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We present a fast and efficient full vectorial modeling method for photonic crystal 
devices. This method is based on eigenmode expansion in z-invariant layers and is 
much less brute force than e.g. the standard finite-difference time-domain method. It is 
well suited for a large variety of structures, including infinite, semi-infinite and finite 
structures.  

Introduction 
 
Photonic crystals have received much attention lately because they are very interesting 
candidates for the realization of photonic integrated circuits in view of their ability to 
confine light, guide it around tight bends and perform a wealth of other optical 
functionality like filtering and add-drop multiplexing [1]. 
These nanophotonics devices are quite challenging to model because of their large 
index contrast and small dimensions. A full-vectorial model without approximations is 
therefore required. Candidates for this are the well-known FDTD or finite-difference 
time-domain method [2], but this approach is relatively brute-force and therefore quite 
computationally intensive. Another well-established model is plane-wave expansion [3], 
but it uses a super cell approach and has therefore difficulty in modeling finite devices. 
The model we present here is based on vectorial eigenmode expansion [4]. We will 
show how this method is much less brute-force and can be used to handle infinite, finite 
and semi-infinite structures. It is also freely available from http://camfr.sourceforge.net. 
 

Eigenmode expansion 
 

Rather than using a uniform grid to spatially 
discretise a structure, eigenmode expansion starts by 
identifying layers in the structure where the 
refractive index profile does not change in a given 
direction, the so-called propagation or z-direction. 
In each of these layers, we expand the field in terms 
of the local eigenmodes of that particular layer. By 
applying continuity conditions and mode matching, 
we can deduce a scattering matrix for the structure 

with relates the incoming fields to the reflected and the transmitted fields. Contrary to 
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FDTD, calculation time is proportional to the number of layers, rather than to the total 
length of the structure, because propagation through a layer can be calculated 
analytically and is therefore independent of the layer length. 
 

Infinite structures 
 

We can build on this approach to 
calculate the band structure of an 
infinite photonic crystal. We start 
by identifying a unit cell in the 
periodic structure. Bloch modes 
satisfy the condition that the 
forward and backward propagating 
fields at both ends 1 and 2 of the 

cell are proportional ( ) ( )12 ,, BFBF λ= , where we can get the Bloch vector k from 
)exp( jkd−=λ if d is the length of the unit cell. Traditionally in literature this leads to 

an eigenvector formulation of the form 
 
 
 
 
 
Here R and T are the reflection and transmission matrices of the unit cell, and the 
subscript ij refers to incidence from side i to side j. However, because of the matrix 
inverse this formulation is numerically unstable. Therefore, we derived an alternative 
formulation as a generalized eigenvalue problem which does not suffer from this 
instability: 
 

 
 
Since this method is frequency-domain method with the frequency as the independent 
variable, it is trivial to model dispersive media, something which is much harder using 
other methods. 

Semi-infinite structures 
 

For design purposes it is often desirable to model 
semi-infinite structures, i.e. structures which are 
terminated by a semi-infinite crystal. During the 
design phase we can in this way eliminate parasitic 
reflections that would come from an imperfect 
termination of the crystal waveguide. To calculate the 
reflection matrix of a semi-infinite periodic structure, 
we first calculate all the Bloch modes of that structure 
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and retain only those with forward power flux. Each of these Bloch modes consists of 
forward and backward propagating components given by column vectors Fi and Bi. By 
grouping these vectors into a matrix, one can prove that the reflection matrix of the 
semi-infinite crystal is given by 
 

1
inf

−⋅= FBR  
 
Note that this is just a generalization of the ratio of the reflected backward fields to the 
forward incident fields. Once we calculate this matrix, we can incorporate the semi-
infinite crystal at the far end of another finite structure very easily by concatenating 
scattering matrices. 
 

Finite structures 
 
 

 
 
 
Modeling finite structures does not differ substantially from the traditional eigenmode 
approach, but the method has a number of advantages that are especially interesting for 
the study of photonic crystal devices, like the splitter shown above: 
 

• For periodic structures with a finite number of periods, the calculation time is 
not linear in the number of periods, but rather logarithmic. This is because the 
concatenation of scattering matrices behaves not unlike a multiplication, where 
we can e.g. speed up the calculation of a4 by calculating ( )22a  rather than 

aaaa ... . 
• Because we can determine from an auxiliary calculation what the Bloch mode in 

the input waveguide of the splitter looks like, we can use this field profile to 
immediately excite the splitter. In this way, we can get an equilibrium field 



distribution much quicker, which leads to a much smaller computational 
domain. 

• FDTD first calculates the fields in the entire structure and then uses this 
information to deduce e.g. power transmission. In many cases however, one is 
only interested in the power transmission itself, in which case the calculation of 
the field profiles is overkill. In eigenmode expansion however, the transmission 
is calculated first, and the (more time consuming) calculation of the field 
profiles is optional. 

 
 

Conclusion 
 
We presented a model based on vectorial eigenmode expansion which is well suited for 
the design of photonic crystal devices, including finite, infinite and semi-infinite 
structures. The modeling software is freely available from http://camfr.sourceforge.net. 
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