

Group	Date	h [nm]	w [nm]	loss [dB/cm]	BOX [um]	top clad	Fab.
IMEC	Apr. '04	220	500	2.4	1	no	DUV
IBM	Apr. '04	220	445	3.6	2	no	EBeam
Cornell	Aug. '03	270	470	5.0	3	no	EBeam
NTT	Feb. '05	300 200	300 400	7.8 2.8	3	yes	EBeam
Yokohama	Dec. '02	320	400	105.0	1	no	EBeam
MIT	Dec. '01	200	500	32.0	1	yes	G-line
LETI/LPM	Apr. '05	300	300	15.0	1	yes	DUV
		200	500	5.0			
Columbia	Oct. 03	260	600	110.0	1	yes	EBeam
NEC	Oct. '04	300	300	19.0	1	yes	EBeam

PROGRAM

8.30 Registration

9.00 Welcoming and Opening

Prof. Dr. Manfred Helm, Forschungszentrum Rossendorf, Dresden, Germany

9.10 Silicon-on-insulator based nanophotonics: why, how and what for?

- The merits of high index contrast waveguiding structures
- The merits of Silicon-based approaches
- Challenges in SOI nanophotonics
- Applications of SOI nanophotonics

Prof. Dr. Ir. Roel Baets, Dries Van Thourhout, Wim Bogaerts, University of Ghent — INTEC, Belgium

9.40 Silicon-on-insulator based planar lightwave technology

- Optical board technology
- Hybrid integration
- C-WDM transceiver
- Silicon based optical components

Prof. Dr. Klaus Petermann, Technical University of Berlin, Germany

10.10 Low loss amorphous silicon-on-insulator waveguides and components

- a-Si film deposition
- Absorption of film waveguides
- Properties of multi and single mode waveguides
- Splitters and couplers

Prof. Dr.-Ing. Jörg Müller, Technical University of Hamburg-Harburg, Germany

10.40 Coffee Break

11.00 Photonic integrated circuits based on silicon waveguides

- Traditional and multistep patterning
- Bends, mirrors, tapers, couplers and switches
- 3x3 switch matrix and 8-channel AWG
- Fiber and laser coupling

Dr. Timo Aalto, VTT Technical Research Centre of Finland, Espoo, Finland

11.30 Monolithic silicon photoreceivers

- Photodetectors in Standard Silicon Technologies
- Photodetectors in Modified Silicon Technologies
- Bipolar, CMOS, and BiCMOS Photodiode ICs (PDICs)
- New Circuit Concepts for PDICs

Prof. Dr. Horst Zimmermann, Technical University of Vienna, Austria

12.00 Silicon-based photodetectors for high-speed integrated optical receivers

- Ge/Si photodetectors results and challenges
- Speed limitations of integrated detectors
- Quantum well and quantum dot structures
- · Resonant cavity enhancement

Prof. Dr. Erich Kasper, University of Stuttgart, Germany

12.30 Lunch Break

13.20 The present status on the way towards a silicon laser

- limitations and potentialities of silicon
- silicon nanocrystals for lasins
- impurity doped silicon for lasing
- hybrid approaches to a silicon laser

Prof. Dr. L. Pavesi, University of Trento, Italy

13.50 Silicon MOS light emitters by rare earth doping

- Why MOS light emitters
- · Advantages of rare earth doping
- Optimisation features
- Application purposes: Towards bioapplications

Dr. W. Skorupa, Forschungszentrum Rossendorf, Dresden, Gemany

14.20 Fabrication aspects on the combination of photonics and electronics

• Challenge for adding photonics on a CMOS circuit Dr. J. M. Fedeli, CEA-LETI, Grenoble, France

14.50 Coffee Break

15.10 Silicon based photonic crystals

- Photonic crystal physics
- Ridge-waveguide vs. photonic crystal waveguides
- Dispersion properties, coupling issues and losses of photonic crystal waveguides
- Application of photonic crystal waveguides such as DC, modulators etc.

Prof. Dr. Ralf Wehrspohn, University of Paderborn, Germany

15.40 Optical interconnects

- Evolution and macrotrends of interconnects
- Current bottlenecks: Speed, Power, Integrity
- Fundamental, Material, Device, Circuit and Systems limits of interconnects
- Appealing features of optical interconnects

Dr. Z. Gaburro, University of Trento, Italy

16.10 Integrated optical systems for lab-on-a-chip applications

- Advantages of integrated optics in lab-on-a-chip systems
- Integration of planar waveguides and microfluidic channels
- Glass waveguides vs. polymer waveguides
- Applications

Dr. Klaus B. Mogensen, Technical University of Denmark

16.40 Closing and the option to visit Sensitec-Naomi wafer fab

Kompetenznetz Optische Technologien Hessen/Rheinland-Pfalz

Experten. Forum. <mark>Optik</mark>.

1st International Optence Workshop on

Silicon Photonics

NOVEMBER 10TH, 2006 · MAINZ, GERMANY

Sponsored by:

Bundesministerium für Bildung und Forschung

