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ABSTRACT: A simultaneous calculation of eigenstates in the layered
quantum semiconductor structures using the finite element method was
developed. We proposed the approximation to linearize the nonlinear
eigenvalue problem due to nonparabolicity effect and found the applica-
tion range for the approach. The finite element calculation results
showed an excellent agreement with the published results obtained by
other authors. In addition, our calculated results confirm that the effect
of nonparabolicity on the transition energy shift is considerably large
for higher subbands and should be taken into account in the simulation
and design of light emitters based on layered quantum semiconductor
structures. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol
Lett 51: 1–5, 2009; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.23976
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1. INTRODUCTION

Quantum engineering of electronic energy states and wave func-
tions using nanoscale layers of semiconductor compounds allows
the design and the observation of quantum phenomena which are
typically observed in atomic structures. Furthermore, the advances
in growth technology of quantum well heterostructures have al-
lowed tailoring of the optical and transport properties of semicon-
ductor materials, resulting in a considerable increase in research
activity directed toward the development of novel useful optoelec-
tronic devices. One of the excellent examples of how quantum
engineering can be used to devise efficient light emitters in mid-
infrared to THz region is the quantum cascade (QC) laser [1]. To
understand the physical properties of the heterostructure devices,
one needs to solve the eigenvalue problem of carrier in the quan-
tum well structure. However, the presence of the conduction band
nonparabolicity effect (NPE) [2] makes it complicate. Under this
effect, it becomes a nonlinear eigenvalue problem. Therefore, the
problem in general cannot be solved exactly. The approximate
calculation needs to be developed to find the close solution.

In addition, since the operating wavelength of and the carrier
dynamics in the QC lasers are determined mainly by a quantum
well structure rather than bandgaps of materials, an accurate the-
oretical modeling is very important in the QC laser design. There
have been various methods used to calculate the band profiles in
the quantum well structures, which include the matrix approach
[3], the transfer matrix method [4], the finite difference method
(FDM) [5, 6], and the finite element method (FEM) [7, 8]. The
FDM and FEM are quite straightforward methods and advanta-
geous in that all the subbands can be calculated simultaneously.
However, this advantage of simultaneous calculation of all sub-
bands hardly can be taken if the NPE is included. Thus, in the
previous work, to include the NPE, subbands were calculated
sequentially, and in each subband calculation, a good guess of an
eigenenergy was to be made [9].

In our recent work [10], we proposed the new band structure
calculation method based on the FDM, in which all subbands were
calculated simultaneously even with taking into account the NPE.
The key element of the new approach was the using of the
first-order Taylor approximation of the energy dependency of the
electron effective mass. With the proposed method, we have
simultaneously calculated all the subband edge energy levels and
the corresponding wave functions for QC laser structures. The
finite difference calculation results showed good agreement with
the previously reported results in specified range. However, in
some cases of THz QC lasers [11] in which an accurate operating
wavelength calculation is strongly required because of their low
transition energy, a method more accurate than FDM may be
required.

In this article, we present a more accurate approach sharing the
same idea of using the first-order Taylor approximation of the
energy dependency of the electron’s effective mass to take into
account the NPE. The method is based on the Galerkin’s finite
element procedure, and first-order line element is used for finite
elements. The proposed method has been verified by being applied
to calculate the conduction subband structures of the layered
quantum semiconductor structures including the single quantum
well with various well widths [8] as well as the previously reported
QC lasers [12–16].

2. FORMULATION

2.1. Basic Equation
With the effective mass approximation, the envelope function � of
an electron is obtained by solving the 1D Schrödinger equation:
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where V�x�, E, ��x�, and m*�E,x� are the potential due to the
external and the built-in electric field, eigenenergy, wave function
corresponding to the eigenenergy E, and energy- and position-
dependent electron effective mass, respectively. For a single quan-
tum well, the energy-dependent electron effective masses in the
well and the barrier including the effect of conduction band non-
parabolicity are specifically given by [8]
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where Ew , Eb , and V are the energy gaps between the conduction
and the light-hole valence bands in the well and barrier materials,
and the energy barrier height at the interfaces, respectively. The
nonparabolicity coefficient is given by

�i �
�2

2m*iEi
, �i � w,b�. (4)

For a QC laser structure, the energy- and position-dependent
electron effective mass with taking into account the NPE can be
written as [17]

m*�E, x� � m*b�x��1 �
E

Eg�x�
�

V�x�

Eg�x��, (5)
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where m*b�x� and Eg�x� are the effective mass of conduction band
bottom and energy bandgap, respectively.

To take the advantage of the simultaneous calculation of all
subbands, we propose the new approximation of the energy- and
position-dependent effective electron mass based on the first-order
Taylor approximation:

1
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�
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Eg�x�
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(6)

By substituting Eq. (6) into Eq. (1), we obtained
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To reduce the number parameters, the coordinate x, the potential
V(x), the band gap Eg�x�, the electron effective mass m*b�x�, and the
energy E are normalized as � � x/L, V��� � V�x�/E1, Eg���
� Eg�x�/E1, m*��� � m*b�x�/m*b�0�, and � � E/E1, respectively,
where E1 � �2	2/2m*b�0�L2 with the solution domain length of L,
and m*b�0� is the effective mass of the electron at x � 0. With this
notation, the Schrödinger equation (7) is reduced to
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2.2. Finite Element Method
We use the Galerkin’s finite element procedure [18, 19] to solve
Eq. (8). This equation could be reduced to [6]
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Assuming the Dirichlet condition (� � 0) or the Neumann
condition (d�/d� � 0 ) at the leftmost Node 1 and the rightmost
node M, we obtain from Eq. (9) the simple eigenvalue equation:

��P� � �S����� � 	2�Q���� � ��	2�R� � �H�����. (16)

The above equation can be transformed into the following eigen-
value matrix equation:

�A���� � ��B����, (17)

where [A] and [B] are the N 	 N symmetric and sparse matrixes
(N is the total number of nodes), � is an eigenvalue, and ���
� ��1,�2,. . .,�N�T is the corresponding eigenvector. Equation
(17) is the matrix eigenvalue problem. There have been various
methods developed to solve this kind of problem. Even some
numerical libraries have been established. In this work, LA-
PACK

 package was used.

3. NUMERICAL RESULTS AND DISCUSSION

As shown previously, the approximation for the energy-dependent
electron effective mass using the first-order Taylor expansion is
only valid when the approximation condition is satisfied. There-
fore, to verify the validity of our proposed approximation and find
the application range of this approach, we have calculated the
subband edge energies in the single quantum well for various well
widths as well as the subband structure for various types of QC
lasers and compared with those obtained by other authors.

We first calculated the subband edge energies of the single
quantum well considered in [8]. The parameters used for the
calculation of the subband edge energy using FEM are the same as
in their work. In Table 1, the calculated subband edge energy E
(meV) and the energy shift Es due to the NPE are listed. It can be
clearly seen that our results are in good agreement with values in
the literature [8]. In a single quantum well, it is known that the
energy shift due to the NPE becomes substantial for higher sub-
band edge for large well widths.

TABLE 1 Well Width and Associated Eigenstate Energies
and Energy Shifts From Nonparabolicity Versus Quantum
Number of the Eigenstate

n � 1 n � 2 n � 3 n � 4 n � 5

Well width (nm)
5 E FEM 80.31 256.14

Ref. 81.17 254.67
Es FEM 
1.47 �13.87

Ref. 
0.71 �11.33
10 E FEM 32.26 119.6 235.73

Ref 32.3 119.52 235.79
Es FEM 
0.7 �4.62 �22.22

Ref. 
0.7 �4.84 �22.87
20 E FEM 10.47 40.88 88.35 148.64 216.36

Ref. 10.55 41.11 88.82 149.74 218.93
Es FEM 
0.09 �0.56 �4.46 �14.61 �31.05

Ref. 
0.19 �0.25 �3.81 �13.21 �28.22
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For the QC laser, to investigate the effect of nonparabolicity on
energy shift and verify the validity of our FEM calculation, we
have performed the subband structure calculation of various types
of QC lasers with and without the NPE. We first investigated the
application of the method to the GaAs/Al0.33Ga0.67As-based QC
lasers proposed by Sirtori et al. [12] and Kruck et al. [13]. The
material parameters of these structures are given in Table 2, while
the calculated values [20] of the transition energy using FEM as
well as FDM are listed in Tables 3 and 4. (The effect of doping
concentration was ignored in all calculations. The bandgaps of
materials are given in the work of Vurgaftman et al. [20].) The
calculated wave functions are depicted in Figures 1 and 2, respec-
tively. It can be clearly seen that the finite element analysis results
are in excellent agreement with values presented in Ref. [12, 13]
and provide closer estimation of the transition energies than our
previous work using FDM. One can also see that the transition
energy shift due to the NPE is small for the lower subbands,
whereas it is considerably large for the higher subbands.

The proposed method is next applied to calculate the most
common QC laser based on Al0.48In0.52As and Ga0.47In0.53As [14].
The material parameters of the structure are given in Table 5. The
calculated wave functions are depicted in Figure 3. In Ref. [14],
the authors reported the QC laser’s experimental emission wave-
length of 
 
 11.2 �m (�E32 � 110.7 meV) and their theoretical
calculated transition energy �E32 � 106.6 meV. Our calculated
transition energy using FEM with and without NPE are �E32 �
106.3 meV and �E32 � 125.3 meV, respectively. Our calculation
including NPE is in good agreement with their calculation. Again,
we can note that the NPE induces a considerable change in the
transition energy of the QC lasers, and for an accurate modeling of
QC lasers, NPE should be included.

Next, we calculated the subband structure for the QC laser
based on AlAs and GaAs material which has a larger band offset.
The material parameters of the structure are given in Table 6. The
calculated laser transition energy reported by Becker et al. [15] is �E32

� 109 meV (
 � 11.4�m ). Our calculated result with and without
NPE are �E32 � 111.8 meV and �E32 � 117.5 meV, respectively.
The band profiles and relevant wave functions of this QC laser are
shown in Figure 4. It is clearly seen that our FEM calculation is also
in very good agreement with the result obtained by Becker et al.

We now turn our attention to the THz QC laser structure
proposed by Kumar et al. [16]. The material parameters of the
structure are given in Table 7, while the calculated values of the
transition energy and the band profile appear in Table 8 and Figure
5, respectively. Since the transition energy of THz QC lasers is
quite low, an accurate theoretical calculation is strongly required in

TABLE 2 Material Parameters Used in the Calculation of the
GaAs/Al0.33Ga0.67As-Based QC Laser

Material Parameters GaAs Al0.33Ga0.67As GaAs/Al0.33Ga0.67As

Band offset
�Ec (meV)

– – 300

Effective mass 0.0665mo 0.094mo –
Band gap (eV) 1.424 1.836 –

TABLE 3 Calculated Transition Energy in the GaAs/
Al0.33Ga0.67As-Based QC Laser [12]

Transition
Energy (meV)

FEM

FDM
(with NPE)

Reference
(with NPE)

Without
NPE

With
NPE

�E21 36.2 37.4 37 38
�E32 147.2 135.2 129.5 134

TABLE 4 Calculated Transition Energy in the GaAs/
Al0.33Ga0.67As-Based QC Laser [13]

Transition
Energy (meV)

FEM

FDM
(with NPE)

Reference
(with NPE)

Without
NPE

With
NPE

�E32 123.8 113.202 110.15 112
�E43 78.7 56.984 56.63 58

Figure 1 Schematic conduction band diagram of a portion of the
GaAs/Al0.33Ga0.67As-based QC laser [12] under an electric field of 48
kV/cm. The solid curves represent the moduli squared of the relevant wave
functions calculated by our FEM. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]

Figure 2 Schematic conduction band diagram of a portion of the
GaAs/Al0.33Ga0.67As-based QC laser [13] under an electric field of 44
kV/cm. The solid curves represent the moduli squared of the relevant wave
functions calculated by our FEM. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]
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the THz QC laser design. In that case, for determination of accu-
rate transition energy, the FEM is expected to provide more
accurate result than the FDM as seen in Table 8.

However, for the QC lasers based on the materials whose band
parameters violate the approximation condition, the calculated
results are incorrect. To prove this statement, we carried out the
band structure calculation of the QC laser based on Ga0.47In0.53As
and AlAs0.56Sb0.44 [21]. In this work, authors reported the theoret-
ical calculated transition energy �E32 � 435 meV, while our FEM
with and without NPE is 314.1 and 482.4 meV. The calculated
wave functions are depicted in Figure 6.

The developed method was employed to calculate the subband
structure of some common QC lasers based on various types of
materials. The calculated results show an excellent agreement with
those obtained by other authors where their band structure calcu-
lation were made by taking into account the NPE in different
manner. From the calculation, we confirm that the transition en-
ergy shift due to the NPE is considerably large for the higher
subbands, and for an accurate design of QC laser devices, the
effect of nonparabolicity should be taken into account.

Up to now, we have been considering the eigenvalue problem
where the presence of the NPE changes it to a nonlinear eigenvalue
problem. Therefore, this work provides the approach to linearize
the eigenvalue problem. As shown earlier, the approximation for the
energy-dependent electron effective mass using the first-order Taylor
expansion is only valid when the variable is small enough. By calcu-
lating the subband structure of the most common QC lasers, we found
that this approach is valid for the QC lasers based on the materials
where the direct conduction band discontinuity of the heterostructures
must be smaller than the bandgap of each material (�Ec � Eg).

4. CONCLUSIONS

A FEM has been established for the analysis of quantum states in
single quantum well and various types of QC lasers. The proposed
approximation of the energy-dependent electron effective mass
shows an excellent agreement with previously reported results. We
can simultaneously calculate all subband states of single quantum
well and QC laser structures even including the conduction band
NPE. We developed a numerical technique using the first-order
Taylor expansion of the energy-dependent electron effective mass

TABLE 5 Material Parameters Used in the Calculation of the
Al0.48In0.52As/Ga0.47In0.53As-Based QC Laser

Material
Parameters Ga0.47In0.53As Al0.48In0.52As

Ga0.47In0.53As/
Al0.48In0.52As

Band offset
�Ec (meV)

– – 520

Effective mass 0.043m0 0.078m0 –
Band gap (eV) 0.75 1.45 –

TABLE 6 Material Parameters Used in the Calculation of the
GaAs/Al0.33Ga0.67As-Based QC Laser

Material Parameters GaAs AlAs GaAs/AlAs

Band offset �Ec (meV) – – 1000
Effective mass 0.0665m0 0.124m0 –
Band gap (eV) 1.424 2.4 –

TABLE 7 Material Parameters Used in the Calculation of the
GaAs/Al0.15Ga0.85As-Based QC Laser

Material
Parameters GaAs Al0.15Ga0.85As

GaAs/
Al0.15Ga0.85As

Band offset
�Ec (meV)

– – 125.3

Effective mass 0.0665m0 0.079m0 –
Band gap (eV) 1.424 1.611 –

TABLE 8 Calculated Transition Energy in the
GaAs/Al0.15Ga0.85As-Based QC Laser [16]

Transition
Energy (meV)

FEM

FDM
With NPE

Reference
With NPE

Without
NPE

With
NPE

�E43 9.0 7.8 7.1 7.7
�E21 34.6 36.2 33.4 35.8

Figure 3 Schematic conduction band diagram of a portion of the
Al0.48In0.52As/Ga0.47In0.53As-based QC laser [14] under an electric field of
39 kV/cm. The solid curves represent the moduli squared of the relevant
wave functions calculated by our FEM. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com]

Figure 4 Schematic conduction band diagram of a portion of the AlAs/
GaAs-based QC laser [15] under an electric field of 39 kV/cm. The solid
curves represent the moduli squared of the relevant wave functions calcu-
lated by our FEM. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]
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embedded in the FEM and applied it to various quantum well
structures to verify its validity. Our calculations show good agree-
ments with the previously reported results. The finite element calcu-
lated results also showed an obvious improvement compared to our
previous work using FDM. Since all the bounded subbands in QC
lasers can be simultaneously calculated with good accuracy using the
proposed method, we believe that this method is very useful for QC
laser design. Especially, for the QC lasers based on the bound-to-
continuum structure [22] where many quantum states should be
considered, the proposed method will provide a powerful design tool.

To improve the accuracy of the finite element analysis of
eigenstates in QC lasers, we can apply the second or higher order
line element for finite elements, which will be reported elsewhere.
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Figure 5 Schematic conduction band diagram of a portion of the
GaAs/Al0.15Ga0.85As-based QC laser [16] under an electric field of 8.4
kV/cm. The solid curves represent the moduli squared of the relevant wave
functions calculated by our FEM. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]

Figure 6 Schematic conduction band diagram of a portion of the
In0.53Ga0.47As/AlAs0.56Sb0.44-based QC laser [21] under an electric field of
130 kV/cm. The solid curves represent the moduli squared of the relevant
wave functions calculated by our FEM. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com]
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