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The design of all-optical phase shifting by means of Kerr-nonlinear resonators is investigated using
a one-dimensional analytical model. Dependence on different device parameters and design
optimization are discussed. In particular, it is shown that a tradeoff in terms of optical input power
and device length is required, which is limited by the signal bandwidt20@5 American Institute

of Physics[DOI: 10.1063/1.1829148

I. INTRODUCTION to determine the limitations of this approach. Note also that
this 1D structure is an immediate model for Fabry—Perot
From the beginning, nonlinear optics showed great pocavities implemented in waveguides.
tential for all-optical signal processing, because of its ul-  The organization of this paper is as follows. In Sec. II
trafast response times. However, nonlinear effects like théhe resonator structure considered in this paper is discussed.
Kerr effect are typically very small in standard photonic ma-Sections Ill and IV describe the linear and nonlinear behav-
terial systems(n,~101°-~1013 cn?/W). This means that ior of this structure. The applicability of resonator structures
very high input powers or very long device lengths are re-is then discussed in Sec. V. Finally conclusions are drawn in
quired to obtain a phase shift ai—which is the basis for Sec. VI.
most optical switches today—leading to unpractical designs.
A possible route to overcome these impairments is by
using resonating structures. They enhance the electric field §f 1p sTRUCTURE
power density and slow down the pulse propagation, so that
the nonlinear response is larger. Examples of such structures The resonator structure that will be used throughout this
are coupled cavity waveguides, ring resonators, It has  paper has the following period;
been shown that with these components, important improvea, jgbx jad jab ja --- Py jadn_ s 2x ja@ jabx sa - - Dy jax sg
ments are possible for the purpose of Kerr-nonlinear phas ) — -
. 1-3 . . K mirror cavity mirror
shifting.””” In addition, they also exhibit features which can-
not be implemented with simple waveguides, such as all
optical Iimiting,4 all-optical switching, and bistabilit'i/‘.10

with a andb two different materials) . the resonance wave-
length of the structure, anbl.,, an integer indicating the
cavity length(in units of A\;/2). The parameteNy,, will be

A'.‘ 'mpo”'?‘”t guestion howevgr Is how far one can go Nyseq to indicate the total number lofayers in one resonator
reducing the input power or device length. Increasing theperiod. The length of one resonator period is then
resonating effect will result in further reduction, however, at

the expense of the obtainable signal bandwidth since stron- A Ac

ger resonators have a higher finesse. Therefore a tradeoff Lper™ 4_na(Ndbr_ 1+ MNeay) + 4_nb(Ndbr)' 1)
among input power, device length, and signal bandwidth is to ) )
be expected. Quarter-wave mirrors were chosen here for analytical

In this paper, a detailed analysis of one-dimensionaPurPoses and becaqse they have the Iargest_ reflectivi_ty per
(1D) coupled resonators is performed to investigate the realnit of length. The rightmost layer of one period combines
istic possibilities of resonator-based approaches for KerWith the leftmost of the next period to create an uninter-
nonlinear phase shifting in case the data signal itself behavdsPted distributed Bragg reflectddBR) mirror. The in- and
either linearly or nonlinearly. A 1D model makes an analyti- OUt-coupling layers to the resonator structure are assumed to
cal description of the nonlinear effects inside the structurd'@ve a refractive inder,.
possible, providing deeper insight in the influence of various AN €xample for two periods is given in Fig. 1.
structural parameters. Although this model essentially con-
siders a nonlinear Fabry—Perot ca\myt is used here in the

cavity ., Da Np
context of waveguide-implemented devices. Based on this
model, general conclusions are drawn about design aspec
which are representative for all three-dimensiqi3&) struc-

tures mentioned above and design optimization is carried ou. * mirror mirror -

FIG. 1. Two period resonator structure with in- and out-coupling layer.
¥Electronic mail: gino.priem@ugent.be Refractive indices are indicated.
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I1l. LINEAR THEORY 1
|ttot(V)|2 =~ 4 2 21 (9)
The linear properties for a resonating structure with one 1+ M( m_ de )
and witheo periods are now derived. These two cases serve Itdbrlf,C e dp ve
as boundaries for the realistic situation in which the number
of periods to achieve a nonlinear phase shiftmofwill be - 2(v— 1) T  d
finite, but still can be either low or high. ¢#P(v) = £ — —arcta —ZC( —— =2 ) :
2 |tdbr| Ve Ve dv Ve
(10)

A. Properties of one period Equation(9) shows the typical Lorentzian transmission char-

A rigorous calculation using the transfer-matrix methodacteristic of a single resonator, while E40) shows that its
is in principle possible but is not suitable to derive the ana-output phase relation has an arctan behavior. Note that
lytical formulae. Therefore a few approximations are intro- d(,D/dV|VC still needs to be determined. This will be done in
duced. The frequency dependence of the amplitude of mirro®ec. Il B.
transmission and reflection coefficiengg, andr g, can gen-
erally be neglected compared to that of the phase, so

taor = |tdbr|ej‘Pt ~ |taod» et (2) B. Bloch characteristics  (properties for o periods )
. _ Using the Floquet-Bloch theory, the general dispersion
Fabr = [P apd €4 = [V aod » € (3)  relation—which relates the propagation constaaf a Bloch
_ _ o mode to its frequency—for a structure with a period con-
For the mirrors defined in this paper, one has sisting of N layers(indicated bya: - -N) is given by

2nNabr2Nabi/2 N+1 .

g, = 2T @) 27Ny -+ Ny cosKLpe)
c nadbr+ nbdbr 1
= X (- DN cog (- Pekl,

ngldbr_ n:;ldbr Pa: - PN=0

oo™ s © bt (- DI )P + (- 1]

Using a linear approximation, the phasgsand ¢, can be X[(= )Ponp(= 1)Penc] -+ [(= DNy + (= DPang], (11)

written as with n; the refractive index of layer, k;=(27v/c)n;, |; the

length of layeri, k the propagation constant of the Bloch

(v=vo), (6)  mode, and_,e==l; the period length. This formula was ob-
Ve tained by induction. In the case of the resonator period de-
scribed above, this formula is not immediately usable be-
cause there are too many layers involved. The dispersion
relation for weakly coupled resonators is however approxi-
mately sinusoidal around the central frequemg)]ll so it can
with the sign of ¢, depending onNg, and dg/dy|, be written as

C

= d(pr/dv|,,CE d<p/dv|,,C due to the symmetry of the mirror. A
An analytical expression forde/dv], will be determined in =y - sin(kLperi E>, (12)
Sec. Il B. 2
c aviltfy,ﬂ:\?v ée;?rrgs:og éitir;?]vsv ;ggsg\?viriitzijéhgiegfg:egfg? of \zlivith Av the resonance bandwidth. The exact sign depends on

tinuity) and the transfer-matrix approach is applied, theNcaV and Ngp,, bUt is not important hereklpe, is the phase

transmission coefficient for the complete structure becomes(:hange between the input and output over a single period,

denoted asp in Sec. Il A. Using this notation, one obtains

doy
dv

%:iz+
2

der

=0+
Pr dv

(v=1y), (7)

Ve

g iecart2eri(m20lvo)g Ji for the single period phase change of a resonator structure
tiot(v) = L+ Aot Virdbr|12; (8) with « periods,
Cc
i - @)+ T 12
With @ca,= TNea(v/ 1) the phase length of the cavity and the ¢ (v £ 5 =~ —arcsin ~=(v=wvo) |. (13

factor e71(m2 ") corresponding to the phase change in the

in- and out-coupling sectiongogether with a quarter wave- Differentiation of Eq.(13) to the frequency shows
length, see Sec.)llUsing Egs(6) and(7) and expanding the

exponentials in the denominator around v, the intensity ‘ d¢™ _2 (14)
transmission|t,,(»)|? and the phase changé(v) over a dv Vc_Av'

single resonator period for a resonator structure with one

period become leading to
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In this paper, it will be assumed thaj ,~ny, ,, which is
(v- Vc)} ' (15 especially a good approximation for waveguide-implemented
% Fabry—Perot cavities. It also holds quite well for other reso-
An analytical expression fofd¢™/ dV|Vc can be obtained nator types. This means that the resonance bandwidth can in
from Eq. (11). The calculation is straightforward but very good approximation be considered as constanly in cases

d ¢(°°)
v

dP(v) £ g ~- arcsir{ ‘

tedious. Finally one obtains in which n,, and n,, have opposite signs, bandwidth
g - changes become importantA method to calculate cases
= 5 {(1 +|rdbr|12;)(2Ncav_ 1) with n, > # n, , will be discussed in Sec. IV C.
dv Ve 2Vc|tdbr|vc ¢ From Eqgs.(15) and(18), it is obvious that the nonlinear
_+n resonance shift and the change of the output phase will be
+ 2|rdbr|vc b] (16) interdependent. The new resonance frequency can easily be
Na—N determined by looking at the phase condition inside the cav-
Equations(14)—(16) fully describe the resonance bandwidth ity From that, the nonlinear phase change will be calculated.
and the phase relation inside the bandwidth. An effort will be made to obtain insight in the nonlinear
interaction, therefore avoiding long mathematical calcula-
C. Comparison between 1 and < periods tions as much as possible.

The limiting cases of one amd periods coincide fow
=vc. Indeed for the resonance frequency, the transmission of shitt of resonance frequency
every single resonator period is one, so they cannot interact.
Based on this, a relation fade/dv), —WhICh was left un- From EQq.(8), it is clear that the total transmission will
determined in Sec. Il A—can be derived by an expansion oPNly be achieved if
Egs.(10) and(15) at v=wv.. The result of this is

a
@t~ Peav= £ 5 + P, (22
de T (| ’ L+ Ny l) (17 2
- i U LY P — .
dvl, 2v¢ en, =y with p any integer. In the linear case, this immediately leads

L . . . = i i =+

Substitution of this Eq. in(10) allows now to derive the t_o v=ve,_since for th|s fr?q“e“CY% ‘.(77/2) and @eay

output phase relation for the case of one resonator perio N.aym- The Kerr-nonlinear interaction will however change
%e refractive index in both the cavity and the mirrors, so this

(Sec. 1A as o condition will now be true for another wavelength.
d ]
dV(») =~ * — - arcta ‘ ¢ (v=wy) |. (18)
2 dv v
1. Kerr-nonlinear cavity only
Differentiation shows that . . . o
@ ) Since the electric field will be the strongest inside the
do _|do _ ‘ d¢ (19) cavity, it is interesting to start by considering only the cavity
dv [, dv |, dv|,’ as Kerr-nonlinear. First, the nonlinear enhancement in the
. cavity must be found. It is well knowlrthat the electric field
so that Eqs(15) and(18) finally become for a certain frequency in a 1D medium with a Kerr-
de nonlinearity, is in good approximation given by
dV(v) = + 2 arcta{ (v vc)} (20) _ , ,
2 dv E,= Ef’Ve—](ZwV/C)[nO+n2(\Ef'V| +2|Ep, |91z
i 2 2
e 7 [|de + By, @l oo 2B, 8 P, (23
¢ (v) = +  —arcsi (v=wo) (21) , : : o
2 dv |, with ng and n, the linear and nonlinear refractive indices,

respectively, andg;, and E,, the forward and backward
field components, respectively, amdhe direction of propa-
IV. NONLINEAR THEORY gation. An easy way to verify this is with the use of a mul-

The nonlinear effect on the transmission spectrum of ditime scale approach although other methods are possible.
resonating structure can qualitatively be described as folSince high-field enhancement is required, strong mirrors will
lows. The incoming light builds up inside the cavity and typically be used in the resonating structure leading to almost
partially in the mirrors and therefore changes the refractivPerfect standing waves inside the cavity, & ,~E,,
index of the complete structure. This means that both thé* Ecav,/2 with ECYS, the maximum cavity field. This means
resonance peak and the resonance bandwidth can chandfeat both the forward and the backward field in EQ3)

The index changes also affect the output phase relatien ~ approximately see the same index profile, which is given by
In the most general casg,,# Ny ,. It can then roughly be |[Emad”

said that the resonance shift is determined by the overall Nn=ng+ 3nzT- (24)
value ofn, (a shift to higher frequencies occurs foy<0

and vice versp while the change of bandwidth is due to the Using Egs.(4) and (5), the maximum linear cavity field for
modulation ofn,. v=1, [SO that|Ej,(vo)|=|Eoud¥o)|] for ng>n, is given by
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na n, | Naor/2 So, for a large cavity compared to the mirror sections, the
[Ecav ()| = n [Ein(vo), (25 resonance shift is again expected to be,.——(3/4)
_ o X (N 2/ Mg ) (N 0/ 1, 0) N0 Ei s
with E;, the input field of the resonator structure. So the total  For small cavities or large mirrors, however, the reso-
refractive index inside the cavity for=1, is simply given by  nance shift will be much larger than indicated by F29).
)Ndbr| |2 The transition between both states is expected to be faster for
Eil2.

3 [nao
n=ny+ an(ni (26) smaller mirrors and thus larger refractive index contrast. It is
6,0 however not possible to calculatey, analytically, starting

Together with Egs(10) and (11), the resonance condition from Eq. (22). To derive the resonance shift in this case,

(22) becomes another method will be use@ee Sec. IV ¢
d

pm+ d_(P Ve

v_ Vv B. Shift of phase relation ¢

Ve N ) +§ni2 oo Ndbr|E 2|+ de The Kerr-nonlinear phase shift per perid@ will now

cavt 4n,o\Nyo in dv|, Ve be calculated. The same approach will be used as in Sec. IlI:
' ' ¢ first, the limiting situations of structures with one period and
(27) with o periods will be discussed. Then the results will be

Since in the linear case, the result shoulduser, and since  compared and generalized kbperiods.
small nonlinearities are assumeu; —N,,, Or

NeayT = 3_"0 Ve 1. Phase shift for one period
v 12 . . .
Y _ < . In Sec. lll A, it was shown that the linear phase relation
Ve 3N,,( Ny Nebr d for one period is given b
Ncav77|:1+_l2(ilo> |Ein|2:| _ Jde Ve p g Yy
4na,0 nb,O dV Ve (1) r d¢|_
29 ¢ (v) = iE—arcta d_ (v=—we) |- (30)
14
Vel

Finally, expanding both sides around their linear values, on&ince it was assumed above that the resonance bandwidth

gets change is neglectable, one will have
A 3N,,( Ny \Nabr N d d d
2V _ _ _LZ(L’O> cav IE, 2. (29) doy ~ Ao = dé _ (31)
Vg 4ny0\ Ny N - e do dv - dv YenL dv "
cav ' !
dv Ve The nonlinear frequency shift far# v, will however not be

Since dg/di|, <0, the resonance shift asymptotically €qual toAv.. In general, the field profile of one resonator

c

grows to Av,— —(3/4)(Ny 2/ Ny o) (Na o/ Ny o) NOIE; |20, for  Period for frequency will scale approximately with a factor
large cavities or short mirrors. o |tior, (¥)| compared tar.. Important deviations from this only
This can be explained as follows: due to the frequencyPccur for frequencies for whiclto, (v)| is very small. Typi-
dependence of the transmission and reflection phages call_y, how_ever, these regions are of no importance for appli-
and¢,(») of the mirrors, a part of the nonlinear transmissioncations. Since the Kerr effect now scales wi, the non-
phase change of the cavity(3m/4)Ne(Na2/Nao) linear frequency shift in case+ v, becomes
x[_(nayolnb'o)]Ndbrv/ v|Ein|? is used to compensate.the phase Ay = [t ()[?Aws, (32)
shifts gi(v.+Avy) — @i(ve) and g, (v.+Ave) — ¢ (v,). Since the ) . )
frequency dependence of(v) and e, (v) is lower for shorter Which means that the general Kerr-nonlinear phase relation
mirrors, the asymptotical behavior will be faster. The saméOr One period is in good approximation given by
holds for larger cqvities sinc_e they provide a large phgse ¢,§\|13(,/) = ¢,(Ll>(,,), (33)
change(«N,). This has an important consequence: using

Neay values larger than 1 could be beneficial if larger resoWith ¥ =v+[tigy (v)[?Ave. In general, however, one will be
nance shifts are needed. interested in the phase shift in the neighborhood of the reso-

nance peak§ e.g.,v' =y +v.n/2)]. The equality

+
v+ |tt0t,L(V)|2A V.= M— (34)

2. Complete Kerr-nonlinear resonator 2

Deriving a formula for the resonance shiftv. in this has a single real solutiorw=vy, which also gives
case is not obvious, since a large number of mirror layers arf (vs,)|? required to calculateﬁﬁllﬂ(vc,ﬁ vent/2). This v
generally involved, each experiencing a different electric=vs, is a complicated formula as j& (vs,)|% but for low-
field and thus another Kerr-nonlinear effect. At the new resofrequency shifts|t, (vso)|2~1 will be a relative good ap-
nance frequency, the field in the cavity will again be theproximation. In this case, the phase shifp¥—calculated
largest of the resonator period, like it was in the linear caseat v=v. + v\ /2—Wwill be given by
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23 o numer, A0D | o As can be seen, excellent agreement is obtained between
24 a numerj Ap| 5 numerical simulations and the analytical formui{&8), (38),
——--analyt,| AQ® | g and (39) for all situations. This also verifies the theory of
;15* ------- analyt,| A9™) | Sec. IV B. The deviations between simulations and B§)
2 1 ——linear,|A¢" || - in the case of one period are due to transmission issues, as
0.5 2 discussed in Sec. IVB 1.
04 ‘ ‘ ; ;
0.2 0.4 06 0.8 1
| Avg /7 Av |

FIG. 2. Comparison ol ¢ vs Av./Av between numerical simulations and C. Complete Kerr-nonlinear resonator  (model
Egs.(35), (38), and(39). approach )

As discussed in Sec. IV A2, the resonance shift of a
ﬂ:) (35) complete Kerr-nonlinear structure cannot easily be derived
, 2 starting from Eq.22). However, instead of calculating first
¢ the resonance shift and using that result to determine the
phase shift—as done in Sec. IV R¢ can be calculated
2. Phase shift for « periods immediately, using modal theory.

In modal theory, the nonlinear field profile along the
propagation axis is assumed to stay close to the linear one, so
that the nonlinear action only consists of changing the am-

plitude of this profile** It is obvious that a modal approach
(v=wep) |- (36) Wil only be valid for small nonlinearities, which is in gen-

eral the case for Kerr-nonlinear effects. Using the general
Again neglecting the resonance bandwidth change, one intheory in Ref. 14 and the intermediate results in Ref. 6, one

d
ApH =2 arctar{ d—(f

For a structure withe resonator periods, the linear phase
relation is given by Eq(15)

| [do
)y = 4 T _ 8
¢ (v)= % > arcsn‘“ .

Vel

mediately obtains for the nonlinear phase relation immediately obtains for théinearized single period phase
” changeA (M
)= 22~ arcsi{ o VC,NL):| : (37)
vV, 4 4
- o with tanemicel g = 37 (M) N o Mao* Mg
since no problems arise with transmission here. Note that in 8 \nyo T

the bistable region of course two phase relations exist: The
“transmissive” one is given here, the other one is simply
o) (v)=m if N;>0 and ¢ (1)=0 if N;<0. SoAg™ is

(40)

in the case oh, ,=ny,=n, andn, ,>n, o, as considered in

equal to _ | _
this paper. It is however easy to extend the calculation to
A¢™ =2 arcsi do| Av (39) more general cases, suchm@s,# n,,. The main disadvan-
dv ve 2 tage of a modal approach is that it is quite difficult to gain
simple insights in the nonlinear interactions, such as Eq.
(39).
3. Compatrison and generation Using Egs.(35), (38), and(39) and the theory of Sec.

If small resonance shifts or large resonance bandwidth'sv B 3, the phase changes for complete Kgrr-nonlmear reso-
(which means a small value td¢/dy], ) are assumed, Egs. nator structures, consisting of one anderiods, are then
(35) and(38) can be linearly approxirrc1ated as

37 Ny \Neor n
) d A (1) ~ 2 t _<Lv0> _2 E. |2
Ad)(“”) - ’_d(f Av, (39) ¢ arcta 16 Moo na,0| |n|
" nt o+t
. . (”n) . . a,0 b,0
which means that thidA¢"™ will also be approximately ><<Ncav+ —'—'—n4 2 ) , (41)
a0~ b0

valid for any finite number of periods. Note that this for-

mula for the phase shift ¢ is completely in accordance with

intuitive reasoning: a phase shift proportionalXe. and to 3/ e\ 2Naor

|d¢/dy|, is indeed what one would expect. AP =2 arcsir{—(ﬂ> —2|E;|?
To check these results, the phase shiftis plotted as a 16\ Ma,0

function of the relative resonance shiftAv./ n;‘ ot nf)‘ 0

Av(=|d¢/dv|,.Av./2) for a large variation of all parameters X| Neay+ ﬁ : (42)

(Ngor Neaw Np/Ng, Ny, and |Ej|) in Fig. 2. The numerical a0 b0

simulations were obtained by means of a nonlinear Now, based on Eq39), it is also possible to determine

extension® of cavity modeling framewor® (CAMFR) the resonance shifAv, analytically for a complete Kerr-

based on spatial index discretization. nonlinear resonator
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4 .4 1251
N + Mot Mo |
3(ngo\Mer oy Y no—npg 1004
Ave=- | == [Epf—ve—— —>. (43 $ 75l
4\npo 2,0 Np,0 € :
Neay* - !
Na,0~ Npo af 507
i
Note the close resemblance of this equation with(2§). As 251
predicted in Sec. IVA2, one indeed ha&p.— —(3/4) o+—"= o = .
X (Ng.2/ Na.0) (N4 0/ Ny o) Vo Ejy |2 for large cavities. 0 2000 4000 6000 8000 10000

Lit (Mmm)

V. DESIGN AND DISCUSSION FIG. 4. Input powerP;, required to obtain a nonlinear phase shiftmoby

As mentioned in the Introduction, the design of a reso-Propagation through a homogeneous distanck, gf
nating structure for Kerr-nonlinear phase shifting will be a
tradeoff among input power, device length, and signal bandapproximated by taking,=2.6 andn,=2.36, which corre-
width. sponds to an index contrast sf10%. The Kerr coefficient is
Since the resonance peaks in the linear and the nonlineaqual ton,=0.6x 1072 cn?/W (or 2.4x 10716 cn?/V?) and
case do not coincide, the signal bandwidth; can be sub- the cross-section aref,.se~ (\2/2n,). The input powerP;,
stantially lower than the resonance bandwidtl. In the corresponding to a certain input fiel}, may be estimated
ideal caseAwvg will be equal to the bandwidth overlap be- from the input intensityl;,=(1/2)cn,eq|E;n|> and the cross-

tween both cases, thus, section area, so
Avs=Av-Av.. (44) c 2| 2
Pin = linAcross= = €oMa|Einl*- (46)
In the case of a realistic, finite structure, the resonance win- moeress 8n, oel=in

dow will, in fact, not be completely transmissive. At the Th it h in Fio. 3 th ired inout

edges, the transmission function will show a number of € results are shown in Fig. 5, the required Input powers
peaks(increasing with the number of periogdsn between which may be exps_:cted are sh_own as a function of _dewce
which the transmission can drop even more than 50%, deIgangth for several signal bandwidths. To become continuous
pending on the index contrast of the mirrors. Therefdre, curves, th(ra]_pﬁr.ameteh%br and N.wer_e asgumebd tr? bel con-
should be correct with a factoi,,, <1, so the maximum tinuous, which is a good approximation since both values are

signal bandwidth is typ!cally high. Thg S|tuat|on of_a simple wire Wlthout reso-
nating structures is drawn in Fig. 4 as a comparison.
Avs=feonAv = Ave. (45) Comparing Figs. 3 and 4, it can be seen that the im-

A good estimate for this correction factor was found to beprovgments in th.e order of 10. 000 for the 'device Ie.ngth are
feor=0.5. This value was obtained by comparing the highpossml_e(de_pendlng on the_ signal bar_wd\_/v_mithThe signal
transmission shape of general, multiperiod resonator struéa-_andwIdth IS h_owever an important limiting factor, espe-
tures(N=3—9) with their resonance bandwidthw. _C|ally for very high band rates. Note also that from a certain
From Eqs.(39), (14), (43), and(45), this tradeoff is ob- input power on, the rela.tlve improvement lof; drops very
vious; to minimize the device length, the phase shift per steeIpIyF_so Lés'?hg even h||gheLpow1_ars arelnolt fot;md'ih th
unit of lengthA¢/L e, must be maximized. This implies that . N Hg. o, the example above IS recaiculated with otner
the resonance shifi v, should be as high and the resonance!n(.jex contrasts fc_)r a §|gnal bandwidth of 40 GHZ' From this,
bandwidthAv as low as possible. However these last two't Is clear that high index contrasts allow major improve-
conditions also result in a lower signal bandwidth,. Fur- ments in the device length. This is due to two factors: first,
thermore, a restriction to the resonance shift, V\?ill be the length of mirrors with the same reflectivity substantially
imposed ,by the achievable input power reduces for higher contragEg. (5)]. In addition, the reso-
This optimization is now done for a realistic example: ahance shift for a certain input power will also be larger for

coupled cavity photonic wire in silicon-on-insulat@0l) is shorter mirrors, because a smaller part of the nonlinear phase
change in the cavity will be used to compensate the phase

125
. A\ ——2GHz 125 1— 0
100 ———— ----10GHz || voo L | ----5% ||
3 [ N e 40 GHz || E : —10%
75—+ - _ \
E P ~_ e 100 GHz 2 7544 e [ 20%|]
o= 50 Y ~.. = : \ .
I‘ "~_ \\\\\\\\\ &E S0 ". S
25— T 1 ) \ ~
N e 25 ' e
0 = : : LI ALEELELT e S TTTmmmeeee
0 200 400 600 800 1000 0 e Moween , :
Lyog (um) 0 200 400 600 800 1000
Liot (pm)

FIG. 3. Input powerP;, required to obtain a nonlinear phase shiftmby
propagation through a resonator-based distancepffor several signal  FIG. 5. Influence of index contrast on tifg -L,, tradeoff, shown in Fig. 3,
bandwidths. for the case of 40 GHz.
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TABLE |. Best parameter values to minimize the device length fox [ A/ Lo, |
=10 GHz andP;,<30 mW. 6
Naor Neay N Pin (MW) Liot (wm)
5
1 54 2 5 29.724 87.188
2 54 3 5 25.921 88.678
3 56 1 5 22.856 88.843 4
4 54 4 5 22.981 90.168
5 56 2 5 19.502 90.334 %
Z 3

shift in the mirrors, as discussed in Sec. IV A 1. The obtain- 2
able index contrast is however typically limited by scattering
and radiation loss in actual structures.
An important remark is that for all situations depicted in
Figs. 3 and 5, one hay.,,=1. From Eqgs(14) and(16), it
can be seen that the resonance bandwidth reduces both wit O
higher [rgp],, and largerNc,,. However, only the mirror
strength determines the field strength inside the cqéty.
(25)]. On the other hand, a larger cavity improves the fre-riG. 6. Phase shift per unit of lengip/ L e, as a function oNgay andNgy.
guency shift, as mentioned in Sec. IV A 1. These results nowhe lineP;;=30 mW is also shown.
imply that increasinglrgy ], is more efficient in terms of
device length than increasing the cavity length. It can be seen that the resonance shift is equal to
To determine the real optimum, only integer values 0f0.19 nm, which is in good agreement with Ee3). The
Nabr and the period numbed can be taken into account. In obtained phase shift fax=1/2(\; +\¢ ) =1.550 095um
most situations, one will also choodgy, to be even(this  is A¢,=~3.32, which is close tor. As can be seen, the
was implicitly done in Sec. )l Otherwisebkc,g layers must phase shift is almost constant over a large range, however,
be constructed at the in- and out-coupling sections, whiclior resonance of transmission, the usable wavelength range
require more demanding feature size limitations. Supposét,,]>>0.9) is only A\s=0.085 nm, so the signal bandwidth
one would like to minimize the device length for a signal is approximately limited to 10 GHz, as expected.
bandwidth of 10 GHz and input powers up to 30 mW is The resonance bandwidth based on E#8) and(16) is
allowed. To find the optimal solution, one should first make aAN=0.6 nm, so the resonance shift is about one third of the
3D graph of the input poweP, required forNA¢=s with  bandwidth. On the other hanldi#/dv|,_is also much steeper
discrete axifNca» Ngo» @ndN under the condition thahvs  than in the absence of resonators. This means that both
=10 GHz. Then solutions can be found by transferring thdd¢>/dv|VC andAvw, are important in this example. For higher
cut Pj,<30 mW to a new 3D graph now showirg,. The P;, or n,, the driving factor of the phase shift will typically
five best parameter combinations obtained in this way ar®e Ay, (Av.= f o, Av), while in the case of lowen, or P;,,
shown in Table I, together with the required input powgr |d<j>/dv|,,C will be more significan{Av < f ., Av).
and the total device length.
. Note thathav is not necessari!y equal to one, since onIyVI_ CONCLUSIONS
discrete solutions are now taken into account. Note also that
the required input power already drops 10 mW for an in-  In this paper, the design of ultrafast nonlinear phase
crease in device length of @m. Due to tradeoff require- shifting devices by means of resonators has been discussed.
ments, several solutions are found, which lie very close toit has been shown that a phase shiftofcan be achieved
gether.

5 52 54 56 58 60 62 64 66
Ndbr

To clarify this even furtherA¢/L e, is drawn as a func- 6.28 :
tion of Ngy and N in Fig. 6. The limiting line P, o —— linear
=30 mW is also shown. & 471 Kerrnl mE

From this figure, it can be seen thatp/L ., is almost E; 314 / 7 Ll
constant along?;,=30 mW for lowN,,. Only for increasing & / /f
Ncaw A/ L e, drops more substantially. As already discussed,  © 1.57 o o
incr%\Si”g|rdbr|yC (thus Ngy,) is more efficient in terms of o ,,-«'*‘/ / i

device Iength .than mcr'easmgcg\, Hoyvever fpr low cavrgy 15494 15496 15498 155 15502 15504 15506

values, this difference in efficiency is relatively low, since wavelength (um)

increasingN,, still improves the frequency shift substan-

tially (Sec. IV A1). Discreteness of the parameter spaceFl(&)?- l\(ljumer(ii:;ll gra;:culation of Ithe linear and nfonrl1inear phase relations

H H an . e structural parameters of the resonator e

therefore allows closely spaced optimal solution. fé.e, nbzz.ggf iy N:%’ AnGh = 1.55 um, while the n;ﬁ_
The optimal result of Table | is now numerically checked inear input power is given by,=29.24 mW. The signal bandwidth is

in Fig. 7. indicated by vertical lines.
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