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OUTLINE

Introduction:
● Technique to improve: flow cytometry
● Approach: machine learning and neural networks
● Problem: microparticle classification algorithms limit the speed of flow cytometry
● Solution: a hardware-based machine learning approach

White blood cell hologram classification

Dimensionality expansion with dielectric scatterers

Development of flow cytometry experiment

Final experiment results
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INTRODUCTION
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A WORLD OF INTERESTING MICROPARTICLES

Liquids can host huge numbers and varieties of microscopic objects and life forms, for example:

● cells in blood
● microbes in water and food
● pollutants (e.g. microplastics) in water
● plankton in the ocean
● ...

Images from Wikipedia.org



5

NUMBERS MATTER

Wikipedia.org

Statistical validity of scientific studies or detection of rare objects often require a large number of single-
object measurements
→ Flow cytometry allows to analyse microscopic objects one by one, in a flow at high speed
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Applications:
● Biological analysis of heterogeneous 

cell populations
● Cell sorting, to automatically isolate 

specific cell types 
● Detection of circulating tumor cells in 

blood 
● Blood analysis to monitor immune 

status
● Monitoring of waterborne microbes for 

water treatment and reuse
● Bacteria viability in probiotic products
● ...
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NUMBERS MATTER

Wikipedia.org

Statistical validity of scientific studies or detection of rare objects often require a large number of single-
object measurements
→ Flow cytometry allows to analyse microscopic objects one by one, in a flow at high speed

Applications:
● Biological analysis of heterogeneous 

cell populations
● Cell sorting, to automatically isolate 

specific cell types 
● Detection of circulating tumor cells in 

blood 
● Blood analysis to monitor immune 

status
● Monitoring of waterborne microbes for 

water treatment and reuse
● Bacteria viability in probiotic products
● ...

The related scientific community aims to make cytometers more compact, cheap, easy to use and fully 
automatic, to enable versatile and in-situ implementations



8

POWERFUL AUTOMATIC ANALYSIS WITH MACHINE LEARNING
Machine learning (1959): algorithms learn to carry out a task through experience

Example task: written digits classification  

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

...

From MNIST dataset

Training samples

Training of machine 
learning model

Test of machine 
learning model

Test samples

U
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INSPIRED BY THE BRAIN

Images from Wikipedia.org

Data Solution

Neural network (NN) models have grown more and more powerful in the past 
decade, outperforming humans in complex tasks such as image and speech 
recognition, lip reading, chess, etc...
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Data Solution

Neural network (NN) models have grown more and more powerful in the past 
decade, outperforming humans in complex tasks such as image and speech 
recognition, lip reading, chess, etc...

The larger the network, the higher the 
computational cost 
➔ trade-off between speed, compactness and cost
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INSPIRED BY THE BRAIN

Images from Wikipedia.org

Data Solution

Neural network (NN) models have grown more and more powerful in the past 
decade, outperforming humans in complex tasks such as image and speech 
recognition, lip reading, chess, etc...

The larger the network, the higher the 
computational cost 
➔ trade-off between speed, compactness and cost

Hardware-based NNs can greatly improve 
efficiency and speed

However they are usually difficult to train… we take 
a shortcut
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CONVENTIONAL FLOW CYTOMETRY

Image: https://commons.wikimedia.org/wiki/File:Cytometer.svg
License: https://creativecommons.org/licenses/by/3.0/deed.en

High throughput (~100,000 cell/s)

Fluorescent labels:
● often hinder live cell analysis
● additional cost and effort

Image: 
https://en.wikipedia.org/wiki/Flow_cytometry#/media/File:Picoplancton_cyto
metrie.jpg
License: https://creativecommons.org/licenses/by-sa/2.5/deed.en
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LABEL-FREE IMAGING FLOW CYTOMETRY

Monocyte T cell Granulocyte
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LABEL-FREE IMAGING FLOW CYTOMETRY

Monocyte T cell Granulocyte

Inline digital holographic 
microscopy
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LABEL-FREE IMAGING FLOW CYTOMETRY

Monocyte T cell Granulocyte
Main bottlenecks:
● computational cost of classification
● camera frame rate (up to ~1000 particles/s)

➔ but several holograms could be acquired 
in parallel

Inline digital holographic 
microscopy
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HIGH THROUGHPUT IMAGING WITH OPTOFLUIDIC TIME-
STRETCH MICROSCOPY

Hirofumi Kobayashi, et al. “Label-free detection of cellular drug responses by high-throughput bright-field 
imaging and machine learning”. Scientific reports, 2017
License: Creative Commons Attribution: Attribution 4.0 International. https://creativecommons.org/licenses/
by/4.0/. Accessed: 2021-04-30
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HIGH THROUGHPUT IMAGING WITH OPTOFLUIDIC TIME-
STRETCH MICROSCOPY

Hirofumi Kobayashi, et al. “Label-free detection of cellular drug responses by high-throughput bright-field 
imaging and machine learning”. Scientific reports, 2017
License: Creative Commons Attribution: Attribution 4.0 International. https://creativecommons.org/licenses/
by/4.0/. Accessed: 2021-04-30

➔ Very high-throughput: up to 
100,000 cells/s

But...

● Relatively expensive and 
complicated 

● ~1Tbit/s of continuous 
measurement data!

➔ online operation is 
desiderable!

➔ necessary for cell sorting
➔ need for computationally 

cheap analysis
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w

A SHORTCUT TO EXPLOIT HARDWARE ‘COMPUTATION’

Extreme learning 
machine (ELM)
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HARDWARE-BASED RANDOM DIMENSIONALITY EXPANSION

Extreme learning 
machine (ELM)

*
*

*
*

*

*

*

●●

● ●
●

●
x

y Map to a higher 
dimensional space z'

*

*
* * * **

x'

y' ●●
● ●

●
●

Linearly separable



20

w

HARDWARE-BASED RANDOM DIMENSIONALITY EXPANSION

Extreme learning 
machine (ELM)
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Suitable for hardware 
implementations

Photonics: high-speed, efficient 
parallel processing

Linearly separable
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WHITE BLOOD CELL HOLOGRAM 
CLASSIFICATION
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REAL CELL HOLOGRAMS

“Fast and robust Fourier domain-based classification for on-chip lens-
free flow cytometry,” Bruno Cornelis et al, Optics Express (2018)

Raw hologram

Reconstruction

WBC holograms from Imec collaborators:
● 20,797  monocyte
● 3,753    T cell
● 32,514  granulocyte

Goal: fast classification
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ADDRESSING HOLOGRAM VARIABILITY (NOISE)
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ADDRESSING HOLOGRAM VARIABILITY (NOISE)
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ADDRESSING HOLOGRAM VARIABILITY (NOISE)
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SHORTCUT LEARNING!

WBC classification

High accuracy!
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WBC classification

SHORTCUT LEARNING!

High accuracy!
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WBC classification Only backgrounds

SHORTCUT LEARNING!
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WBC classification Only backgrounds

SHORTCUT LEARNING!

High accuracy!
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WBC classification Only backgrounds

SHORTCUT LEARNING!
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Shortcut learning (measurement bias): 
often ignored or underestimated 

Geirhos, R., et al. “Shortcut 
learning in deep neural networks.” 
Nat. Mach. Intell., 2020

● Cross-validation does not help

● Background subtraction is not sufficient

WBC classification Only backgrounds

SHORTCUT LEARNING!
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TREATMENT OF MEASUREMENT BIAS

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated
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TREATMENT OF MEASUREMENT BIAS

Training setTest set Validation set

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated

Intertwined class measurements address both:
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TREATMENT OF MEASUREMENT BIAS
Effectiveness demonstrated in dedicated 
experiment with microspheres:

Training setTest set Validation set

Measurement bias is a two-fold problem:

1) undermines learning
2) test results are inflated

Intertwined class measurements address both:
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DIMENSIONALITY EXPANSION WITH 
DIELECTRIC SCATTERERS
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RANDOMIZED SIMULATIONS OF CELL ILLUMINATION

7200 FDTD simulations per scatterer configuration
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RANDOMIZED SIMULATIONS OF CELL ILLUMINATION

7200 FDTD simulations per scatterer configuration

Task 1: nucleus size

Task 2: nucleus shape
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NONLINEARITY AND ELM EQUIVALENCE
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NONLINEARITY AND ELM EQUIVALENCE
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NONLINEARITY AND ELM EQUIVALENCE

Small nucleus                Big nucleus
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EXPLORATION OF SCATTERER CONFIGURATION
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DEVELOPMENT OF FLOW CYTOMETRY 
EXPERIMENT
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SETUP EVOLUTION

   Jeremy Vatin   Emmanuel Gooskens
Centrale Supélec           UGent

● measurement bias
● signal-to-background ratio
● bubbles or dirt
● vibrations
● background detection and 

subtraction
● SLM flicker
● feature selection
● exploration and selection of 

scattering media
● few-samples estimation
● motion blur
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HIGH SNR IN ACQUIRED PATTERNS
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EXPLORATION OF SCATTERING LAYERS

More than 40 configurations 
tested!
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FINAL EXPERIMENT RESULTS
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FINAL EXPERIMENT

• No focusing
• Large field of view
• Cheap and simple 

components



48

A SIMPLE, FAST AND VERSATILE CLASSIFIER
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PATTERNS FROM DIFFERENT CLASSES
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ERROR V.S. IMAGE RESOLUTION
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COMPARISON WITH OTHER WORKS

[1]   Heo, Young Jin, et al. “Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip”. Scientific Reports, 2017.
[2]   Cornelis, B., et al. “Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry.” Optics Express, 2018.
[3]   Li, Yueqin, et al. “Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry.” Scientific Reports, 2019.

[1]

[2]

[3]

Potentially close to ~100,000 cell/s
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CONCLUSIONS 

● A simple linear classifier can be applied to particle holograms to provide ultra-fast classification in label-free flow 
cytometry

● On condition that:
➔ the extreme learning machine paradigm is considered
➔ the shortcut learning due to varying measurement conditions is properly treated (we demonstrated a suitable 

methodology)

● The demonstrated approach is simple to employ, versatile and require few cheap components
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CONCLUSIONS 

● A simple linear classifier can be applied to particle holograms to provide ultra-fast classification in label-free flow 
cytometry

● On condition that:
➔ the extreme learning machine paradigm is considered
➔ the shortcut learning due to varying measurement conditions is properly treated (we demonstrated a suitable 

methodology)

● The demonstrated approach is simple to employ, versatile and require few cheap components

● High-throughput with high-speed event-based camera (Muhammed Gouda in Neoteric project)

● Apply our method to cell classification (e.g. WBC)

● Apply method to existent high-throughput imaging systems (e.g. time-stretch microscopy) to enable online 
operations 

● Can scattering layers improve classification in single-pixel configuration?

FUTURE PERSPECTIVES
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INTERPRETATION OF “DIMENSIONALITY EXPANSION”

Dimensionality expansion

Enhanced linear separability

Possible meanings: 1) more features per samples
2) more uncorrelated features
3) more relevant and 

uncorrelated features

redundancy
noise
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A SHORTCUT LEARNING EXAMPLE

Task to learn: 
distinguish seabirds from crows in a picture

Seabird examples Crow examples

In our case:

Nonlinear interaction between cell 
information and background
➔ need to act on measurements!
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TRADE-OFFS

Complexity of the 
model

Number of samples Computational cost

● Training hindered by local optimum 
points

● ↑ complexity           ↑ comp. cost

↑ dimensionality/parameters  

↑ # required samples

↓ # samples             ↑ # comp. cost 

(e.g. k-fold cross-validation)
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TREATMENT OF MEASUREMENT BIAS

Sample generation

Training set Validation set Test set

Training of 
the network

Hyperparameters 
selection

Test of the model

One-way barrier

Conventional validation methods do not solve the problem

Measurement bias is an elusive, two-fold problem:
1) sidetracks the training algorithm → undermines 

learning
2) performance evaluation is also biased → test 

accuracy is inflated

Intertwined class measurements address both:
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1. class - noise correlation is broken in training set
2. training, validation and test sets do not share the 

same measurement conditions

Test set Validation set Training setIn Chapter 5:
● both aspects of meas. bias demonstrated
● removed by intertwined measurements
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TRADE-OFF BETWEEN FIELD OF VIEW AND NUMBER OF 
SAMPLES
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RELATIVE LOSSES WITH 4 SCATTERING LAYERS

Relative to the case 
without scatterers
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INTENSITY IS MORE SPREAD OVER THE IMAGE SENSOR 
USING SCATTERERS
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MANN-WHITNEY U STATISTIC AND KENDALL CORRELATION

Source: Wikipedia

Correlation calculated on pixel pairs
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FIELD OF VIEW...

Possible improvements:
● higher background-to-noise 

ratio
● measure more samples
● explore scattering 

configuration on morphology-
based classification task (e.g. 
WBC)

● partially automatized setup



63

INTERFERENCE PATTERN

     Emmanuel Gooskens
     UGent

Fraunhofer diffraction (far field)

Mie scattering is most suitable when the micorparticle dimension is comparable with the wavelength

Fresnel diffraction (near field)

Inline digital holographic 
microscopy
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DEPENDENCY ON CAMERA POSITION
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FOV ESTIMATION

Frame rate ~ 138 fps, exposure time = 20 us, ~5.5 p/s
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EXAMPLE ARTICLES
Lippeveld, Maxim, Carly Knill, Emma Ladlow, Andrew Fuller, Louise J. Michaelis, Yvan 
Saeys, Andrew Filby, and Daniel Peralta. "Classification of human white blood cells 
using machine learning for stain-free imaging flow cytometry." Cytometry Part A 97, no. 
3 (2020)

● Proper ground truth with manual gating

● Deep learning does not outperform feature engineering

● 8 different types of WBC, but also 3 types classification

● Accuracy < 90%

Tang, Rui, Zunming Zhang, Xinyu Chen, Lauren Waller, Alex Ce Zhang, Jiajie Chen, 
Yuanyuan Han, Cheolhong An, Sung Hwan Cho, and Yu-Hwa Lo. "3D side-scattering 
imaging flow cytometer and convolutional neural network for label-free cell analysis." 
APL Photonics 5, no. 12 (2020)

● Label-free using light sheet and side scattering.

● 92% accuracy WBC classification

● Ground truth with manual gating
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