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Abstract An extension of the recently proposed three-dimensional (3D) wide-angle (WA)
beam propagation method (BPM) using complex Jacobi iteration (CJI) taken into account
polarization effects is presented. The resulting iterative BPM is faster than BPMs based
on the traditional direct matrix inversion for waveguides with unchanging refractive index
profiles during propagation direction. However, for varying refractive index waveguides the
iterative method suffered from the fact that the iteration count between two successive cross-
sections increases dramatically during the propagation direction. To overcome this problem,
we propose the utility of the iterated Crank–Nicholson method. At each propagation step, the
propagation equation is divided in multiple stages by the iterated Crank–Nicholson method
and then each stage is recast in terms of a Helmholtz equation with source term, which is
solved effectively by the complex Jacobi iterative method. The resulting approach is stable
and well-suited for large structures with long propagation paths.
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1 Introduction

Efforts to improve the limitations of the paraxial approximation in the beam propaga-
tion method have so far made use of wide-angle formulations. Different treatments of
WA-BPM based on the slowly varying envelope approximation (SVEA) have been developed.
In these approaches the field is assumed to be separated into two parts including the com-
plex field amplitude and a propagation factor. There exist real Padé approximant operators
(Hadley 1992) and complex Padé approximant operators (Le 2009). In addition, treatments of
WA-BPM without having to make the SVEAs have also been reported, including the series
expansion technique of the propagator (Lee and Voges 1994), the split-step of beam propaga-
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tion equation (Sharma and Agrawal 2004), and the recently proposed rational KP approximant
operators (Le and Bienstman 2009).

The real Padé-approximant-based WA-BPMs have become one of the most commonly
used techniques for modeling of optical waveguide structures. However, it was shown that
the real Padé approximant propagators incorrectly propagate the evanescent modes. These
modes can cause serious instability problems when implementing WA-BPMs based on real
propagators. To circumvent this problem, we recently proposed modified Padé approximant
operators, which give evanescent waves the desired damping and allow more accurate approx-
imation to the Helmholtz equation than the conventional operators (Le 2009).

In those WA-BPMs, the beam propagation equation can be described in a tridiagonal
matrix form, which is usually solved by the well-known direct matrix inversion (DMI).
However, these equations need to be solved efficiently since numerous propagation steps
are routinely required during the course of a problem solution. For this purpose the recently
introduced complex Jacobi iterative (CJI) method (Hadley 2005) was proposed for the solu-
tion of WA beam propagation and shown to be highly efficient. At each propagation step, the
beam propagation equation is recast in terms of Helmholtz equation with source term, which
is solved quickly and accurately by the CJI method (Le et al. 2008).

However, this method is based on scalar propagation, in which the field and its spatial
derivatives are assumed to be continuous across dielectric interfaces. This approximation
does not hold for modeling optical propagation in waveguides on semiconductor substrates
which frequently involve abrupt index changes. For these cases a full vectorial analysis is
needed (Bhattacharya and Sharma 2009). Unfortunately, full vectorial schemes require large
computational efforts. For most of optical devices where the polarization coupling is weak
and may be neglected, the semivectorial BPM is very convenient for analyzing polarization
effects (Mitomi and Kasaya 1998).

In this paper, an extension of our recently proposed WA-BPM using complex Jacobi itera-
tion (Le et al. 2008) taken into account polarization effects is presented. Also, the investigation
of the convergence rate of the CJI method and its execution speed in comparison with the DMI
method is reported. The resulting semivectorial iterative approach still has fast convergence
even though the effect of refractive index changes in the transverse direction of waveguides
is included. The method is very competitive in comparison with the traditional DMI method.

However, for waveguides with refractive index profiles varying both in the transverse
direction and along the propagation direction, the CJI method suffers from the fact that
the iteration count between two successive cross-sections increases dramatically during the
propagation direction. To circumvent this problem, we propose the utility of the iterated
Crank–Nicholson (ICN) method (Teukolsky 2000; Leiler and Rezzolla 2006), in which at
each propagation step, rather than solving the propagation equation directly, it is divided
in multiple stages by the ICN method and then each stage is recast as an inhomogeneous
Helmholtz equation and solved by the CJI method. The resulting approach is stable and
well-suited for high-index-contrast waveguides with very long propagation paths.

2 Formulation

We begin by considering the semivectorial Helmholtz equation for the electric field compo-
nent (Bhattacharya and Sharma 2009)

∂2�
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where n is the refractive index profile and k0 is the vacuum wavevector. At any interface
perpendicular to the x-direction, the refractive index and the electric field component is
discontinuous; thus if the polarization is ignored in high-index-contrast waveguides (the sec-
ond term in Eq. 1 is ignored), numerical evaluation of their derivatives would lead to large
errors. However, it will be overcome if we investigate the first two terms in Eq. (1) together
(Bhattacharya and Sharma 2009).

Using the SVEA, in which the wave function �(x, y, z) propagating in the z direction can
be separated into a slowly varying envelope function �(x, y, z) and a very fast oscillating
phase term exp(−ikz), the Helmholtz equation is given by:
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From Eq. 2, different treatments of WA-BPM can be developed. In this work, the modified
Padé(1,1) approximant operator for a wide-angle propagator is used and leads to the beam
propagation equation as follows (Le et al. 2008):

(1 + ξ P)�n+1 = (1 + ξ∗ P)�n, (4)

where ξ = 1
4k2(1+1i)

− i�z
4k , ξ∗ = 1

4k2(1+1i)
+ i�z

4k and �z the propagation step size.
The adaptation of the CJI method for the solution of Eq. (4) is given as follows:
By dividing both sides of this equation by ξ , it may be written as an inhomogeneous

Helmholtz equation
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]
�n+1 = source term, (6)

It is clearly seen that the beam propagation equation is recast as a Helmholtz equation
with source term in an effective medium with loss determined by the imaginary part of 1

ξ
.

Thus, it is easy to solve this equation effectively by the CJI method. Its convergence rate is
mostly dominated by the amount of effective absorption (or medium loss). If the loss is high,
rapid convergence is obtained.
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However, for waveguides with refractive index profiles varying through the propagation
direction the iteration count between two successive cross-sections increases dramatically.
This problem can be remedied, however, by considering multistage solving Eq. (4) by the
iterated Crank–Nicholson method. In (Teukolsky 2000) the author proved that for dealing
with the so-called advective equation when using the ICN method, one should use two stages.
In this work, it is numerically shown in the next section that the complex Jacobi iterative
solution of Eq. (4) using the ICN method is stable and results in significant advantages in
view of an execution speed of the CJI method for semivectorial beam propagation of very
long path length. The implementation of the ICN method is described as follows:

Rather than solving Eq. (4) directly by the CJI method, it is divided in multiple stages as
follows:

First, we calculate the initial estimated field (1)�n+1 at the next propagation cross-section
(n + 1) using Eq. (4):

(1 + ξ P)(1)�n+1 = (1 + ξ∗ P)�n . (7)

Equation (7) is solved by the iterative procedure described above. Then the field at the
mid-step cross-section (n + 1/2) is made by weighting equally the newly predicted solution
(1)�n+1 and the previous solution �n . This can be seen as the special case of a more generic
averaging of the type

(1)�n+ 1
2 = θ(1)�n+1 + (1 − θ)�n, (8)

where θ is the ICN weight coefficient, here set to 0.1.
Similarly, the final estimated field �n+1 at the next propagation cross-section (n + 1) is

recalculated by

(1 + ξ P)�n+1 = (1 + ξ∗ P)(1)�n+ 1
2 . (9)

This happens again in an iterative way.

3 Benchmark results

That polarization effects on high-index-contrast waveguides play an important role on an
accuracy of BPM was already shown in (Bhattacharya and Sharma 2009). In this paper, we
will investigate how polarization effects affect the convergence rate of the CJI method and
its execution speed in comparison with the DMI method. We consider Gaussian beam propa-
gation in the 3D rib waveguide (Lee and Voges 1994). The iteration count of the CJI method
with respect to propagation steps through the propagation direction is shown in Fig. 1. From
the figure, it is shown that due to polarization effects through discontinuous interfaces in the
waveguide the CJI method requires larger iterations to perform propagation than the method
where these effects are ignored. However, the CJI for the semivectorial BPM is still faster
than the DMI method. With a relatively large propagation step size �z = 0.1 µm in a small
4 µm ×4 µm computational window, the resulting runtime of CJI for WA-BPM is only 3.1 s
whereas the DMI requires 61.4 s to perform propagation.

It is clearly seen that the runtime of the iterative method is substantially lower than that of
the DMI method. For large problems requiring very large storage space and also for struc-
tures with a long path length with small propagation step size that require frequent matrix
inversions, the DMI technique is numerically very intensive. In contrast, for typical choices
of k�z the CJI technique offers rapid convergence and shorter runtimes.
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A stable complex Jacobi iterative solution of 3D semivectorial WA-BPM 219

Fig. 1 The iteration count per propagation step for a Gaussian beam propagation through a 3D rib waveguide
with and without polarization effects

Fig. 2 Iterations count per propagation step of the CJI method for beam propagation in a symmetric Y-branch
waveguide with (blue and red lines for the iteration count of Eqs. 7 and 9 respectively) and without (black
line) using the ICN method (color figure online)
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Fig. 3 Y-branch optical rib waveguide

However, as we mentioned in previous section, besides the polarization effects affected on
the convergent rate of the CJI method, varying refractive index profiles through the propaga-
tion direction leads to an increase of an iteration count between two successive cross-sections
as shown in Fig. 2. In the figure, the iteration count of the CJI method for semivectorial
WA-BPM with and without using the ICN method between two successive cross-sections in
a Y-junction waveguide are calculated. The initial rib waveguide is split into two 5-degree
tilted waveguides as shown in Fig. 3, where the longitudinal dimension is h1 = 1 µm, and
the width and height of the straight rib waveguide are w = 2 µm and h = 1.1 µm. The
guiding core has an index n f = 3.44 and a thickness t = 0.2 µm while the refractive index
of substrate and cover is ns = 1.44 and nc = 1, respectively. The fundamental TE mode of
the ridge waveguide of width w = 2 µm at 1.3 µm wavelength is used as the excited field at
z = 0. The iterations were terminated when a field-weighted residual of 10−7 was satisfied
at each grid point.

For a grid size �x = �y = �z = 0.05µm, the iteration count between two successive
cross-sections required for the CJI method without using ICN increases dramatically as can
be seen in Fig. 2. The same figure also shows that the iteration count of the ICN-CJI method
is stable. Even though there are two ICN-CJI iterations needed per equivalent non-ICN-CJI
iteration, this fact becomes quickly offset for larger propagation distances.

4 Conclusions

A fast semivectorial wide-angle beam propagation method based on the recently proposed
modified Padé(1,1) approximant operator using the new complex Jacobi iterative method
has been presented. It is obtained from an extension of the method developed earlier for
scalar propagation to solve the semivectorial equation where polarization effects were taken
into account. However, the semivectorial iterative method is itself unstable for propagation
in high-index-contrast waveguides with refractive index profiles varying during the prop-
agation direction. In order to overcome this problem, we have proposed the utility of the
iterated Crank–Nicholson method. The resulting semivectorial method was stable and very
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well-suited for large structures with long path length. Through a quantitative comparison of
runtimes between the traditional direct matrix inversion and the recently proposed complex
Jacobi method for wide-angle beam propagation, it is demonstrated that the complex Jacobi
method is very competitive for demanding problems.
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