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The design of all-optical phase shifting by means of Kerr-nonlinear resonators is investigated using
a one-dimensional analytical model. Dependence on different device parameters and design
optimization are discussed. In particular, it is shown that a tradeoff in terms of optical input power
and device length is required, which is limited by the signal bandwidth. ©2005 American Institute
of Physics. [DOI: 10.1063/1.1829148]

I. INTRODUCTION

From the beginning, nonlinear optics showed great po-
tential for all-optical signal processing, because of its ul-
trafast response times. However, nonlinear effects like the
Kerr effect are typically very small in standard photonic ma-
terial systemssn2<10−15–10−13 cm2/Wd. This means that
very high input powers or very long device lengths are re-
quired to obtain a phase shift ofp—which is the basis for
most optical switches today—leading to unpractical designs.

A possible route to overcome these impairments is by
using resonating structures. They enhance the electric field or
power density and slow down the pulse propagation, so that
the nonlinear response is larger. Examples of such structures
are coupled cavity waveguides, ring resonators,1…. It has
been shown that with these components, important improve-
ments are possible for the purpose of Kerr-nonlinear phase
shifting.1–3 In addition, they also exhibit features which can-
not be implemented with simple waveguides, such as all-
optical limiting,4 all-optical switching, and bistability.5–10

An important question however is how far one can go in
reducing the input power or device length. Increasing the
resonating effect will result in further reduction, however, at
the expense of the obtainable signal bandwidth since stron-
ger resonators have a higher finesse. Therefore a tradeoff
among input power, device length, and signal bandwidth is to
be expected.

In this paper, a detailed analysis of one-dimensional
(1D) coupled resonators is performed to investigate the real-
istic possibilities of resonator-based approaches for Kerr-
nonlinear phase shifting in case the data signal itself behaves
either linearly or nonlinearly. A 1D model makes an analyti-
cal description of the nonlinear effects inside the structure
possible, providing deeper insight in the influence of various
structural parameters. Although this model essentially con-
siders a nonlinear Fabry–Perot cavity,10 it is used here in the
context of waveguide-implemented devices. Based on this
model, general conclusions are drawn about design aspects
which are representative for all three-dimensional(3D) struc-
tures mentioned above and design optimization is carried out

to determine the limitations of this approach. Note also that
this 1D structure is an immediate model for Fabry–Perot
cavities implemented in waveguides.

The organization of this paper is as follows. In Sec. II
the resonator structure considered in this paper is discussed.
Sections III and IV describe the linear and nonlinear behav-
ior of this structure. The applicability of resonator structures
is then discussed in Sec. V. Finally conclusions are drawn in
Sec. VI.

II. 1D STRUCTURE

The resonator structure that will be used throughout this
paper has the following period;

with a andb two different materials,lc the resonance wave-
length of the structure, andNcav an integer indicating the
cavity length(in units of lc/2). The parameterNdbr will be
used to indicate the total number ofb layers in one resonator
period. The length of one resonator period is then

Lper=
lc

4na
sNdbr − 1 + 2Ncavd +

lc

4nb
sNdbrd. s1d

Quarter-wave mirrors were chosen here for analytical
purposes and because they have the largest reflectivity per
unit of length. The rightmost layer of one period combines
with the leftmost of the next period to create an uninter-
rupted distributed Bragg reflector(DBR) mirror. The in- and
out-coupling layers to the resonator structure are assumed to
have a refractive indexna.

An example for two periods is given in Fig. 1.

a)Electronic mail: gino.priem@ugent.be
FIG. 1. Two period resonator structure with in- and out-coupling layer.
Refractive indices are indicated.
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III. LINEAR THEORY

The linear properties for a resonating structure with one
and with` periods are now derived. These two cases serve
as boundaries for the realistic situation in which the number
of periods to achieve a nonlinear phase shift ofp will be
finite, but still can be either low or high.

A. Properties of one period

A rigorous calculation using the transfer-matrix method
is in principle possible but is not suitable to derive the ana-
lytical formulae. Therefore a few approximations are intro-
duced. The frequency dependence of the amplitude of mirror
transmission and reflection coefficientstdbr andrdbr can gen-
erally be neglected compared to that of the phase, so

tdbr = utdbruejwt < utdbrunc
ejwt, s2d

rdbr = urdbruejwr < urdbrunc
ejwr . s3d

For the mirrors defined in this paper, one has

utdbrunc
=

2na
Ndbr/2nb

Ndbr/2

na
Ndbr + nb

Ndbr
, s4d

urdbrunc
=

na
Ndbr − nb

Ndbr

na
Ndbr + nb

Ndbr
. s5d

Using a linear approximation, the phaseswt and wr can be
written as

wt = ±
p

2
+ Udwt

dn
U

nc

sn − ncd, s6d

wr = 0 +Udwr

dn
U

nc

sn − ncd, s7d

with the sign of wt depending onNdbr and udwt /dnunc
= udwr /dnunc

;udw /dnunc
due to the symmetry of the mirror.

An analytical expression forudw /dnunc
will be determined in

Sec. III B.
If the resonator is now considered as the aggregate of a

cavity, two mirror sections and two outside layers(for con-
tinuity) and the transfer-matrix approach is applied, the
transmission coefficient for the complete structure becomes

ttotsnd =
e−jwcav+2jwt−jsp/2dsn/ncdutdbrunc

2

1 + e2jwt−2jwcavurdbrunc

2 s8d

with wcav=pNcavsn /ncd the phase length of the cavity and the
factor e−jsp/2dsn/ncd corresponding to the phase change in the
in- and out-coupling sections(together with a quarter wave-
length, see Sec. II). Using Eqs.(6) and(7) and expanding the
exponentials in the denominator aroundn=nc, the intensity
transmissionuttotsndu2 and the phase changefsnd over a
single resonator period for a resonator structure with one
period become

uttotsndu2 <
1

1 +
4sn − ncd2

utdbrunc

4 SNcav
p

nc
− Udw

dn
U

nc

D2 , s9d

fs1dsnd < ±
p

2
− arctanF2sn − ncd

utdbrunc

2 SNcav
p

nc
− Udw

dn
U

nc

DG .

s10d

Equation(9) shows the typical Lorentzian transmission char-
acteristic of a single resonator, while Eq.(10) shows that its
output phase relation has an arctan behavior. Note that
udw /dnunc

still needs to be determined. This will be done in
Sec. III B.

B. Bloch characteristics (properties for ` periods )

Using the Floquet–Bloch theory, the general dispersion
relation—which relates the propagation constantk of a Bloch
mode to its frequencyn—for a structure with a period con-
sisting ofN layers(indicated bya¯N) is given by

2N+1nanb ¯ nN cosskLperd

= o
pa. . .pN=0

1

s− 1dpa+¯+pN cosfs− 1dpakala

+ ¯ + s− 1dpNkNlNgfs− 1dpana + s− 1dpbnbg

3fs− 1dpbnbs− 1dpcncg ¯ fs− 1dpNnN + s− 1dpanag, s11d

with ni the refractive index of layeri, ki =s2pn /cdni, l i the
length of layeri, k the propagation constant of the Bloch
mode, andLper=ol i the period length. This formula was ob-
tained by induction. In the case of the resonator period de-
scribed above, this formula is not immediately usable be-
cause there are too many layers involved. The dispersion
relation for weakly coupled resonators is however approxi-
mately sinusoidal around the central frequencync,

11 so it can
be written as

n − nc < −
Dn

2
sinSkLper±

p

2
D , s12d

with Dn the resonance bandwidth. The exact sign depends on
Ncav and Ndbr, but is not important here.kLper is the phase
change between the input and output over a single period,
denoted asf in Sec. III A. Using this notation, one obtains
for the single period phase change of a resonator structure
with ` periods,

fs`dsnd ±
p

2
< − arcsinF 2

Dn
sn − ncdG . s13d

Differentiation of Eq.(13) to the frequency shows

Udfs`d

dn
U

nc

=
2

Dn
, s14d

leading to
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fs`dsnd ±
p

2
< − arcsinFUdfs`d

dn
U

nc

sn − ncdG . s15d

An analytical expression forudfs`d /dnunc
can be obtained

from Eq. (11). The calculation is straightforward but very
tedious. Finally one obtains

Udfs`d

dn
U

nc

=
p

2ncutdbrunc

2 Fs1 + urdbrunc

2 ds2Ncav− 1d

+ 2urdbrunc

na + nb

na − nb
G . s16d

Equations(14)–(16) fully describe the resonance bandwidth
and the phase relation inside the bandwidth.

C. Comparison between 1 and ` periods

The limiting cases of one and̀ periods coincide forn
=nc. Indeed for the resonance frequency, the transmission of
every single resonator period is one, so they cannot interact.
Based on this, a relation forsdw /dndnc

—which was left un-
determined in Sec. III A—can be derived by an expansion of
Eqs.(10) and (15) at n=nc. The result of this is

-Udw

dn
U

nc

< −
p

2nc
Surdbrunc

na + nb

na − nb
− 1D . s17d

Substitution of this Eq. in(10) allows now to derive the
output phase relation for the case of one resonator period
(Sec. III A) as

fs1dsnd < ±
p

2
− arctanFUdfs`d

dn
U

nc

sn − ncdG . s18d

Differentiation shows that

Udfs1d

dn
U

nc

= Udfs`d

dn
U

nc

; Udf

dn
U

nc

, s19d

so that Eqs.(15) and (18) finally become

fs1dsnd < ±
p

2
− arctanFUdf

dn
U

nc

sn − ncdG , s20d

fs`dsnd < ±
p

2
− arcsinFUdf

dn
U

nc

sn − ncdG . s21d

IV. NONLINEAR THEORY

The nonlinear effect on the transmission spectrum of a
resonating structure can qualitatively be described as fol-
lows. The incoming light builds up inside the cavity and
partially in the mirrors and therefore changes the refractive
index of the complete structure. This means that both the
resonance peak and the resonance bandwidth can change.
The index changes also affect the output phase relationfsnd.
In the most general case,na,2Þnb,2. It can then roughly be
said that the resonance shift is determined by the overall
value of n2 (a shift to higher frequencies occurs forn2,0
and vice versa), while the change of bandwidth is due to the
modulation ofn2.

In this paper, it will be assumed thatna,2<nb,2, which is
especially a good approximation for waveguide-implemented
Fabry–Perot cavities. It also holds quite well for other reso-
nator types. This means that the resonance bandwidth can in
good approximation be considered as constant(only in cases
in which na,2 and nb,2 have opposite signs, bandwidth
changes become important). A method to calculate cases
with na,2Þnb,2 will be discussed in Sec. IV C.

From Eqs.(15) and(18), it is obvious that the nonlinear
resonance shift and the change of the output phase will be
interdependent. The new resonance frequency can easily be
determined by looking at the phase condition inside the cav-
ity. From that, the nonlinear phase change will be calculated.
An effort will be made to obtain insight in the nonlinear
interaction, therefore avoiding long mathematical calcula-
tions as much as possible.

A. Shift of resonance frequency

From Eq.(8), it is clear that the total transmission will
only be achieved if

wt − wcav= ±
p

2
+ pp, s22d

with p any integer. In the linear case, this immediately leads
to n=nc, since for this frequencywt= ± sp /2d and wcav

=Ncavp. The Kerr-nonlinear interaction will however change
the refractive index in both the cavity and the mirrors, so this
condition will now be true for another wavelength.

1. Kerr-nonlinear cavity only

Since the electric field will be the strongest inside the
cavity, it is interesting to start by considering only the cavity
as Kerr-nonlinear. First, the nonlinear enhancement in the
cavity must be found. It is well known4 that the electric field
for a certain frequency in a 1D medium with a Kerr-
nonlinearity, is in good approximation given by

En = Ef,ne
−js2pn/cdfn0+n2suEf,nu2+2uEb,nu2dgz

+ Eb,ne
js2pn/cdfn0+n2s2uEf,nu2+uEb,nu2dgz, s23d

with n0 and n2 the linear and nonlinear refractive indices,
respectively, andEf,n and Eb,n the forward and backward
field components, respectively, andz the direction of propa-
gation. An easy way to verify this is with the use of a mul-
titime scale approach although other methods are possible.
Since high-field enhancement is required, strong mirrors will
typically be used in the resonating structure leading to almost
perfect standing waves inside the cavity, soEf,n<Eb,n

<Ecav,n
max /2 with Ecav,n

max the maximum cavity field. This means
that both the forward and the backward field in Eq.(23)
approximately see the same index profile, which is given by

n = n0 + 3n2
uEmaxu2

4
. s24d

Using Eqs.(4) and (5), the maximum linear cavity field for
n=nc [so thatuEinsncdu= uEoutsncdu] for na.nb is given by
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uEcav
maxsncdu = Sna

nb
DNdbr/2

uEinsncdu, s25d

with Ein the input field of the resonator structure. So the total
refractive index inside the cavity forn=nc is simply given by

n = n0 +
3

4
n2Sna,0

nb,0
DNdbr

uEinu2. s26d

Together with Eqs.(10) and (11), the resonance condition
(22) becomes

n

nc
=

pp + Udw

dn
U

nc

nc

− NcavpF1 +
3

4

na,2

na,0
Sna,0

nb,0
DNdbr

uEinu2G + Udw

dn
U

nc

nc

.

s27d

Since in the linear case, the result should ben=nc and since
small nonlinearities are assumed,p=−Ncav, or

n

nc
=

Ncavp − Udw

dn
U

nc

nc

NcavpF1 +
3

4

na,2

na,0
Sna,0

nb,0
DNdbr

uEinu2G − Udw

dn
U

nc

nc

.

s28d

Finally, expanding both sides around their linear values, one
gets

Dnc

nc
= −

3

4

na,2

na,0
Sna,0

nb,0
DNdbr Ncav

Ncav−
nc

p
Udw

dn
U

nc

uEinu2. s29d

Since udw /dnunc
,0, the resonance shift asymptotically

grows to Dnc→−s3/4dsna,2/na,0dfsna,0/nb,0dgNdbruEinu2nc for
large cavities or short mirrors.

This can be explained as follows: due to the frequency
dependence of the transmission and reflection phaseswtsnd
andwrsnd of the mirrors, a part of the nonlinear transmission
phase change of the cavitys3p /4dNcavsna,2/na,0d
3fsna,0/nb,0dgNdbrn /ncuEinu2 is used to compensate the phase
shiftswtsnc+Dncd−wtsncd andwrsnc+Dncd−wrsncd. Since the
frequency dependence ofwrsnd andwrsnd is lower for shorter
mirrors, the asymptotical behavior will be faster. The same
holds for larger cavities since they provide a large phase
changes~Ncavd. This has an important consequence: using
Ncav values larger than 1 could be beneficial if larger reso-
nance shifts are needed.

2. Complete Kerr-nonlinear resonator

Deriving a formula for the resonance shiftDnc in this
case is not obvious, since a large number of mirror layers are
generally involved, each experiencing a different electric
field and thus another Kerr-nonlinear effect. At the new reso-
nance frequency, the field in the cavity will again be the
largest of the resonator period, like it was in the linear case.

So, for a large cavity compared to the mirror sections, the
resonance shift is again expected to beDnc→−s3/4d
3sna,2/na,0dfsna,0/nb,0dgNdbruEinu2nc.

For small cavities or large mirrors, however, the reso-
nance shift will be much larger than indicated by Eq.(29).
The transition between both states is expected to be faster for
smaller mirrors and thus larger refractive index contrast. It is
however not possible to calculateDnc analytically, starting
from Eq. (22). To derive the resonance shift in this case,
another method will be used(see Sec. IV C).

B. Shift of phase relation f

The Kerr-nonlinear phase shift per periodDf will now
be calculated. The same approach will be used as in Sec. III:
first, the limiting situations of structures with one period and
with ` periods will be discussed. Then the results will be
compared and generalized toN periods.

1. Phase shift for one period

In Sec. III A, it was shown that the linear phase relation
for one period is given by

fL
s1dsnd < ±

p

2
− arctanFUdfL

dn
U

nc,L

sn − nc,LdG . s30d

Since it was assumed above that the resonance bandwidth
change is neglectable, one will have

UdfL

dn
U

nc,L

< UdfNL

dn
U

nc,NL

; Udf

dn
U

nc

. s31d

The nonlinear frequency shift fornÞnc will however not be
equal toDnc. In general, the field profile of one resonator
period for frequencyn will scale approximately with a factor
uttot,Lsndu compared tonc. Important deviations from this only
occur for frequencies for whichuttot,Lsndu is very small. Typi-
cally, however, these regions are of no importance for appli-
cations. Since the Kerr effect now scales withuEu2, the non-
linear frequency shift in casenÞnc becomes

DnNL < uttot,Lsndu2Dnc, s32d

which means that the general Kerr-nonlinear phase relation
for one period is in good approximation given by

fNL
s1dsn8d = fL

s1dsnd, s33d

with n8=n+ uttot,Lsndu2Dnc. In general, however, one will be
interested in the phase shift in the neighborhood of the reso-
nance peaks[( e.g.,n8=nc,L+nc,NL/2)]. The equality

n + uttot,Lsndu2Dnc =
nc,L + nc,NL

2
s34d

has a single real solutionn=nsol, which also gives
uttot,Lsnsoldu2 required to calculatefNL

s1dsnc,L+nc,NL/2d. This n
=nsol is a complicated formula as isuttot,Lsnsoldu2, but for low-
frequency shifts,uttot,Lsnsoldu2<1 will be a relative good ap-
proximation. In this case, the phase shiftDfs1d—calculated
at n=nc,L+nc,NL/2—will be given by
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Dfs1d < 2 arctanSUdf

dn
U

nc

Dnc

2 D . s35d

2. Phase shift for ` periods

For a structure with̀ resonator periods, the linear phase
relation is given by Eq.(15)

fL
s`dsnd = ±

p

2
− arcsinFUdfL

dn
U

nc,L

sn − nc,LdG . s36d

Again neglecting the resonance bandwidth change, one im-
mediately obtains for the nonlinear phase relation

fNL
s`dsnd = ±

p

2
− arcsinFUdf

dn
U

nc

sn − nc,NLdG , s37d

since no problems arise with transmission here. Note that in
the bistable region of course two phase relations exist: The
“transmissive” one is given here, the other one is simply
fNL

s`dsnd=p if n2.0 and fNL
s`dsnd=0 if n2,0. So Dfs`d is

equal to

Dfs`d = 2 arcsinSUdf

dn
U

nc

Dnc

2 D . s38d

3. Comparison and generation

If small resonance shifts or large resonance bandwidths
(which means a small value ofudf /dnunc

) are assumed, Eqs.
(35) and (38) can be linearly approximated as

Dfslind = Udf

dn
U

nc

Dnc, s39d

which means that thisDfslind will also be approximately
valid for any finite number of periodsN. Note that this for-
mula for the phase shiftDf is completely in accordance with
intuitive reasoning: a phase shift proportional toDnc and to
udf /dnunc

is indeed what one would expect.
To check these results, the phase shiftDf is plotted as a

function of the relative resonance shiftDnc/
Dns=udf /dnuncDnc/2d for a large variation of all parameters
(Ndbr, Ncav, nb/na, n2, and uEinu) in Fig. 2. The numerical
simulations were obtained by means of a nonlinear
extension,12 of cavity modeling framework13 (CAMFR)
based on spatial index discretization.

As can be seen, excellent agreement is obtained between
numerical simulations and the analytical formulae(35), (38),
and (39) for all situations. This also verifies the theory of
Sec. IV B. The deviations between simulations and Eq.(35)
in the case of one period are due to transmission issues, as
discussed in Sec. IV B 1.

C. Complete Kerr-nonlinear resonator (model
approach )

As discussed in Sec. IV A 2, the resonance shift of a
complete Kerr-nonlinear structure cannot easily be derived
starting from Eq.(22). However, instead of calculating first
the resonance shift and using that result to determine the
phase shift—as done in Sec. IV B,Df can be calculated
immediately, using modal theory.

In modal theory, the nonlinear field profile along the
propagation axis is assumed to stay close to the linear one, so
that the nonlinear action only consists of changing the am-
plitude of this profile.14 It is obvious that a modal approach
will only be valid for small nonlinearities, which is in gen-
eral the case for Kerr-nonlinear effects. Using the general
theory in Ref. 14 and the intermediate results in Ref. 6, one
immediately obtains for the(linearized) single period phase
changeDfslind

Dfslind <
3p

8
Sna,0

nb,0
D2Ndbr n2

na,0
uEinu2SNcav+

na,0
4 + nb,0

4

na,0
4 − nb,0

4 D ,

s40d

in the case ofna,2=nb,2=n2 andna,0.nb,0, as considered in
this paper. It is however easy to extend the calculation to
more general cases, such asna,2Þnb,2. The main disadvan-
tage of a modal approach is that it is quite difficult to gain
simple insights in the nonlinear interactions, such as Eq.
(39).

Using Eqs.(35), (38), and (39) and the theory of Sec.
IV B 3, the phase changes for complete Kerr-nonlinear reso-
nator structures, consisting of one and` periods, are then

Dfs1d < 2 arctanF3p

16
Sna,0

nb,0
D2Ndbr n2

na,0
uEinu2

3SNcav+
na,0

4 + nb,0
4

na,0
4 − nb,0

4 DG , s41d

Dfs`d < 2 arcsinF3p

16
Sna,0

nb,0
D2Ndbr n2

na,0
uEinu2

3SNcav+
na,0

4 + nb,0
4

na,0
4 − nb,0

4 DG . s42d

Now, based on Eq.(39), it is also possible to determine
the resonance shiftDnc analytically for a complete Kerr-
nonlinear resonator

FIG. 2. Comparison ofDf vs Dnc/Dn between numerical simulations and
Eqs.(35), (38), and(39).
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Dnc = −
3

4
Sna,0

nb,0
DNdbr

uEinu2
n2

na,0
nc

Ncav+
na,0

4 + nb,0
4

na,0
4 − nb,0

4

Ncav+
nb,0

na,0 − nb,0

. s43d

Note the close resemblance of this equation with Eq.(29). As
predicted in Sec. IV A 2, one indeed has,Dnc→−s3/4d
3sna,2/na,0dsna,0/nb,0dNdbruEinu2nc for large cavities.

V. DESIGN AND DISCUSSION

As mentioned in the Introduction, the design of a reso-
nating structure for Kerr-nonlinear phase shifting will be a
tradeoff among input power, device length, and signal band-
width.

Since the resonance peaks in the linear and the nonlinear
case do not coincide, the signal bandwidthDns can be sub-
stantially lower than the resonance bandwidthDn. In the
ideal case,Dns will be equal to the bandwidth overlap be-
tween both cases, thus,

Dns = Dn − Dnc. s44d

In the case of a realistic, finite structure, the resonance win-
dow will, in fact, not be completely transmissive. At the
edges, the transmission function will show a number of
peaks(increasing with the number of periods), in between
which the transmission can drop even more than 50%, de-
pending on the index contrast of the mirrors. Therefore,Dn
should be correct with a factorfcorr,1, so the maximum
signal bandwidth is

Dns = fcorrDn − Dnc. s45d

A good estimate for this correction factor was found to be
fcorr=0.5. This value was obtained by comparing the high
transmission shape of general, multiperiod resonator struc-
turessN=3–9d with their resonance bandwidthDn.

From Eqs.(39), (14), (43), and(45), this tradeoff is ob-
vious; to minimize the device lengthLtot the phase shift per
unit of lengthDf /Lper must be maximized. This implies that
the resonance shiftDnc should be as high and the resonance
bandwidthDn as low as possible. However these last two
conditions also result in a lower signal bandwidthDns. Fur-
thermore, a restriction to the resonance shiftDnc will be
imposed by the achievable input power.

This optimization is now done for a realistic example: a
coupled cavity photonic wire in silicon-on-insulator(SOI) is

approximated by takingna=2.6 andnb=2.36, which corre-
sponds to an index contrast of<10%. The Kerr coefficient is
equal ton2=0.6310−13 cm2/W (or 2.4310−16 cm2/V2) and
the cross-section areaAcross<slc

2/2nad. The input powerPin

corresponding to a certain input fieldEin may be estimated
from the input intensityI in=s1/2dcnae0uEinu2 and the cross-
section area, so

Pin < I inAcross=
c

8na
e0lc

2uEinu2. s46d

The results are shown in Fig. 3; the required input powers
which may be expected are shown as a function of device
length for several signal bandwidths. To become continuous
curves, the parametersNdbr andN were assumed to be con-
tinuous, which is a good approximation since both values are
typically high. The situation of a simple wire without reso-
nating structures is drawn in Fig. 4 as a comparison.

Comparing Figs. 3 and 4, it can be seen that the im-
provements in the order of 10 000 for the device length are
possible (depending on the signal bandwidth). The signal
bandwidth is however an important limiting factor, espe-
cially for very high band rates. Note also that from a certain
input power on, the relative improvement ofLtot drops very
steeply so using even higher powers are not sound.

In Fig. 5, the example above is recalculated with other
index contrasts for a signal bandwidth of 40 GHz. From this,
it is clear that high index contrasts allow major improve-
ments in the device length. This is due to two factors: first,
the length of mirrors with the same reflectivity substantially
reduces for higher contrast[Eq. (5)]. In addition, the reso-
nance shift for a certain input power will also be larger for
shorter mirrors, because a smaller part of the nonlinear phase
change in the cavity will be used to compensate the phase

FIG. 3. Input powerPin required to obtain a nonlinear phase shift ofp by
propagation through a resonator-based distance ofLtot for several signal
bandwidths.

FIG. 4. Input powerPin required to obtain a nonlinear phase shift ofp by
propagation through a homogeneous distance ofLtot.

FIG. 5. Influence of index contrast on thePin-Ltot tradeoff, shown in Fig. 3,
for the case of 40 GHz.
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shift in the mirrors, as discussed in Sec. IV A 1. The obtain-
able index contrast is however typically limited by scattering
and radiation loss in actual structures.

An important remark is that for all situations depicted in
Figs. 3 and 5, one hasNcav=1. From Eqs.(14) and (16), it
can be seen that the resonance bandwidth reduces both with
higher urdbrunc

and largerNcav. However, only the mirror
strength determines the field strength inside the cavity[Eq.
(25)]. On the other hand, a larger cavity improves the fre-
quency shift, as mentioned in Sec. IV A 1. These results now
imply that increasingurdbrunc

is more efficient in terms of
device length than increasing the cavity length.

To determine the real optimum, only integer values of
Ndbr and the period numberN can be taken into account. In
most situations, one will also chooseNdbr to be even(this
was implicitly done in Sec. II). Otherwiseblc/8

layers must
be constructed at the in- and out-coupling sections, which
require more demanding feature size limitations. Suppose
one would like to minimize the device length for a signal
bandwidth of 10 GHz and input powers up to 30 mW is
allowed. To find the optimal solution, one should first make a
3D graph of the input powerPin required forNDf=p with
discrete axisNcav, Ndbr, andN under the condition thatDns

=10 GHz. Then solutions can be found by transferring the
cut Pinø30 mW to a new 3D graph now showingLtot. The
five best parameter combinations obtained in this way are
shown in Table I, together with the required input powerPin

and the total device lengthLtot.
Note thatNcav is not necessarily equal to one, since only

discrete solutions are now taken into account. Note also that
the required input power already drops 10 mW for an in-
crease in device length of 3mm. Due to tradeoff require-
ments, several solutions are found, which lie very close to-
gether.

To clarify this even further,Df /Lper is drawn as a func-
tion of Ndbr and Ncav in Fig. 6. The limiting line Pin

=30 mW is also shown.
From this figure, it can be seen thatDf /Lper is almost

constant alongPin=30 mW for lowNcav. Only for increasing
Ncav, Df /Lper drops more substantially. As already discussed,
increasingurdbrunc

(thus Ndbr) is more efficient in terms of
device length than increasingNcav. However for low cavity
values, this difference in efficiency is relatively low, since
increasingNcav still improves the frequency shift substan-
tially (Sec. IV A 1). Discreteness of the parameter space
therefore allows closely spaced optimal solution.

The optimal result of Table I is now numerically checked
in Fig. 7.

It can be seen that the resonance shift is equal to
0.19 nm, which is in good agreement with Eq.(43). The
obtained phase shift forl=1/2slc,L+lc,NLd=1.550 095mm
is Dftot<3.32, which is close top. As can be seen, the
phase shift is almost constant over a large range, however,
for resonance of transmission, the usable wavelength range
suttotu2.0.9d is only Dls=0.085 nm, so the signal bandwidth
is approximately limited to 10 GHz, as expected.

The resonance bandwidth based on Eqs.(14) and(16) is
Dl=0.6 nm, so the resonance shift is about one third of the
bandwidth. On the other hand,udf /dnunc

is also much steeper
than in the absence of resonators. This means that both
udf /dnunc

andDnc are important in this example. For higher
Pin or n2, the driving factor of the phase shift will typically
be Dnc sDnc< fcorrDnd, while in the case of lowern2 or Pin,
udf /dnunc

will be more significantsDnc! fcorrDnd.

VI. CONCLUSIONS

In this paper, the design of ultrafast nonlinear phase
shifting devices by means of resonators has been discussed.
It has been shown that a phase shift ofp can be achieved

TABLE I. Best parameter values to minimize the device length forDns

=10 GHz andPin,30 mW.

Ndbr Ncav N Pin (mW) Ltot smmd

1 54 2 5 29.724 87.188
2 54 3 5 25.921 88.678
3 56 1 5 22.856 88.843
4 54 4 5 22.981 90.168
5 56 2 5 19.502 90.334

FIG. 6. Phase shift per unit of lengthDf /Lper as a function ofNcav andNdbr.
The linePin=30 mW is also shown.

FIG. 7. Numerical calculation of the linear and nonlinear phase relations
fLsld and fNLsld. The structural parameters of the resonator arena

=2.6, nb=2.36, Ndbr=54, Ncav=2, N=5, andlc=1.55mm, while the non-
linear input power is given byPin=29.24 mW. The signal bandwidth is
indicated by vertical lines.
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within reasonable power and device length budgets, much
smaller compared to the case of simple waveguides.

It was, in particular, shown that device optimization is
possible by using resonators consisting of high contrast mir-
rors, both for reducing the optical power and the device
length. Furthermore, the cavity length itself should be kept
small, although not necessarily a half wavelength.

An important limitation to this concept is however the
signal bandwidth. A high bandwidth signals.100 GHzd re-
quires substantially more optical power or longer nonlinear
components.
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