Advanced Germanium Devices For Optical Interconnects

Srinivasan Ashwyn Srinivasan

INTERNET PROTOCOL TRAFFIC

GHENT

UNIVERSITY

unec

Kachris, C., & Tomkos, I. (2012). A survey on optical interconnects for

data centers. IEEE Communications Surveys & Tutorials, 14(4), 1021-1036.

Source: Cisco Global Cloud Index, 2015-2020.

1000 MB	1 Gigabyte	
1000 GB	1 Terabyte	
1000 TB	1 Petabyte	
1000 PB	1 Exabyte	
1000 EB	1 Zettabyte	

Cisco Global Cloud Index, Forecast and Methodology for 2015-2020, 2016.

INTERNET PROTOCOL TRAFFIC

DATA CENTER: GOOGLE, MAYES COUNTY, OKLAHOMA, US

150×240 m² = 5× Anfield (Liverpool FC)

CHALLENGES IN THE DESIGN OF THE DATA CENTERS

- 1. Computation speed
- 2. Interconnection speed

```
0.5s delay
Google 20%↓
0.1s delay
```

amazon 1%

GHEN1

UNIVERSITY

Asghari, M., & Krishnamoorthy, A. V. (2011). Silicon photonics: Energy-efficient communication. *Nature photonics*, *5*(5), 268.

CHALLENGES IN THE DESIGN OF THE DATA CENTERS

Asghari, M., & Krishnamoorthy, A. V. (2011). Silicon photonics: Energy-efficient communication. Nature photonics, 5(5), 268.

unec

GHEN

UNIVERSITY

centers

Krishnamoorthy, A. V., Goossen, K. W., Jan, W., Zheng, X., Ho, R., Li, G., ... & Schwetman, H. (2011). Progress in low-power switched optical interconnects. IEEE Journal of selected topics in quantum electronics, 17(2), 357-376.

CHALLENGES IN THE DESIGN OF THE DATA CENTERS

Asghari, M., & Krishnamoorthy, A. V. (2011). Silicon photonics: Energy-efficient communication. *Nature photonics*, *5*(5), 268.

GHEN^T

UNIVERSITY

Krishnamoorthy, A. V., Goossen, K. W., Jan, W., Zheng, X., Ho, R., Li, G., ... & Schwetman, H. (2011). Progress in low-power switched optical interconnects. *IEEE Journal of selected topics in quantum electronics*, *17*(2), 357-376.

https://www.independent.co.uk/environment/globalwarming-data-centres-to-consume-three-times-as-muchenergy-in-next-decade-experts-warn-a6830086.html 7

ELECTRICAL INTERCONNECTS

For long distance communication (> 3 m), power consumption is significant due to:

- 1) Skin effect losses
- 2) Dielectric losses

unec

GHEN1

UNIVERSITY

Krishnamoorthy, A. V., Thacker, H. D., Torudbakken, O., Müller, S., Srinivasan, A., Decker, P. J., ... & Dignum, M. (2017). From Chip to Cloud: Optical Interconnects in Engineered Systems. *Journal of Lightwave Technology*, *35*(15), 3103-3115.

Power consumption

ELECTRICAL \rightarrow OPTICAL INTERCONNECTS

GHENT

© 2006 Encyclopædia Britannica, Inc.

Requirements for optical interconnects:

OPTICAL INTERCONNECT

UNIVERSITY

Light, instead of electricity, is used to carry information

OPTICAL INTERCONNECTS IN DATA CENTERS

MMF- Multi mode fiber SMF - Single mode fiber

	Server to TOR (<3 m)	TOR to Leaf (3-20 m)	Leaf to Spine (400-2000 m)	Spine to Core (500-2000 m)
Deployed today	10G Cu	40G MMF	40G MMF	40G SMF
Being upgraded	25G Cu	100G SMF	100G SMF	100G SMF
For future	50/100G Cu	400G SMF	400G SMF	400G SMF

Brad Booth and Tom Issenhuth, Global Networking Services: Objectives to Support Cloud Scale Data Center Design, 2013.

OPTICAL TRANSCEIVER

UNIVERSITY

Optical transceiver \rightarrow Optical transmitter and receiver A component used to transmit-receive optical signals.

Cartoon

Laser array

Light coupler

Modulator

Fiber coupler

Cross-section Switch ASIC/FPGA **Optical Module** 111111 **DFB LD Array** package LC MOD **Optical Module** Fiber Array Coupler PD Photodetector CMOS (de)MUX (de)Multiplexer DFB LD Array TIA CTRL DRV FC MOD PD LC FC (de)MUX TSV TSV Through Silicon Vias **Electrical driver** DRV Light source Modulator TIA Transimpedance Amplifier CTRL Controller circuit Photodetector Transport medium **GHEN1**

OPTICAL TRANSCEIVER

mec

UNIVERSITY

Michal Rakowski, Silicon Photonics Platform for 50G Optical Interconnects, In Photonics Summit and Workshop 2017.

SILICON PHOTONICS

Al-contact pads Metal 1 (Cu) Passivation Metal Heater (W) Poly-Si Contacts (W) Ge epi Advanced Strip Ge Photodetector Shallow Rib 2µm **Deep Rib** WG Grating BOX **PN Modulator PN Modulator** Coupler 200mm Si Substrate

Material platform based on Si to realize optical transceivers

imec's 200mm Silicon photonics platform

Pantouvaki, M., Srinivasan, ... & Absil, P. (2017). Journal of Lightwave Technology, 35(4), 631-638.

GHEN[®]

UNIVERSITY

unec

Devices	Material	Status
Photodetector	Ge	Yes
Micro Ring modulator (MRR)	Si	Yes
Mach Zehnder Modulator (MZM)	Si	Yes
Grating couplers/ Light coupler/ Fiber couplers	Si	Yes
(de)MUX filters	Si	Yes
Light source (Laser diode)	??	None

Need for monolithically integrated light source!!

GERMANIUM DEVICES FOR OPTICAL INTERCONNECTS

Active medium	Temp (K)	J _{th} (P _{th}) – current density	$\lambda(nm)$
III-V Quantum dot	300	< 1 kA/cm ²	1310
P-doped Ge	300	280-510 kA/cm ²	1576-1650

Modulators	Opt. BW	Speed	Power consumption
Si MZM	> 80 nm	22 GHz	750 fJ/bit
Si MRR	< 0.2 nm	47 GHz	12.8 fJ/bit
Ge FKE EAM	~ 30 nm	40 GHz	<mark>60</mark> fJ/bit
Ge QCSE EAM	~ 20 nm	23 GHz	16 fJ/bit

Evaluate Ge modulators and Ge Laser Diodes are technologically viable for Optical Interconnect applications while addressing:

- 1) Power consumption:
 - a) <50 fJ/bit for Ge modulator
 - b) <10 kA/cm² for Ge laser
- 2) Speed:
 - a) ≥50 GHz
- 3) Operating wavelength:
 - a) C and L band
 - b) If feasible, O band

med

Wirths, S., Geiger, R., Von Den Driesch, ... & Sigg, H. (2015). Nature photonics, 9(2), 88.

Camacho-Aguilera, R. E., et al. Optics Express, 20(10), 11316–20,

Bao, S., Kim, D., ... & Wang, H. (2017). Nature communications, 8(1), 1845.

O. Chaisakul, (2013). Science and Technology of advanced materials, 15(1):014601. Pantouvaki, M., Srinivasan, ... & Absil, P. (2017). Journal of Lightwave Technology, 35(4), 631-638. Feng, D.,... & Asghari, M. (2013). IEEE Journal of Selected Topics in Quantum Electronics, 19(6), 64-73.

LIGHT EMISSION FROM DIRECT BANDGAP MATERIAL

UNIVERSITY

Undoped and unstrained Ge

0.2 % biaxially strained and n-type doped Ge

GE LASER: REQUIREMENTS

GHEN1

UNIVERSITY

unec

Design target for $J_{th} < 10 \text{ kA/cm}^2$:

- 1. Lifetime > 10 ns.
- 2. Doping level as high as 1×10^{20} cm⁻³.

CARRIER LIFETIME IN UNDOPED GE

 $\widehat{\blacksquare}$

UNIVERSITY

mec

• Measured lifetime < targeted 10 ns.

P-doped Ge on 1 μ m Ge Virtual Substrate

Highest active P concentration:

- As grown \rightarrow 6.2×10¹⁹ cm⁻³
- Rapid thermal annealed $\rightarrow 5.9 \times 10^{19}$ cm⁻³ Less than targeted 1×10²⁰ cm⁻³

Shimura, Y., Srinivasan, S. A., Van Thourhout, D., Van Deun, R., Pantouvaki, M., Van Campenhout, J., & Loo, R. (2016). Enhanced active P doping by using high order Ge precursors leading to intense photoluminescence. *Thin Solid Films*, 602, 56-59.

UNIVERSITY

mec

CARRIER SCATTERING STUDY: PL SPECTROSCOPY

GHEN1

UNIVERSITY

Srinivasan, S. A., Porret, C., Pantouvaki, M., Shimura, Y., Geiregat, P., Loo, R., ... & Van Thourhout, D. (2017). Analysis of homogeneous broadening in n-type doped Ge layers on Si for laser application. In 30th Annual Conference of the IEEE Photonics Society (IPC) (pp. 311-312).

TRANSIENT ABSORPTION SPECTROSCOPY (TAS)

- The measurement is performed in transmission mode.
- Change in absorption coefficient of the probe beam as a function of time is tracked.

GHEN1

UNIVERSITY

CARRIER SCATTERING STUDY: TRANSIENT ABSORPTION

 $\widehat{}$ Carrier scattering induced broadening \rightarrow suppressed and broadened OBE spectrum \rightarrow caused by dopants.

S. A. Srinivasan, et al., IEEE GFP, (2017).

GHEN1

UNIVERSITY

CARRIER SCATTERING STUDY: TRANSIENT ABSORPTION SPECTROSCOPY

Reduced lifetime due to dopants.

S. A. Srinivasan, et al., IEEE Photonics Conference, (2017).

UNIVERSITY

GE LASER: CONCLUSION

GHEN[®]

UNIVERSITY

mec

Solid line \rightarrow with no linewidth broadening. Dotted line \rightarrow with linewidth broadening Γ_{opt} = 45 meV.

Possible operating regime

Difficult to demonstrate an energy efficient P-doped Ge laser for optical interconnect applications.

26

ELECTRO-ABSORPTION MODULATOR (EAM)

Pipe and valve analogy

 $\frac{\text{Ideal scenario:}}{\text{Open} \rightarrow \text{no loss}}$ $\text{Closed} \rightarrow \infty \text{ loss}$

UNIVERSITY

<u>Reality</u>: Open \rightarrow Insertion loss (IL) Closed \rightarrow Extinction Ratio (ER)

Factors determining the performance of a modulator:

GESI FRANZ-KELDYSH EFFECT EAM: STATIC PERFORMANCE - I

unec

UNIVERSITY

Electrical voltage modulates the intensity of light at the output of the waveguide.

GESI FRANZ-KELDYSH EFFECT EAM: STATIC PERFORMANCE - II

Low FOM due to indirect bandgap material.

unec UNIVERSITY

GHEN1

Srinivasan, S. A., Pantouvaki, M., Gupta, S., Chen, H. T., Verheyen, P., Lepage, G., ... & Van Campenhout, J. (2016). Journal of Lightwave Technology, 34(2), 419-424.

Srinivasan, S. A., Verheyen, P., Loo, R., De Wolf, I., Pantouvaki, M., Lepage, G., ... & Van Campenhout, J. (2016, March). In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1-3). IEEE.

GESI FRANZ-KELDYSH EFFECT EAM: DYNAMIC PERFORMANCE

 $\widehat{\blacksquare}$

UNIVERSITY

Enables 50 Gb/s NRZ-OOK modulation due to compact geometry and low junction capacitance. Power consumption 29 fJ/bit.

DEMONSTRATORS USING GESI EAM: 896 GB/S

GeSi EAM array

UNIVERSITY

unec

GeSi PD array

De Heyn, P., Kopp, V. I., Srinivasan, S. A., Verheyen, P., Park, J., Wlodawski, M. S., ... & Lepage, G. (2017, March). Ultra-dense 16×56Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896Gb/s optical links. In Optical Fiber Communications Conference and Exhibition (OFC), 2017 (pp. 1-3). IEEE.

GESI QUANTUM CONFINED STARK EFFECT EAM

To boost the FOM of GeSi FKE EAM \rightarrow GeSi QCSE EAM.

I GHENT

UNIVERSITY

GESI QUANTUM CONFINED STARK EFFECT EAM

Device cross-section

S. A. Srinivasan, C. Porret, E. Vissers, P. Geiregat, D. Van Thourhout, R. Loo, M. Pantouvaki, J. Van Campenhout, ``High-contrast quantum-confined Stark effect in Ge/SiGe quantum well stacks on Si with ultra-thin buffer layers," submitted to *CLEO Racific Rim*, Hong Kong, 2018.

GESI QUANTUM CONFINED STARK EFFECT EAM

FOM $(\Delta \alpha / \alpha) \approx 1.75$ for 1 V swing \rightarrow > 2× better than Ge FKE EAM.

Future perspectives:

GHEN1

UNIVERSITY

- 1. Demonstrate waveguide integrated device \rightarrow reevaluate FOM.
- 2. Demonstrate demonstrating at speeds >50 GHz.

S. A. Srinivasan, C. Porret, E. Vissers, P. Geiregat, D. Van Thourhout, R. Loo, M. Pantouvaki, J. Van Campenhout, ``High-contrast quantum-confined Stark effect in Ge/SiGe quantum well stacks on Si with ultra-thin buffer layers," submitted to *CLEO Racific Rim*, Hong Kong, 2018.

CONCLUSION: ADVANCED GE DEVICES FOR OPTICAL INTERCONNECTS

• *P-doped Ge laser on Si* \rightarrow Difficult to achieve energy efficient laser due to:

	Carrier Lifetime	Doping Level	Linewidth Broadening	J _{th} (kA/cm²)
Target	> 10 ns	1×10 ²⁰ cm ⁻³	< 10 meV	< 10
Reality	< 0.3 ns	5.35×10 ¹⁹ cm ⁻³	≥ 45 meV	> 1000

• Ge based electro absorption modulator:

unec

UNIVERSITY

Modulators	FOM ($\Delta \alpha / \alpha$)	Opt. BW	Speed	Power
Si MZM	0.47 for 2.5 Vpp	>80 nm	22 GHz	750 fJ/bit
Si MRR	0.72 for 1.5 Vpp	<0.2 nm	47 GHz	12.8 fJ/bit
Ge FKE EAM	1.2 for 3 Vpp	~ 30 nm	40 GHz	60 fJ/bit
Ge QCSE EAM	1.46 for 5 Vpp	~ 30nm	23 GHz	16 fJ/bit
GeSi FKE EAM (This work)	0.93 for 2 Vpp	~ 30 nm	>50 GHz	29 fJ/bit
Ge QCSE EAM (This work)	1.75 for 1 Vpp	~ 20nm	??	??

O. Chaisakul, (2013). *Science and Technology of advanced materials*, 15(1):014601.

Feng, D.,... & Asghari, M. (2013). *IEEE Journal of Selected Topics in Quantum Electronics*, 19(6), 64-73.

ACKNOWLEDGEMENTS

Dries Van Thourhout, Joris Van Campenhout, Marianna Pantouvaki

່ເກາຍເ

C. Porret, Y. Shimura, G. Lepage, P. Verheyen, Y. Ban, P. De Heyn, E. Vissers, P. Absil, D. Cott, R. Loo, A. Prabhulinga, R. Paul, S. Anand, B. Snyder, N. Mangal, C. Alessandri, I. Kulkova, S. Balakrishnan, S. Lardenois, J. De Coster, S. Jansen, I. De Wolf.....

J. Verbist, B. Kuyken, U. Dave, R. Van Laer, A. Malik, Y. Zhu, Y. Shi, B. Tian, Z. Wang, P. Geiregat.....

PHOTONICS RESEARCH GROUP

- E srinivasanashwyn.srinivasan@ugent.be
- T +32 1 628 7982

www.photonics.intec.ugent.be

AND ARCHITECTURE

