

Fabricage van nanofotonische structuren met gefocusseerde ionenbundels

publieke verdediging Jonathan Schrauwen

Promotor: Prof. Dries Van Thourhout

Vakgroep Informatietechnologie Faculteit Ingenieurswetenschappen

4 februari 2009

Licht

Golven of deeltjes?

 $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} = 4\pi k\rho$ $\nabla \cdot \vec{B} = 0$ $\nabla \mathbf{x} \, \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \mathbf{x} \, \vec{B} = \frac{\vec{J}}{\varepsilon_0 c^2} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$

3

UNIVERSITEIT Nanofotonisch?

UNIVERSITEIT Nanofotonisch?

Lichtbreking

verschil in brekingsindex (Δn) **†**

UNIVERSITEIT Nanofotonisch?

Nanofotonisch?

UNIVERSITEIT

Lichtgeleiding in vezels en chips

Communicatie over vezel

00101010101001000111111010000

50 Mbps I DVD per 15 min afstand 100 m

10 Gbps I DVD per 5 sec afstand 100 km

00101010101001000111111010000

>10 Tbps = 1000 Gbps >1000 DVDs per 5 sec afstand 100 km

multiplexing

00101010101001000111111010000

00101010101001000111111010000

00101010101001000111111010000

00101010101001000111111010000

GEN1

Nanofotonisch? UNIVERSITEIT

Nanofotonische structuren?

Twee componenten in meer detail:

Roosterkoppelaar

Ringresonator

Roosterkoppelaar

Roosterkoppelaar

Roosterkoppelaar 600 nm **Silicium** 70 nm Oxide

Ringresonatoren zijn filters

Golflengte (de)multiplexing

Gevoelig voor nanometers

UNIVERSITEIT GENT

17

Nanofotonisch?

18

UNIVERSITEIT Nanofotonisch? Ionenbundels

Fabricage: optische lithografie

193 nm diep-UV lithografie
(gebruikt voor Pentium4 processoren)

Fabricage: imprint lithografie

- Optische / imprint lithografie = kopiëren
 - Paralelle techniek: vele structuren tegelijk
 - Goedkoop voor grote volumes, duur voor kleine volumes
- Seriële technieken:
 - voor maskers en stempels
 - voor prototypes

Gefocusseerde ionenbundels

Gefocusseerde ionenbundels

Gefocusseerde ionenbundels

Optische verliezen

Gas versterkt etsen

- Jodium gas (dijood)
- Versneld etsproces
- Minder ionen = minder schade

Wat is er aan de hand?

Gewone roosterkoppelaar

Even goed als bestaande technieken!

UNIVERSITEIT

GENT

34

Koppelefficientie (dB) -6.0 dB = 25 % -6 Gemaakt met -8 optische lithografie -10 -12 Gemaakt met FIB -14 -16 -18 -20 1500 1480 1520 1540 1560 1580 1600 1620 1640 1660

Golflengte (µm)

Schuine roosterkoppelaar

UNIVERSITEIT

GENT

Verticale koppeling?

FIB schrijven stempel + imprint

Schrauwen et al. US Patent Pending (2008)

Ringresonatoren zijn sensoren

Ringresonatoren zijn sensoren

Ringen met sleuf zijn gevoeliger

Sleuven gemaakt met FIB

Schrauwen et al. IEEE Photonics Technology Letters, vol. 20(23), p.2004 (2008)

UNIVERSITEIT GENT

Fabricage van nanofotonische structuren met gefocusseerde ionenbundels

publieke verdediging Jonathan Schrauwen

Promotor: Prof. Dries Van Thourhout

Vakgroep Informatietechnologie Faculteit Ingenieurswetenschappen

4 februari 2009

UNIVERSITEIT Nanofotonisch?