of the
parameter should be only determined by the circuit layout and device geometry.
However, an erroneous wavelength shift in the spectral measurement would lead to
a serious error in the extraction of a parameter such as the effective index and group
index. Problems such as laser drifting and instability may rise such a measurement
error.

A tunable laser might suffer from wavelength drifting over the year-long usage,
especially when it is lack of good maintenance. The drifting could be the aging
of the mechanics to sweep the wavelength that results in a linear transformation of
the sweeping wavelength. Problems such as wavelength shifting and broadening
occur. Such an issue is not that noticeable if absolute value peak wavelength or
free spectral range is not the focus.

To calibrate the tunable laser, we need to use a reference of the spectrum with
absolute dip values. The absorption spectrum of the gas cell has dips at a few
certain wavelengths when the temperature is fixed. We can measure the gas cell,
and compare the measured dips which wavelengths are read from the laser with
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literature to calibrate the tunable laser.
For example, when we calibrate our tunable laser with a tunable range from

1500 to 1630 nm, we want to find gas with absorption dips also spread out in that
range. Ammonia (NH3) gas has many absorption dips located from 1500 to 1550
nm. We have an ammonia gas cell with a cell length of 2.5 cm. We can find the
transmittance spectrum of the gas cell from an online database such as HITRAN.
[1] HITRAN is an acronym for high-resolution transmission molecular absorption
database. HITRAN is a compilation of spectroscopic parameters that a variety
of computer codes use to predict and simulate the transmission and emission of
light in the atmosphere. We simulate the transmittance using HITRAN with a
temperature of 20 degree Celsius as the controlled temperature in our cleanroom.
The pressure of the gas cell is 740 torr. Fig. A.1 is the simulated transmittance
spectrum.

Figure A.1: Transmittance spectrum of the ammonia gas cell obtained from HITRAN
database. A.1

As in Fig. A.2, in the next step, we measured the gas cell with the tunable
laser we want to calibrate. We found out the most distinguished dips and matched
measured transmission dips with the HITRAN database. We fitted a linear relation
between actual wavelengths λdatabase of the dips referred from the database and
the dip wavelengths λlaser used by the tunable laser.

λlaser = p0 + p1 · λdatabase (A.1)

As in Fig. A.3, we observed a perfect linear relation between two sets of
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wavelengths and the residual of the fitting is negligible. Using the linear relation,
we can calibrate the laser and correct the wavelength of the measured spectrum.

Figure A.2: Transmittance spectrum of the ammonia gas cell measured by a tunable laser
that needs calibration.
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Figure A.3: Dips in the transmittance spectrum measured by the tunable laser follows a
linear relation with the actual dips wavelengths simulated by the HITRAN database. Top:
linear fitting. Bottom: the residual of the fitting.

A.2 Stability Test During the Measurement

After the calibration of the tunable laser, we still need to ensure the laser is sta-
ble throughout the measurement. Since wafer-scale measurement takes weeks to
months to finish, bad thermal control or unstable mechanics of the wavelength
tuning might lead to a variation of the swept wavelength during the lengthy mea-
surement. So we need to incorporate stability test in the measurement workflow.

The most straightforward way is to measure the gas cell once a day during
the whole measurement. If the spectra are identical, the laser is stable. Assembly
of the gas cell might be impractical during the wafer-scale measurement. Alter-
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natively, you can measure the spectrum of an interfering device such as a ring
resonator periodically.

In one of our wafer measurement, we have 117 devices under test on each die.
We measure one to two devices on each die over the wafer before the measurement.
After the complete wafer measurement, we have two measurements on this one
to two reference devices. We could compare the spectra. Since there is one to
two measurement on each die, we can test the laser stability throughout the wafer
measurement.

References
[1] The HITRAN Database.





B
Karhunen-Loéve expansion

B.1 Karhunen-Loéve expansion and Correlated Gaus-
sian Random Variables

Let us assume that the correlation matrix CN×N for the random variables η under
study is symmetric and positive-definite. Then, C and can be diagonalized as

C = VEVT (B.1)

Thanks to (B.1), equation (6.12) becomes

Wη =
1

2πdet(E)
1
2

exp
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−1

2
(η − µ)

T
VE−1VT (η − µ)

)
(B.2)

Hence, the Karhunen-Loéve expansion is a simple change of variables for corre-
lated Gaussian random variables following the non-degenerate multivariate nor-
mal distribution (6.12). Furthermore, it is possible to express the joint probability
density function (B.2) with respect to a vector of independent Gaussian random
variable x, with zero mean and variance equal to [Eii]

N
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where
x = VT (η − µ) (B.4)
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Finally, the vector x can be written as

x = E
1
2 ξ (B.5)

where ξ is a vector of normalized Gaussian random variables with zero mean and
unitary variance. Equation (6.13) can be obtained by combining (B.4) and (B.5).



C
Smolyak algorithm

C.1 Smolyak algorithm
Let us express a stochastic process Y depending on one random variable ξ by
means of the Lagrange interpolation scheme as [1]

U(ξ) =

Q∑
i=1

Y (ξi)Li (ξ) (C.1)

where Li is given by equation (6.5). The Q nodes can be chosen from a node
distribution which guarantees a good quality of the approximation (i.e. the extrema
of the Chebyshev polynomials). Extending (C.1) to the case of multiple random
variables can be performed via tensor product, as it has been shown in Section
6.2.2, and equation (C.1) becomes

Y (ξ) = Uk1 ⊗ · · · ⊗UkN =

Qk1∑
i1=1

· · ·
QkN∑
iN=1

Y
(
ξk1i1 , . . . , ξ

kN
iN

)(
Lk1i1 ⊗ · · · ⊗ L

kN
iN

)
(C.2)

where Ukj represents the interpolation scheme in the form (C.1) with respect to
the random variable ξj and N is the number of random parameters considered.
The total number of nodes required to compute (C.2) is the given by the product of
the nodes used for each random parameter, as shown in (6.7). Clearly, the required
number of nodes grows very quickly with respect to the number of parameters
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considered. Indeed, if only two nodes are used for each random variable, the total
number of points required for a full-tensor product interpolation is Q = 2N .

The Smolyak algorithm allows to build multi-dimensional interpolation func-
tions based on a minimal number of nodes by expressing the desired interpolation
as a linear combination of tensor products. In particular, the property of the one-
dimensional interpolation is conserved for higher dimensions. Indeed, the sparse
interpolantAq,N given by the Smolyak algorithm is

Aq,N (ξ) =∑
q−N+1≤|k|≤q

(−1)q−|k|
(
N − 1
q − k

)
(Uk1 ⊗ · · · ⊗UkN ) (C.3)

where q − N is the order of interpolation, AN−1,N = 0 and k = (k1, . . . , kN )

with |k| = k1 + · · · + kN . Hence, the interpolation function is built by adding
a combination of one dimensional interpolant of order kj with the constraint that
the total sum |k| across all parameters is between q −N + 1 and q. Note that, kj
can be considered as the interpolation level along the j-th direction.

Let us denote Θ as the set of points utilized in the one-dimensional function
interpolation. According to (C.3), the stochastic process Y must be computed at
the nodes of the sparse grid Hq,N given by

Hq,N =
⋃

q−N+1≤|k|≤q

Θk1
1 × · · · ×ΘkN

N (C.4)

It is important to notice that, by choosing a suitable node distribution, such as
Chebyshev or Gauss-Lobatto points, the sets of collocation points Θk are nested.
Hence, the sparse grid of order q contains all the nodes computed for the sparse
grid of order q − 1 and the stochastic process Y must be evaluated only on few
new collocation points.

References
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D
Problems and the Procedure to Extract

and Correct Parameters on a Fabricated
Wafer

D.1 Problems and the Procedure to Extract and Cor-
rect Parameters on a Fabricated Wafer

Our ultimate purpose is to use the PCM circuit practically to obtain fabricated
wafer maps as we will show in Chapter 5. We have discussed how to extract
multiple parameters one circuits. To extract the parameters on a complete wafer
is challenging for a couple of reasons. First, the extraction from a complicated
spectrum requires many evaluations, which can be time-consuming. If we cannot
reduce the cost of circuit simulation, extraction from thousands of circuits will be
impractical. Second, the number of PCM circuits on the wafer is enormous. Even
with very efficient circuit simulator, it would still take a month to generate a wafer
map. Third, global optimization could be time-consuming if we apply to the same
strategy for all types of spectrum. In this section, we discuss the problems and
solutions. We also propose our workflow to extract fabricated wafer maps.

D.1.1 Reducing the Cost of Circuit Simulation

First, the extraction from a complicated spectrum requires many evaluations. If
each evaluation of circuit simulation is not fast enough, the extraction can be very
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time-consuming. In our case, the extraction from on circuit using the CMA-ES
optimization method takes around 8,000 evaluations to find a good solution. How-
ever, we set the program to restart once it reaches 20,000 evaluations without find-
ing a good solution. Using the old Caphe circuit simulation, it takes 1 second for
one circuit simulation with 200 wavelengths in the spectrum. It will cost more
than several hours to process just one circuit. It is challenging even to try different
parameter and boundary setting to get the CMA-ES working consistently. Now,
with the help of people from Luceda and the release of the Caphe, we can run the
same circuit simulation 30 times faster. Now, most of the time we can obtain a so-
lution in around 6 minutes. It does not only help us to test the algorithm and make
it running, but also very important if we want to use it for wafer map extraction.

D.1.2 Step-Wise Workflow

Second, the number of PCM circuits on the wafer is enormous. Our wafer consists
of more than 6,000 circuits to be analyzed. In the best case when we can found a
solution in around 6 minutes, it still costs more than 25 days to process the com-
plete data set. Not to mention that many circuits need a few restarts to find the
global solution which further increases the extraction cost. Meanwhile, for such a
large amount of dataset, we can hardly avoid an error in measurements and extrac-
tion. In the automated measurement, one dies might be measured with a mistaken
die number if we set the parameter or coordinate wrongly in the measurement.
Also, if the tunable laser is not stable, there would be laser wavelength drifting
that makes the entire measurement wasted. In addition, the spectrum for a par-
ticular die could be mostly saturated when we choose an improper wavelength to
determine the photodetector dynamic range. Spotting that type of error at an early
stage rather than noticing that after the monthly-long measurement and lengthy
extraction workflow saves time and unnecessary repetitions.

It is reasonable to generate intermediate results for analysis and inspect pos-
sible errors occurred in the measurements and extraction. Using the step-wise
workflow can offer not only intermediate result but also makes sure the result is
correct before moving to the next. Another reason is that we can speed up the ex-
traction process by using a different strategy to deal with diverse spectrum in a few
steps rather than in one step. Here we discuss in detail under which circumstances,
and we should follow the step-wise workflow to process the wafer data.

D.1.2.1 Global Optimization in Two Steps

The Restart CMA-ES global optimization technique is very powerful and robust.
If we have the correct model, correct measurement with the noise controlled at a
reasonable level, right parameter boundary and sufficient evaluations, we should
always be able to find the correct extraction. However, ’global’ is a word requires
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attention. There are two ways to operate the Restart CMA-ES. To increase the
population size after each restart which makes the search more global, or use the
same size after each restart. They have different advantages. You would suppose
that you can find the optimum quickly if you use the more global approach. You
increase the population size after restart so that the samples in the population cover
more searching area. However most of the time, we found that the choice actually
makes it slower to converge to the right solution. Sometimes, it fails even to find a
local optimization within 20,000 evaluation. So the ’global’ approach covers larger
search range and could always find the optimum, but it requires far more evalu-
ations to find it. On the other hand, the restart scheme with the same size of the
search span is more local but quite efficient. For a majority of our measurements,
when we did not find a global optimum in one search with maximum evaluations
of 20,000, we can restart the search with the same setting and find a right solution
after a few restarts. But it did fail to find a solution in some spectrum. So, we used
the ’local’ approach to process all the data. If it fails to work, we use the ’global’
method to process the difficult ones. In this way, we can combine the merits of
both approaches.

D.1.2.2 Improving Fitting Accuracy in Two Steps

As shown in Figure 4.4, the radius of the search circle reduces generation by gen-
eration to approach the optimum. The size of the radius is the standard deviation
error on the parameter. In other words, the radius is proportional to the fitting er-
ror. To improve the fitting accuracy, we could use lower function tolerance to make
sure that the difference between two function evaluations is sufficiently small and
in most cases, it means the searching radius or the fitting error is enough small.
However, this increases the number of evaluations significantly. For example, if
you decrease the function tolerance from 10−6 to 10−9, it usually means 3000
more evaluations. In many cases, we can obtain a low fitting error with 10−6 tol-
erance. Also, even we set the lower function tolerance, the algorithm is very likely
to terminate because it reaches 20,000 maximum evaluations.

In practice, there are quite some extractions find the global optimum (f-value
¡ 0.02 × time of wavelengths of the power spectrum) with a slightly big fitting
error because the optimization terminates at 20,000 evaluations with a low f-value.
Of course, we can also set the fitting error as an option to restart the searching.
However, searching to reduce fitting error is quite different from searching for a
global optimum. In this case, we are already very close to an optimum, and we
just want more evaluations in the neighborhood around the obtained parameter to
reduce the searching radius or fitting error.

What we do is after we batch-processed the data on the wafer, we pick up the
sample that reaches a global optimum while having a fitting error larger than our
standard. We can rerun a very local optimization around the obtained parameters
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in the searching space, and the algorithm will quickly find out the new parameters
(which has little difference compared to the previous parameters) with a low fit-
ting error. In practice, we convert the fitting error of the behavioral parameters to
width and thickness fitting errors. We limit the fitting error to 1 nm for width and
0.5 nm for thickness. The two-step approach limits the fitting error with reduced
extraction cost.

D.1.3 Parallelization

There are different ways of parallelization. We chose to divide our data into dies
and process several dies simultaneously. For example, we used two servers each
with 16 cores and each core process data on one die. The parallelization can reduce
the processing time from around one month to just one day.

We divided the data by die for a few reasons. First, certain steps in our work-
flow need die maps. For example, we need to a fitted die map of the neff of the
low-order stage as a reference to correct the order of the high-order neff . Another
instance is when we need a thickness die map to detect obvious outliers. If we
group data by die, we do not have to wait for the whole wafer to be processed and
could proceed to steps afterward to get the die map. Also, the optical measurement
is executed die after die. We can start to process the finished dies while waiting for
the measurements on other dies. Lastly, when we have processed the first samples
on every die, we could use them to plot a simple wafer map that helps to identify
if we have a wrong numbering on the dies in the automated measurements.
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