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Abstract. In order to realise the full potential of eigenmode expansion models, advanced boundary 
conditions are required that can absorb the radiation impinging on the walls of the discretisation volume. 
In this paper, we will discuss and compare a number of these boundary conditions, like perfectly matched 
layers (PMLs), open (leaky mode) boundary conditions and transparent boundary conditions (TBCs). We 
will also introduce the case of PMLs with infinite absorption and discuss its relation to leaky mode 
expansion, leading to a deeper insight into the physics of PML. 

Key words: absorbing boundary conditions, eigenmode expansion, leaky modes, optical modelling, per- 
fectly matched layers, transparent boundary conditions 

1. Introduction 

Vectorial eigenmode expansion models offer a number of advantages over 
other techniques like BPM (Scarmozzino et  al. 2000) or FDTD (Taflove 
1995). Eigenmode methods do not rely on spatial discretisation, but rather 
expand the field in terms of the eigenmodes of each longitudinally invariant 
layer. Because this generally introduces fewer unknowns than models based 
on spatial discretisation, eigenmode expansion techniques tend to be a lot 
faster (Bienstman and Baets 2001). 

A potential problem however with eigenmode methods is that they require 
the structure under study to be enclosed in a metal discretisation volume, in 
order to get a discrete set of radiation modes. This can cause parasitic re- 
flections, as the radiation emitted by a device being modelled cannot escape 
towards infinity, will reflect at the boundary and disturb the simulation re- 
sults. 

Therefore, in order to tap fully into the potential of these methods, it is 
vital to use boundary conditions that are more advanced than the traditional 
hard walls, which reflect all the incident radiation and thus disturb the 
simulation results. In this paper, we will discuss and compare some of these 
advanced boundary conditions. 

A first boundary condition is the so-called perfectly matched layer (PML), 
which we will introduce as a lossless layer with a complex thickness. We will 
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also elucidate the relation between PML modes and the leaky modes of the 
corresponding open structure. Additionally, we will discuss the special case of 
a PML with infinite absorption. 

A second class of boundary conditions is based on Hadley's transparent 
boundary condition (TBC), which is reflectionless for a given angle of inci- 
dence and does not violate the orthogonality of the eigenmodes. 

In this paper, we will discuss and compare these boundary conditions and 
place them in a generalised framework. 

2. Generalised dispersion relation 

Before discussing the boundary conditions themselves, we will propose a 
generalised framework in which all these boundary conditions can be in- 
corporated. To this end, we will derive the dispersion relation for a one- 
dimensional multi-slab waveguide between two generalised boundaries. We 
will concentrate on TE modes, the treatment of TM modes follows along 
similar lines. 

Consider the situation depicted in Fig. 1. The actual waveguide structure 
will be treated as a black box, described by its transfer matrix relating the 
field at the top of layer 1 and the bottom of layer N: 

Here F relates to the forward-propagating field in the +x direction (i.e. 
away from the lower boundary), and B to the backward field propagating 
along -x.  The lower boundary at x = 0 will impose a certain relation between 
forward and backward-propagating waves, e.g. described by a reflection 
coefficient r0 = Fo/Bo. We can therefore write this boundary condition as 

Fo - roBo = O (2) 

For the TE case, F and B are directly proportional to the electric field Ey 
(see e.g. Smith et al. 1991). A field distribution that satisfies this condition is 
trivially F0 = r0 and B0 = 1. Using the transfer matrix formalism, we can 
propagate this field through the lower cladding, the black box and the upper 
cladding to arrive at the second boundary. At this wall, we impose a similar 
boundary condition: 

F N F  N - -  B N = 0 (3 )  

Note that in this case the reflected field propagates in the - x  direction. 
Expressing that the field at the upper boundary satisfies Equation (3), gives 
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Fig. 1. Slab waveguide with general boundaries. 

us the dispersion relation for a slab waveguide with generalised boundary 
conditions: 

[rNexp(--jdNkx'N)--exp(+jdNkxN)]ETl" T2I T22Jr~21 [r~ (-JdIk 'l)] = ~  exp(+jdlkx,1) 
(4) 

In the following sections, we will discuss different boundary conditions 
that can be expressed in this formalism. Note that in the most general case, 
the reflection coefficients r0 and rN can be functions of kx. Stated otherwise, 
this means that the boundary conditions can depend on the incidence angle. 
We will concentrate on the boundary at x = 0, the other one obviously being 
completely analogous. 

3. Hard walls 

The most straightforward boundary conditions to use are perfect electric or 
magnetic conductors (PECs or PMCs). An electric wall imposes that the total 
tangential E-field vanishes at the boundary, which corresponds to the well- 
known Dirichlet boundary condition: 
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Ey(x = 0) = Fexp  (-jkxx) + Bexp (+jkxx) = 0 (5) 

Demanding that F + B = 0 amounts to choosing r = -1 .  
A magnetic wall imposes a zero tangential H-field. We can easily derive 

from Maxwell's equations that this means for TE modes that 

H z ( x = O ) -  J--~-dEy- kx (Fexp(-jkxx)-Bexp(+jkxx))=O (6) 
koc# dx koc# 

So, for a PMC we choose r = 1. Imposing a vanishing derivative of Ey also 
means that this is a v o n  Neumann boundary condition. 

Both electric and magnetic walls are what is commonly referred to as 
'hard'  walls: they reflect all the incident power, because Ir] = 1. This can be 
problematic, especially when we want to model structures with high radi- 
ation losses, i.e. structures that emit radiation that would otherwise prop- 
agate freely towards infinity. The presence of a PEC or a PMC wall will 
send this radiation back to the structure that we want to study, and this 
reflected power can seriously compromise the accuracy of the obtained 
results. Therefore, we need to introduce more advanced boundary condi- 
tions. 

4. Perfectly matched layers 

A PML is an artificial material that can absorb radiation without any par- 
asitic reflections at its interface, regardless of wavelength, incidence angle or 
polarisation. The concept of PMLs can be introduced in a variety of  ways, 
either using split fields (B6renger 1994), anisotropic media (Sacks et al. 1995), 
or complex coordinate stretching (Chew and Weedon 1994). Here, we will 
opt for the formalism of complex coordinate stretching, because it allows us 
to reuse all the eigenmode formulas derived for the non-PML case without 
modification, simply by allowing the cladding thickness to assume complex 
values (Bienstman et al. 2001; Derudder et al. 2001). 

4.1 COMPLEX COORDINATE STRETCHING 

Consider the situation depicted in Fig. 2. A structure that we want to study is 
enclosed by a metal wall. This structure has an outer cladding layer with 
thickness do and index n. Between the cladding and the wall, we insert the 
PML, a layer also with refractive index n, but with a complex thickness 
dl,re -- jd~, im. We want to prove in this section that a wave propagating in the 
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Fig. 2. Complex coordinate stretching. 

cladding wilt be absorbed in the PML, without any reflections occurring at the 
cladding-PML interface. To this end, we first define a one-to-one mapping of 
the traditional z variable to a complex stretched ~ variable (Chew et  al. 1997): 

/o z = Sz(Z') dz'  (7) 

To make this more concrete, we have drawn in Fig. 2 the case were 
Yt(Sz) = 1 everywhere, and ~(Sz)  = - a  in the PML and zero everywhere else. 
This leads to ~ being equal to z, except in the PML, where ~ has a linearly 
increasing imaginary component (in absolute value). The use of an integral in 
Equation (7) assures that ~ varies smoothly, even if Sz has discontinuities. 

Now, we take Maxwell's equations and analytically extend them to the 
complex spatial domain. This means that the equations remain identical, but 
the coordinates are allowed to assume complex values. 

~x E = -j~o#U (8) 

~x n = jo)eE (9) 

The stretched nabla operator is 

+ = . y  + 
~y 

(10) 

At this point we can understand why PML provides reflectionless ab- 
sorption. From a purely formal point of view, the cladding combined with 
the PML is a uniform medium with refractive index n everywhere, but with 
stretched coordinates. Because coordinate stretching does not formally 
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change the appearance of Maxwell's equations, we can continue to use all the 
well-known solutions for these equations in unstretched coordinates. For 
uniform media, we know that these solutions are plane waves, which of 
course do not reflect when propagating in a uniform medium. At the same 
time, the imaginary component of the stretched 5,-coordinate absorbs the 
propagating wave. This can be understood quite easily e.g. when looking at 
the formula describing a plane wave: 

exp (-jknz) (11) 

Because the spatial coordinate appears on equal footing as the refractive 
index, it is clear that an imaginary distance can provide absorption just like 
an imaginary index (lossy material), but with the benefit of not introducing 
additional parasitic reflections, and this irrespective of wavelength, incidence 
angle or polarisation. 

Finally, one can wonder if this rather ad hoc introduction of materials with 
complex thickness has any physical bearing whatsoever. In fact, as already 
mentioned previously, for the geometries we consider here a description in 
terms of complex coordinates is equivalent to the description of PML as an 
anisotropic material (Teixeira and Chew 1997). This material can of course 
be described completely by the traditional Maxwell's equations, without re- 
sorting to unphysical constructs like stretched coordinates. However, the 
mathematics of using anisotropic materials are much more involved, which is 
why we opted for using complex coordinates. 

4.2. MODE STRUCTURE IN THE PRESENCE OF PML 

Let us now first investigate the influence PML has on the propagation con- 
stants and field profiles of eigenmodes. The dispersion relation of a slab clad 
with PML is identical to the one without PML, except for the fact that the 
outer media have a complex thickness. The dispersion relation can therefore 
also be cast in the general formalism of Equation (4). 

Fig. 3 shows the distribution of the TE modes in the neff-plane, for a GaAs 
waveguide (n = 3.5) with a thickness of 1 ~tm, surrounded on both sides by 
an air cladding with real thickness of 2 ~tm. The operating wavelength is 
1.55 ~tm. Three figures are shown, for different imaginary thicknesses of the 
cladding (-0.2, -0 .4  and -0 .6  ~tm). A number of conclusions can be drawn 
from these pictures. 

Let us first turn our attention to the guided modes, located on the real axis. 
Guided modes have exponentially decreasing tails, because they have an 
imaginary wavevector component in the direction perpendicular to the wall. 
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If the cladding is thick enough, these tails will be negligible by the time they 
reach the PML, so they will not be influenced by it. 

Radiation modes on the other hand are absorbed by the imaginary 
thickness, so that they are no longer located on the coordinate axes, but in 
the complex plane. In fact, when the absorption in the PML is strong enough, 
the modes clearly start to cluster in two groups: a first group, where the 
modes eventually converge to a final location for increasing PML absorption, 
and a second group, where the modes keep on moving further into the 
complex plane as the absorption increases. The profound reason for this 
behaviour will become clear in Section 5. 

Let us now turn our attention to the field profiles of the radiation modes. 
Fig. 4 plots the absolute value of the E-field for a radiation mode with 
neff = 0 .416-  1.600j in the case of an imaginary cladding thickness of 
-0 .4  lam. Fixing the total imaginary cladding thickness seems to leave us with 
the freedom of choosing the exact stretching profile to achieve this total 
thickness. Therefore, we plot two cases, both with a piecewise constant 
stretching profile sz. In the first case, we choose the real thickness of the PML 
to be half of the cladding layer (1 lam), with the other half remaining un- 
stretched. In the second case, we halve the PML thickness, but at the same 
time double its absorption. The field profiles in the central region are the 
same for both cases. In the cladding region, the field increases, but as soon as 
it enters the PML, it decreases exponentially to fall to zero at the metal wall. 
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For the thin PML, the field is allowed to increase further into the cladding, 
but this is exactly compensated by a stronger absorption inside the PML. 

We want to stress that for the calculation of the dispersion relation, of the 
overlap integrals and of the scattering matrices, the exact stretching profile is 
totally irrelevant, because all the expressions there involve only the total 
complex thickness of the uniform medium formed by the combination of 
cladding and PML. This is a huge advantage compared to the use of PML in 
e.g. FDTD, where the stretching profile has to be carefully engineered in 
order to minimise reflections due to the spatial discretisation. 

5. Leaky modes 

Equation (4) also contains the dispersion relation for the open structure, i.e. 
without any walls. To retrieve this dispersion relation, we simply have to 
impose that there are no reflected waves in the cladding by putting the r 
coefficients equal to zero. It then follows immediately that T22 = 0, which is 
the required dispersion relation. 

As is well-known, the dispersion relation of the open structure can have 
solutions in the complex plane (Oliner et  al. 1981). These so-called leaky 
modes are unphysical, because they increase exponentially towards infinity in 
the transverse direction. They can be considered as guided modes below cut- 
off, because they will evolve into proper guided modes as the frequency 
increases. In Fig. 5, we plot the distribution of these modes in the neff-plane, 
for the same waveguide as in Fig. 3. 
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Fig. 6. Deformation of the integral path to calculate overlap integrals for leaky modes. 

Because these modes form a discrete set, people have tried to use them 
in eigenmode expansion techniques. The hope here is that every leaky 
mode can represent a subset of the radiative continuum in open structures. 
When we want to apply the eigenmode expansion method to leaky modes, 
we quickly run into a problem concerning the overlap integrals. Indeed, 
these modes have infinite fields at infinity, meaning that the overlap inte- 
grals will diverge. A couple of techniques exist to deal with this issue (Lee 
et  al. 1995), the most elegant of which is given by Sammut and Snyder 
(1976). The method presented there consists of deforming the integration 
path used to calculate the overlap and normalisation integrals. Normally, 
this path runs along the real x-axis, but it is deformed into the complex 
plane, as shown in Fig. 6. The analytical solution of the overlap integrals 
used in eigenmode expansion depends only on the beginning and end 
points of the interval. Therefore, the precise integration path is not im- 
portant, only the end points are. If the damping provided by the complex 
coordinate at infinity outweighs the field increase in the cladding, then this 
contribution at infinity vanishes and the total overlap integral remains 
finite. 

Although in some cases, most notably involving long waveguide sections 
with low index contrast, leaky mode expansion can be applied succesfully 
(Lee et  al. 1995), this succes cannot be generalised to arbitrary structures. 
Moreover, it is possible to prove conclusively that the set of leaky modes is 
not complete (see e.g. Smith and Houde-Walter 1995). In view of this, it is 
quite ill-advised to rely solely on leaky mode expansion without any verifi- 
cation from another method. 
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5.1 RELATION TO PML 

The path deformation used to normalise leaky modes is strongly reminiscent 
of the complex coordinate stretching PML technique. This suggests a closer 
relation between the two techniques, which we will try to uncover in this 
section. 

Let us consider once again the general slab waveguide from Fig. 1 and its 
general dispersion relation Equation (4), in which we have factored out 
exp (+jdlkx,1) and exp (+jdNkx,N). We will assume a very strong PML present 
in both claddings. 

Er exp  l [ ll 2, ) 1 ,  0 
If a certain mode is strongly attenuated in the top PML layer, then dukx,N 

has a large negative imaginary component and exp (--2jdNkx,x) << 1. Simi- 
larly, exp (-2jd0k~,0) << 1 for strong absorption in the bottom PML. We can 
now distinguish between four cases, depending whether a mode is strongly 
absorbed in both PML layers, only the top one, only the bottom one, or 
neither of them. 

For the first set of modes, we assume strong absorption in both PMLs, 
such that most of the field is located in the central regions of the slab: 

Tl21 [01 1 = 0  (13) io 

This is satisfied when T22 = 0, which is nothing other than the dispersion 
relation of the open structure. Mathematically, this is also obvious, since 
infinite PML absorption [exp(-2jdk)= 0] has the same effect in Equa- 
tion (13) as considering a truly open structure (r -- 0). This is also what one 
expects from a physical point of view: as long as the absorption in the PML is 
high enough, no wave will make it back to the core after reflecting at the 
outer walls. Therefore, viewed from the core, a very strong PML cannot be 
distinguished from a truly open structure. 

It is well-known what kind of modes are found with the dispersion relation 
of the open structure: on one hand the guided modes, but on the other hand 
also the unphysical leaky modes. This is precisely why some modes converge 
to a fixed location in Fig. 3: they converge to the leaky modes of the open 
structure for sufficiently large absorption in the PML. 

For the second set of modes, we assume a field strongly damped in the 
PML at x = 0, but not so in the other PML layer. We now get for the 
dispersion relation 

TI2rN exp ( - -2 jdNkx ,N)  -- T22 = 0 (14) 



534 P. BIENSTMAN AND R. BAETS 

which can be recast as 

.T~2 
exp(--jdNkx,N )rN exp(--jdNkx,N ) ~22 = 1 (15) 

This equation has a clear physical significance. The first factor describes 
propagation over a distance du in the PML, the second factor is the reflec- 
tivity at the wall, the third one describes the wave as it propagates from 
the wall back to the core, and the final term is the reflection of the core as 
seen from the top. 1 In other words, Equation (15) clearly imposes a round- 
trip gain of unity in the cavity formed by the top wall and the central slab. 

A similar set of modes can be found that resonate in the bottom PML. 
Because the properties of these modes obviously depend more strongly on the 
PML than on the central core region, these modes are sometimes called 
B6renger modes (Derudder et al. 2001). These B6renger modes are the ones in 
Fig. 3 that move further into the complex plane as the PML absorption 
increases. 

Finally, the case where the modes are neither absorbed in the top nor the 
bottom PML is purely academic, since it contradicts our initial assumption of 
a strongly absorbing PML. 

6. PML with infinite absorption 

In the previous section, we showed that for strong absorption in the PML, 
some modes converge to the leaky modes of the open structure. This result 
was first presented by Rogier and De Zutter (2001), but for the less general 
case of a microstrip substrate. 

In the current paper, we want to take the argument one step further, and 
show that for infinite absorption in the PML, eigenmode expansion becomes 
completely equivalent to leaky mode expansion. In order to prove this, we 
need to elaborate on a couple of points. 

First of all, for an infinitely strong PML, the modes from Equation (13) 
coincide exactly with the leaky modes of the open structure. 

Secondly, the B6renger modes vanish entirely if the absorption of the PML 
becomes infinite. This can be seen from Equation (15) and its corresponding 
physical picture that a resonator with infinite losses cannot sustain any 
modes. This also follows from the explicit formulas of the BSrenger modes 
presented by Rogier and De Zutter (unpublished data) for a microstrip 
substrate, where no non-trivial solutions remain for infinite absorption. 

[1 r ,l ] IThis can be seen immediately from ~ = LT21 T22] " 
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Lastly, for infinitely absorbing PML, the calculation of overlap integrals 
proceeds in exactly the same way as in the case of leaky modes. Indeed, both 
use complex coordinate stretching to achieve absorption. For an infinitely 
strong PML, the contribution to the overlap integrals at the walls vanishes, 
just as the contribution at infinity in the case of leaky modes. 

Together these arguments show that leaky mode expansion is nothing else 
than using a PML with infinite absorption. This sheds some more light on the 
physics behind each of these methods. 

This also leads to some important observations with respect to the com- 
pleteness of the set of eigenmodes in the presence of PML. If we assume an 
otherwise lossless structure, increasing the absorption in the PML leads from 
a set that is proven complete (for zero absorption) to a set that is proven 
incomplete (for infinite absorption). This suggests that while the set of modes 
in the presence of PML might not be mathematically complete, for all intents 
and purposes it is still close enough to complete if we restrict ourselves to 
moderate absorption. All the empirical evidence of the simulations we per- 
formed so far seems to show that this is indeed the case: for moderately 
strong absorption, using PML modes seems to be a very valid and practical 
approach. By moderate absorption, we mean a situation whereby the modes 
are still located relatively close to the coordinate axes, and where there is not 
yet a clear distinction between the B6renger and the leaky branch. 

Finally, it is worth noting that, just like leaky modes, PML modes exhibit 
an exponential field increase in the cladding before entering the absorbing 
region (see e.g. Fig. 4). This also indicates that the validity of the fields in 
the presence of PML seems to be limited to an area of the cladding imme- 
diately around the central region, just like leaky modes (Snyder and Love 
1983). 

7. Transparent boundary conditions 

7.1. DERIVATION USING THE ORTHOGONALITY REQUIREMENTS 

In this section, we will introduce transparent boundary conditions in a novel 
way, starting from the orthogonality requirements for eigenmodes. In order 
for eigenmodes to be orthogonal, it can be proven from the Lorentz reci- 
procity theorem that the following condition should hold at the boundary of 
the computational domain (see e.g. Lee 1986) 

f fs(E1 x H2 - E2 x HI) " dS = 0 (16) 

For the TE modes of the general slab waveguide and at the lower 
boundary at x = 0, this becomes 
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(Ey, l S z ,  - Ey ,2Sz ,  l ) 8,7_, = 0 (17)  

At PEC or PMC walls, this is always fulfilled, since these boundaries 
impose the vanishing of the tangential electric field Ey or the tangential 
magnetic field Hz respectively. The presence of PML does not change this 
conclusion, since the PML is backed by a PEC or a PMC wall that imposes 
the same boundary conditions. Likewise, the orthogonality holds for the 
leaky modes as the special case of PML with infinite absorption. 

Let us now decompose the fields at x = 0 in forward and backward 
propagating plane waves (see Equations (5) and (6)): 

Ey = F + B (18) 

kx 
Hz - koctt ( F  - B)  (19) 

We can then write Equation (17) as 

(F1 + Bl)kx,2(F2 -B2)  - (F2 + B2)kx, l(F1 - B1) = 0 

o r  as  

(20) 

F2 - B2  _ kx, l F! - B1 (21) 

This suggests using the following form of boundary condition, with kx,o an 
arbitrary constant: 

F - B  
k x ~ - -  B - kx,o (22) 

Rewriting this in the canonical form F - rB = 0 (Equation (2)) gives us for 
the reflection coefficient 

kx - kx,o 
r - k~ + k~-----~0 (23) 

Note that this is a case where the reflection coefficient depends on the 
incident angle. The absolute value of r is always smaller than or equal to 1, 
and is identically zero for the angle corresponding to kx = kx,0. 

Another way of looking at this boundary condition is to reformulate 
Equation (22) in terms of Ey = F + B and its derivative E'y = - j k x ( F  - B): 

t 

-jkx,0Ev + Ey = 0 (24) 
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Fig. 7. Distribution of modes in the presence of a transparent  boundary condition. 

This is a mixed yon Neumann-Dirichlet boundary condition with constant 
coefficients. For k~ = kx,0 it is satisfied by exp (+jkxx), which is a plane wave 
propagating downward from the core to the wall, without the presence of any 
reflected wave exp (-jkxx). 

This kind of boundary condition was presented by Hadley (1991), where it 
was called 'transparent boundary condition' (TBC) and applied to the beam 
propagation method. A similar boundary condition was already presented in 
a different context by Leontovich (1948). The TBC is also quite popular 
among MoL practitioners (Gerdes et al. 1992). Its use in eigenmode expan- 
sion methods has to our knowledge never been thoroughly studied, although 
the technique has been hinted at by Smith and Houde-Walter (1995). 

Fig. 7 plots the distribution of eigenmodes for the slab waveguide from 
Fig. 3. The cladding is once again 2 lain thick, and the walls are TBCs with a 
k~,0 corresponding to 45 ~ incidence angle. 

A striking feature of this figure is that the modes are located much closer to 
the coordinate axes, compared to e.g. PML and leaky modes. 

7.2. EXAMPLE:  LASER FACET 

As an example, we take another benchmark problem that has been exten- 
sively studied in numerous papers in the literature (lkegami 1972; Herzinger 
et al. 1993; Haes 1996). Its aim is to calculate the reflectivity of the cleaved 
end facet of a semiconductor laser, with the geometry of Fig. 8. The core has 
a width of 275 nm, and we consider the incidence of the fundamental TM 
mode at a wavelength of 860 nm, propagating horizontally to the facet on the 



538 P. BIENSTMAN AND R. BAETS 

Fig. 8. Laser facet. 

Fig. 9. Reflectivity of fundamental TM mode at laser facet. 

right. An electric wall was used to exploit the symmetry along the propa- 
gation axis. 

In Fig. 9, we plot the convergence of the reflectivity as a function of the 
number of modes, and this for different boundary conditions. We compare a 
PEC wall placed at 2 ~tm from the core, a PML layer with the same real 
thickness but with an imaginary thickness of -0 .2  ~tm, and finally a TBC with 
zero reflection for 45 ~ placed at the same real distance. All curves show a 
similar behaviour, i.e. they require about the same number of modes to 
converge to their final value. The reflectivity of the PML and TBC curve is in 
excellent agreement. The PEC curve however converges to a wrong value 
because of parasitic reflections. We can also obtain the correct result with a 
PEC, but only if we place the wall much further from the structure. This is of 
course at the expense of having to retain a much larger number of modes 
because of the larger computational domain. Advanced boundary conditions 
like PML and TBC therefore have an additional benefit next to their in- 
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creased accuracy: because the walls can be placed much closer to the struc- 
ture under study, the calculation times can be drastically reduced (remember 
that these scale as N3). 

8. Conclusions 

To conclude, we will compare the different boundary conditions presented in 
this paper. It is clear that hard walls are not very effective in modelling open 
space. Their only valid use is the exploiting of symmetries. Leaky mode 
expansion can give very good approximations with only a small number of 
modes, but unfortunately this method is only useful for a small number of 
structures. PML boundary conditions are very efficient, and have a much 
wider domain of applicability. They are reflectionless for any wavelength and 
provide moderate to strong absorption, making them very suited to model 
open space. Transparent boundary conditions exhibit zero reflectivities for a 
single angle and moderate to high reflectivities for other incidence angles. The 
fact that the zero-reflection angle has to be known in advance is sometimes a 
disadvantage. 

In Fig. 10, we plot the power reflectivity of some of these boundary con- 
ditions: two PMLs with imaginary thickness of -0 .2  and -0.3 lam respec- 
tively backed by a PEC, and two TBCs with zero reflection at either 30 ~ or 
60 ~ The wavelength considered is 1 gm. The incident fields are plane waves 
that are propagative in the direction normal to the walls. 

From Fig. 10, it can be seen that PMLs exhibit their lowest reflectivity for 
normal incidence. A larger imaginary thickness obviously means lower re- 
sidual reflections. It is clearly visible that the TBCs have zero reflection for a 
single angle. If this zero-reflection angle moves to larger angles (i.e. towards 
grazing incidence), their reflectivity for the other angles increases. All the 
curves share the fact that their reflection approaches unity for grazing inci- 

Reflectivity of boundary conditions 
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Fig. 10. Power reflectivity of different boundary conditions. 
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dence. This means that it will still be very difficult to absorb modes close to 
cut-off. 

Finally, it has to be noted that nothing forbids us to combine both PML 
and TBC in a single boundary condition, in which case the total absorption 
in dB is the sum of the absorption of each of the individual boundary con- 
ditions. Such a combination is probably overkill in most situations, but could 
be useful for some simulations where extremely powerful absorbers are re- 
quired. 
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