BEHAVIOURAL MODELS, PARAMETER EXTRACTION AND YIELD PREDICTION FOR SILICON PHOTONIC CIRCUITS

Yufei Xing

MAGIC OF INTEGRATION

Quantum computer prototype

Integrated Circuit

GHENT

UNIVERSITY

Circuit

Quantum silicon chip Wang, J. et al. Science 2018 2

SILICON PHOTONICS CIRCUITS

1999 2003: 'Photonic wire'

Silica-on-Silicon Contrast: 1.46 to 1.44 Bend radius = 2cm

GHENT

UNIVERSITY

ເກາຍc

Silicon-on-Insulator Contrast: 3.45 to 1 Bend radius = 5µm

LARGE-SCALE PHOTONIC INTEGRATION IS HERE

Large-scale integration

- Complexity
- Functionality

Photonic switch Cheng, et al., *Optics Express 2018*

Neuromorphic photonic computer Y. Shen and N. Harris et al, *Nature Photonics 2017*

THE SIZE OF LARGE-SCALE PHOTONIC CIRCUIT

4096 optical components

Large-scale nanophotonic phased array

J. Sun, Nature 2013

SILICON PHOTONICS ARE SENSITIVE

- Process variation
 - 2 nm variation in width
 - \Rightarrow 1 nm shift in resonance
 - 1 nm variation in thickness
 - ⇒ 1 nm shift in resonance
- Operational condition:
 Temperature

unec

GHENT

UNIVERSITY

TRANSMISSION SPECTRUM OF MZI COPIES ON A DIE

A 300-mm Silicon Photonics Platform for Large-Scale Device Integration, T. Horikawa et al, *JSTQE* 2018

IIII GHENT

UNIVERSITY

unec

Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability, Z. Lu et al, *OE* 2017

Waveguide unit-length loss map

Path to Silicon Photonics Commercialization: The Foundry Model Discussion, A. Lim et al., *Silicon Photonics iii* 2015

9

A QUICK ESTIMATION

- A circuit: 100 components
- 1% failure for each component
- Cascaded circuit: almost 100% failure

- Even every component works
- Continuous contribution
- Variation propagates and accumulates

VARIABILITY AT DIFFERENT LEVELS

This is what we need to predict yield (during design)

process conditions

...

GHENT

UNIVERSITY

exposure dose resist age plasma density slurry composition

unec

device geometry

...

w1

silicon dioxide

line width layer thickness sidewall angle doping profile

This is what we measure

optical device properties

effective index group index coupling coefficients center wavelength

circuit properties

• • •

optical delay path imbalance tuning curve

Lring

system performance

insertion loss crosstalk noise figures power consumption

Bogaerts & Chrostowski, LPR 2018 11

...

VARIATION: RANDOM?

 $\widehat{\blacksquare}$

UNIVERSITY

- Variation
 - totally random (linewidth, thickness)
 - Normal distribution
- Monte-Carlo: using the normal distribution ٠
- Stochastic analysis method to reduce prediction cost
- ? Is variation random?
- ? How can we know the statistics of linewidth

and thickness?

Xing et al., Photonics Research 2016

NOT RANDOM: LOCATION-DEPENDENT

Circuit parameters are not random, they are correlated:

- Systematic + random
- Nearby circuits have similar behavior
- The exact location of a circuit matters

THREE COMPONENTS OF REALISTIC YIELD PREDICTION

Detailed Parameter Extraction

Spatial Variation Model

Location and Layout-Aware Yield Prediction

PARAMETER EXTRACTION

PARAMETER MAP

Expected

- Detailed
- Accurate

GHEN⁻

UNIVERSITY

• Non-destructive

unec

INLINE METROLOGY

Number of measurement sites:

- Width: 5 (CD-SEM)
- Thickness: 9 or 49 obtained before the lithography (profilometer)

Not on the site of interest

OPTICAL MEASUREMENTS OF RINGS

- Extract parameters (n_{eff}, n_g) using wafer scale measurements
- Link n_{eff} , n_g to width and thickness
- Cannot separate straight and bend waveguide

GHENT

UNIVERSITY

mec

17

OPTICAL MEASUREMENTS OF RINGS

- Cannot separate straight and bend waveguide
- Accuracy: ~nm

າກອດ

 $\widehat{\blacksquare}$

GHEN1

UNIVERSITY

- Cannot decide the interference order (right effective index)
- 20% data are discarded

OPTICAL MEASUREMENTS OF TWO MZIS

Spectrum

GHENT

UNIVERSITY

• n_{eff} , n_g : Straight waveguide

mec

Length difference between two arms

Low order

- Inaccurate extraction
- Tolerant to overall variation
- Set reference effective index

High order

Accurate extraction of group index and effective index

Xing et al., Photonics Research 2018

DISCUSSION ON PARAMETER BOUNDARY

- Determine n_{eff} with information on n_g
- Allow to use higher-order MZI for to reduce extracted parameter uncertainty

WORKFLOW TO EXTRACT GEOMETRY PARAMETERS

GHEN1

UNIVERSITY

unec

Extraction uncertainty: Width: 0.37 nm

Thickness: 0.26 nm

Xing et al., Photonics Research 2018

MEASUREMENT SITES

GHENT

UNIVERSITY

umec

LINEWIDTH DIE MAP

(b)

EXTRACTED FABRICATED LINEWIDTH WAFER MAP

IMPROVED PROCESS CONTROL MONITORING CIRCUIT

FITTING CURVE USING GLOBAL OPTIMIZATION ALGORITHM

- Conventional curve fitting methods fail to find the global optimum
- Global optimization algorithm such as CMA-ES or EGO
- Find solution with less than 20,000 evaluations

PROCESS MONITORING CIRCUIT

	Obtained	Fitting		Obtained	Fitting
	Value	Error		Value	Error
$n_{eff,1}$	2.356	1.456e-6	$\frac{d\kappa'}{d\lambda}$	2.149e-1	9.147e-5
$n_{g,1}$	4.228	1.322e-4	$\frac{d\kappa'^2}{d^2\lambda}$	1.990	4.060
$n_{eff,2}$	2.356	2.284e-7	к0	2.315e-1	7.852e-5
$n_{g,2}$	4.220	2.105e-5	$\frac{d\kappa_0}{d\lambda}$	1.438	1.266e-2
к'	4.173e-2	5.863e-6	$\frac{d\kappa_0^2}{d^2\lambda}$	8.110e-1	6.325e-2

Very small fitting error

GHENT

UNIVERSITY

unec

INTERPOLATED WIDTH MAP

GHENT

UNIVERSITY

unec

WIDTH

GHENT UNIVERSITY

ເກາຍc

number	5841	
Mean [nm]	464.6792	
Std [nm]	4.5894	
Max [nm]	476.0061	
Min [nm]	450.8493	
Max-Min [nm]	25.1568	
Mid [nm]	464.4049	

INTERPOLATED THICKNESS MAP

GHENT

UNIVERSITY

unec

GHENT UNIVERSITY

ເກາຍc

number	5841	
Mean [nm]	210.3328	
Std [nm]	0.8249	
Max [nm]	214.2786	
Min [nm]	208.3510	
Max-Min [nm]	5.9276	
Mid [nm]	210.1934	

SPATIAL VARIATION MODEL

VARIABILITY EFFECTS WORK ON DIFFERENT SCALES

INTRA-WAFER VARIATION

- A symmetric radial pattern
- Random die-to-die
 variation: fluctuation in
 lithography exposure
 dose and imaging focus

Intra-wafer exposure dose layer thickness plasma density CMP pattern Photoresist spinning

INTRA-DIE VARIATION

- Systematic variation
 - Low frequency change in layer thickness
 - Local pattern density
 - Error in the photomask
- Random variation

intra-die

- Intrinsic randomness in layer local pathickness
 layer the layer the
- Roughness in sidewalls

local pattern density layer thickness lithography nonuniformity

distance

HIERARCHICAL SPATIAL VARIATION MODEL

GHENT

UNIVERSITY

unec

- V_{LTL}: Lot-to-lot
- V_{WTW}: Wafer-to-wafer
- *V_{IWS}: Intra-wafer systematic*
- *V_{IWR}: Intra-wafer random*
- *V_{IDS}: Intra-die systematic*
- *V_{IDR}: Intra-die random*
- *V_{WDI}: Wafer-die interaction*

IWS WIDTH MAP

GHENT

UNIVERSITY

ເກາຍc

Width_IWS	nm
Max	471.3835
Min	454.9698
Max_interp	471.4
Min_interp	452.0
Max-Min	16.4137

IWS THICKNESS MAP

GHENT

UNIVERSITY

ເກາຍc

Thickness_IWS	nm
Max	211.9885
Min	209.4005
Max_interp	212.6
Min_interp	209.4
Max-Min	2.5880

IWR WIDTH MAP

Intra-Wafer Random Width Variation [nm]

Width_IWR	nm
Max	3.8284
Min	-3.3994
Max-Min	7.2278
Mean	0.0383
STD	1.6760

IWR THICKNESS MAP

Thickness_IWR	nm
Max	0.8449
Min	-1.0382
Max-Min	1.8831
Mean	0.0014
STD	0.3316

IDS WIDTH VARIATION

Width_IDS	nm
Max	1.52
Min	-2.52
Max-Min	4.04

IDS THICKNESS MAP

Thickness_IDS	nm
Max	0.40
Min	-0.51
Max-Min	0.91

INTERPOLATED WIDTH MAP

GHENT

UNIVERSITY

unec

Variation	nm
IWS	15.79
IDS	3.87
WDI	1.87
IWR	1.47
IDR	1.10

INTERPOLATED THICKNESS MAP

GHENT

UNIVERSITY

unec

Variation	nm
IWS	2.53
IDS	0.86
WDI	0.31
IWR	0.34
IDR	0.34

SYSTEMATIC VARIATION DOMINATES IN THE PROCESS VARIATION

	Variation		Percentage [%]			
	Width	Thickness	Width		Thickness	
IWS [nm]	16.41	2.59	65.1	81 1	43.9	50.3
IDS [nm]	4.04	0.91	16.0	01.1	15.4	39.5
IWR [nm]	1.68	0.33	5.2		10.6	
IDR [nm]	1.10	0.34	3.4	19.9	10.9	40.7
WDI _{block} [nm]	3.4	0.6	10.5		19.2	
Max Variation Measured [nm]	25.2	5.9				

IDS VARIATION

- errors in the photomask
 - pattern stitching errors
 - writing errors
 - particles on the mask
- aberrations in the lithography projection optics
- designed layout patterns, pattern density

PATTERN DENSITY RELATED VARIATION

- chemistry of the plasma
 - photoresist/etch waste products
 - etch rate, selectivity and anisotropy
 - a variation in etch depth and line width
 - local over-etching => attack on the sidewalls
- Chemical Mechanical Polishing (CMP)
 - Planarization: the presence and density of the material to be polished
 - Large areas without patterns => erosion and dishing => different remaining thickness

PATTERN DENSITY MAP VS GAUSSIAN FILTER RADIUS

I GHENT

UNIVERSITY

PATTERN DENSITY VS. IWS WIDTH

UNIVERSITY

52

CORRELATION VS GAUSSIAN FILTER RADIUS

- IDS width correlates most with the pattern density within a radius of ~200 µm (σ=69µm)
- No correlation between pattern density and the IDS thickness
- to predict photonic circuit yield

າກອດ

UNIVERSITY

 to optimize the circuit layout to minimize the effect of local pattern density

MONTE-CARLO SIMULATIONS FOR YIELD PREDICTION

CONSTRUCT VIRTUAL WAFER MAPS

GHENT

Thickness map

-0.225

EXAMPLE: MZI LATTICE FILTER

Simple (but sensitive) building blocks

- directional couplers
- waveguide delay lines

Requirements:

• peak wavelength within band

N stages

(taps)

• rejection ratio

intraband ripple

nnec

• FSR

in1

٠

GHEN

UNIVERSITY

FILTER IMPLEMENTATION

dispersive

100

200

300

400

٠

٠

0

FSR = 800GHz (~6.4nm)

Pass-band = 80GHz

Guard band = 80GHz

GHENT

UNIVERSITY

Crosstalk (rejection) = -15dB

Center wavelength = 1.55um

-20-40

unec

-100

500

600

700

80

61

MONTE-CARLO SIMULATIONS OVER A WAFER

10mm spacing

GHENT

277 dies on a wafer

Using CAPHE circuit simulator (Luceda)

1000 wavelength points

OVERALL YIELD

All specs combined:

- Center wavelength = $1.55\mu m \pm 80 GHz$
- Crosstalk (rejection) = -15dB
- Intraband ripple = 1dB
- FSR = 800GHz ± 40GHz
- Peak insertion loss > -1dB

unec

GHENT

UNIVERSITY

67.4%

9.8%

22.8%

YIELD MAPS

Without absolute wavelength spec

GHENT

With absolute wavelength spec: $peak = 1.55 \mu m \pm 80 GHz$

nec

 $\widehat{\blacksquare}$

UNIVFRSIT

Variability determines the yield of circuits

Need layout-aware yield prediction

- Accurate parameter extraction
- Realistic variation model
- Layout-aware yield prediction

CONFIDENTIAI

66

WHAT HAVE WE DONE?

Parameter Extraction

- Extracted of waveguide and DC parameters
- Extracted of linewidth and thickness
- Improved extraction methods to be tolerant to process variations and spectral fringes and noise

Hierarchical spatial variability model

- Established workflow to separate variations
- Found correlation between pattern density and IDS width variation

Yield prediction

- Accelerated variability analysis using stochastic analysis methods
- Generated virtual wafer maps for realistic yield estimation

MANY THANKS TO...

- the FWO project
- the MEPIC project
- Luceda Photonics

- Wim and the complete *photonics*-group
- The people in SUMO group involved in variability analysis

PHOTONICS RESEARCH GROUP

grant G013815N

MEPIC project

ANY QUESTIONS?...

TOLERANT MZI DESIGN

SYSTEMATIC INTRA-WAFER VARIATION

Xing et al., GFP 2018 71

GHENT UNIVERSITY

DENTIAL 74

GHENT UNIVERSITY

ເງຍອ

CONFIDENTIAL 78

I GHENT

UNIVERSITY

I GHENT

UNIVERSITY

CONFIDENTIAL

80

SAMPLING POINTS IN THE LAYOUT

All building blocks with a model will sample all variables (w, t)

• waveguides: n_{eff} , n_g

• Sampling points are aggregated over the component: results in averaging, same as in fabricated devices

