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Abstract. We propose photounic reservoir computing as a new approach
to optical signial processing and it can be used to handle for example large
scale pattern recognition. Reservoir computing is a new learning method
from: the field of machine learning. This has already led to impressive
results in software but integrated photonics with its large bandwidth and
fast nonlinear effects would be a high-performance hardware platform.
Therefore we developed a simulation model which employs a network of
coupled Semiconductor Optical Amplifiers (SOA) as a reservoir. We show
that this kind of photonic reservoir performs even better than classical
reservoirs on a benchmark classification task.
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task requires the reservoir to distinguish between a triangular and a rectangu-
lar waveform. It turns out that a photonic reservoir — with ounly a little bit of
tuning and a limited number of 25 SOAs — can already distinguish between the
two signals over 97 % of the time.

2 Reservoir Computing

2.1 Classical Approach

In this digital age, signals are often transferred to the digital domain for signal
processing. Nature shows us however that there are alternatives, which can be
superior for complex classification and recognition problems, like the human
brain combined with eyesight. Machine learning looks to the biological world for
inspiration, where organisms often learn from their failures and successes or in
other words from examples. Systems in machine learning are accordingly trained
to perform certain tasks. Artificial Neural Networks (ANN) are an example of
such a system and take the analogy with the biological world one step further [9].
The inspiration for the system comes from its biological counterpart, the human
brain, which consists of neurons. The human brain lacks speed compared to a
computer, but it compensates this by having a rich interconnection topology.
Each connection has a certain weight attached to it and these weights can be
adapted during the training process.

Feed-forward neural networks have been extensively used for non-temporal
problems and they are well understood due to their non-dynamic nature. At the
same time, this limits their applicability in dealing with time varying signals. In-
deed, neural networks with feedback loops (so-called recurrent neural networks)
provide some kind of internal memory which allows them to extract time correla-
tions. However, this turned out to be a hurdle in finding a general learning rule,
which is a method used to train the neural network to perform a desired task,
This is why different rules exist for different tasks and topologies, thus limiting
their broad applicability. ‘

Around 2002 two solutions (Liquid State Machines and Fcho State Networks)
were independently proposed [1,2]. They have in common that the network is
split up in two parts. One part — the reservoir — is a random recurrent neural
network that is left untrained and kept fixed while using. The input is fed into
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that projecting a low-dimensional input into a high-dimensional space can ac-
tually be beneficial for the performance of a classification algorithm. As classes,
which are only separable by a nonlinear function in the low-dimensional space,
can become separable by an easier, linear function in the high-dimensional space
[101. This concept is applied e.g. in support vector machines. '

The reservoir could be seen as an integ

ation of the temporal correlations in
the signal into a spatial correlation in the reservoir state. This is not to say that
any recurrent neural network will do. Rather, it appears that the dynamics of
the network should be in the dynamic region which corresponds to the edge of
stability [11]. The dynamics depend on the amount of gain and losses in the
network and they should be balanced. If the network is over-damped there is
no memory inside the reservoir, if it is under-damped the network will react
chaotically.

. . state of the readout
input reservoir . . . output
reservoir function

o

— | %) || M| YO

Fig. 1. Reservoir Computing

Recently a toolbox, able to simulate and test reservoirs, was created [12]. In
this toolbox the reservoirs are neural networks. One of those is the classical
variant where the signals are analog and every node is a hyperbolic tangent
function operating on a weighed sum of its inputs. This function is S-shaped as
in figure 2 (left). In this kind of network the nodes themselves are very simple,
while the dynamics come from the complex interconnection topology.

2.2 Photonic Approach

The theory behind reservoir computing is not restricted to neural networks. One
requirement for the reservoir is fading memory, which means that the influence
of an input should fade away slowly. The present software implementations are
rather slow and therefore we investigated the potential of a hardware implemen-
tation based on light. This could be faster and more power efficient due to the
large bandwideh and fast nonlinear effects inherent to light.

Due to the nature of reservoir computing, its implementation can be split up
in two distinctive parts: the reservoir on the one hand and the readout function
on the other. Since th
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like matrix inversion. This could initially be done off-line with a computer or by
an electronic chip.

Because the specifications for the reservoir do not seem to be very rigid,
the choice of possible nanophotonic components was vast. We opted for coupled
Semiconductor Optical Amplifiers (SOA), based on two observations. First of all,
the steady-state curve of an SOA resembles the S-curve used in analog neural
networks (figure 2} -— at least for the upper branch, but since optical power is
non-negative this is a restriction we have to cope with. This resemblance made
SOAs more likely to be able to bridge the reservoir and the photonic world.
The dynamic behavior of an SOA is however more complex in comparison to
the classical analog implementations. The carrier dynamics come into play at
high data rates and because of this a reservoir of SOAs is a middle ground
between simple nodes with a complex network (the classical tanh reservoirs)
and one very complex node. Second, SOAs are broadband which makes the
communication between different nodes less critical as would be the case with
resonating structures.
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Fig. 2. (Left) tanh for analog ANN — (right) SOA: steady state

3 Simulation Model

We developed our simulation program for photonic reservoirs within the frame-
work of the toolbox, mentioned previously. This allows us to use the existing
ess readout function. For further details about
this open source toolbox we refer to the manual online [12] and the article by D.
Verstraeten et al. [13].
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incorporate the longitudinal dependence of the gain, the equations can be solved
for a concatenation of small sections of the SOA. Since the latter can be time con-
suming when working with large networks of SOAs, we work mainly with one sec-
tion. Moreover since reflections are neglected at this stage, we use unidirectional
signal inje

tion. This reduces the number of rate equations to be solved to one.

3.2 'Topology and Reservoir Simulation

The classical reservoir implementations with neural networks have random inter-
connection topologies. Since the standard optical chip is still 2D we investigated
structures that can be realized without intersections. Two of those structures
are depicted in figure 3. The left structure is a waterfall system which acts as a
nonlinear delay-line. Although this feed-forward topology is relatively simple, it
has already been successfully used to model nonlinear systems [15]. The other
network has feedback connections on the sides in order to avoid crossings. Since
the SOAs are modeled as unidirectional, the connections are tod.

N—SOA—0UT>
S

Fig. 3. Two topologies: (left) a feed-forward network — (right) a waterfall network with
feedback connections (long dash) at the edges

At every time instant two computational steps are taken. During the first
step the internal state of every node is updated, while during the second step
the outputs are transferred to the inputs they are connected to. The splitters and
combiners are modeled as adiabatic and every connection can have a different
delay and attenunation.

The readout function takes as input the power of every SOA in the network
at every time instant. This is the basic structure of the simulation model. Next,
we will look at tasks that can be solved with these kind of networks.

4 Pattern B

4.1 Task Desc

We will use a sim
reservoir computi
able, by means o
rectangular and ¢

tem has to

figure 4, an exam
that the SIEE]
system should con
Figure 4¢ shows t
figure 4d shows t
combination of ti
output (black cur
function is used o
As a result the ow
the systemn manag

Since the outp
sitions of the wax
with different trar
function, while th
define the quality

4.2 Results

In figure 5 some 1
are error bars, wh
over ten runs. Th
samples with diffe
an extra variation
In the left figur
compared against
the dynamic regim
is. It shows that fe
when used in the 2
2.5% for the netw:
in 2.5 % of the tim
triangular wavefor
the performance d
Jn the right of
reservoirs are com
networks we use tl
system. The spect

connection matri




ations can be solved
ster can be time con-
mainly with one sec-
ve use unidirectional
0 be solved to one.

s have random inter-
2D we investigated
of those structures
tem which acts as a

relatively simple, it
ams [15]. The other
0id crossings. Since
2 100.

aterfall network with

1. During
ng the
2. The splitters and

e aodi

PRC with Coupled SOAs 51
4 Pattern Recognition

4.1 Task Description

We will use a simple classification task to demonstrate the potential of photonic
reservoir computing. The task is depicted in figure 4. The system has to be
able, by means of training by examples, to instantly differentiate between a
rectangular and a triangular waveform. Moreover, if the input signal changes
the system has to change its output as fast as possible. In the top part (a) of
figure 4, an example of such an input is depicted. Figure 4b shows the output
that the system should generate accordingly. If the input is triangular than the
system should constantly return 1, if the input is rectangular it should return -1.
Figure 4c shows the state of a few SOAs as they are excited by the input, while
figure 4d shows the result of the readout function. The readout uses a linear
combination of the states of the reservoir nodes, to approximate the desired
output (black curve) as closely as possible (blue curve). In the last stage a sign
function is used on this approximation to define the final output of the system.
As aresult the output is either 1 or -1 as can be seen in figure 4e. In the example
the system manages most of the time to follow the desired output.

Since the output function is memoryless, it should be able to handle tran-
sitions of the waveform at different instants. Hence several samples are made
with different transitions. One part of these samples is used to train the readout
function, while the other part is used to test it. These test results are used to
define the quality of the reservoir.

4.2 Results

In figure 5 some results are displayed from our simulations. The vertical lines
are error bars, which show the standard deviation on the reservoir performance
over ten runs. The variation comes, for the photonic reservoirs, from different
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Fig. 4. Pattern recognition task: a) Input signal with different transitions between
the rectangular and triangular waveform b} desired output ¢) state (i.e. optical power
level) of some of the reservoir nodes d) The approximation (blue) of the desired output
(black) by the readout function, e) final output of the system (red)

often used parameter in the field of reservoir computing. In a linear network
a spectral radius smaller than one means the network is stable, a value larger
than one means chaotic. The interesting dynamical region, the edge of stability,
holds for spectral radii just below one. Although our network is nonlinear, we
can still use this as an approximation, where the spectral radius acts as an upper
estimate. The gain for every node is linearized around zero input power and for
a connection matrix C with elgenvalues A;, ..., A, this leads to the following
spectral radiug calculation:

(7 N e 13 )
(Clingoy) = Jhax Al (1)

The classical reservoir appears to behave better for small spectral radii (when
the system is damped) with an optimum value around 3.5
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seen in figure 4c, when peaks appear whenever a rising edge of the rectangular
os through an SOA. This result indicates that the planar-topology
Limitation for photonic reservoirs is at least compensated by the richer dynamics
of the SOAs.

In figure 6 we see that the reservoir performance enhances with larger reser-

22

voirs, although it seems to saturate. The choice for a certain reservoir size is

then a trade-off between the specifications of the task and cost of the chip.

o

5 Conclusions

We have demonstrated in this paper the potential of photonic reservoir com-
puting, since our photonic reservoirs manage to discriminate over 97 % of the
time between the two waveforms in our classification task. Even though, they
work with a limited number of SOAs and limited amount of feedback. This is a
promising step toward the use of photonic reservoirs for large scale image recog-
nition and signal processing. In future work we want to obtain an experimental
verification of the deseribed simulation results.
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