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Impact of Planar Microcavity Effects
on Light Extraction—Part I: Basic

Concepts and Analytical Trends
H. Benisty, H. De Neve, and C. Weisbuch

Abstract—We address the long-standing issue of extracting light
as efficiently as possible from a high-index material,n � 2, where
as little as 2%–10% of light not suffering total internal reflection
is extracted at standard plane faces due to the small critical
angle�1=n. Using a planar microcavity to redirect spontaneous
emission toward the surface, constructive interferences can bring
15%–50% of the light out, enhancing brightness and efficiency. In
this first of two papers, an approximate approach is used showing
the importance of small cavity order mc and of the mc=n

2

ratio. We define a condition for microcavity regime asmc< 2n
2.

It is shown that most of light extraction is usually attained
for moderate mirror reflectivities �1 � mc=n

2 typically below
90%, and without strong directionality. Balance between emission
directionality, radiance (brightness), and spectral narrowing is
discussed. We define a brightness enhancement factorB given
by Bmc�
 = 4� where �
 is the largest internal solid angle
of either the cavity mode or that deduced from the material
emission linewidth. Design rules are applied to distributed di-
electric mirrors yielding an optimal number of periods. The
underlying physical competition between emission into guided
modes, Fabry–Perot modes and the so-called “leaky modes” is
analyzed.

Index Terms—Cavities, distributed feedback devices, Fabry–
Perot resonators, light-emitting diodes, light sources, microcavi-
ties, semiconductor device modeling, semiconductor films.

NOMENCLATURE

Fraction of emission into guided and leaky
modes.

Airy Airy function.
Brightness enhancement over the no-cavity
case.
Light velocity.
Airy function denominator
Minimum value of .
Electric field.
Fraction of power in guided modes, leaky
modes and in metal (II).
Cavity finesse.
Wavevector of light in the medium.
Central emission wavevector in the medium.
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Cavity thickness.
Penetration length in DBR mirrors.
Reduced distance in half-wavelength units.
Bare cavity order, not including penetration
length into mirrors.
Cavity order, including penetration length into
DBR mirrors.
Optical index of semiconductor or cavity.
High index in DBR mirrors.
Low index in DBR mirrors.
Average index in DBR mirrors.
Outside medium index.
Powers in the outside, leaky and guided
modes, per dipole (II).
Total power emitted including lifetime modi-
fication, normalized to no-cavity case (II).
Number of stack pairs (periods) in DBR mir-
ror, optimal number.
Top mirror amplitude reflectivity.
Top mirror power reflectivity.
Bottom mirror amplitude reflectivity.
Bottom mirror power reflectivity.
Relative detuning of emission.
Natural emission relative spectral width (nat-
ural linewidth).
Threshold relative spectral width for
linewidth-limited extraction
Top mirror transmission.
Ratio of cavity order to squared index.
Location of inflexion points in the plane.
Source location in the cavity.
Round-trip phase in the cavity.
Relative phase of reflected beam on bottom
mirror.
Natural emission width in terms of wavevec-
tor.
Increase in cavity order due to distributed
mirrors.
Index step of distributed mirrors
Inside lobe angular width.
Outside lobe angular width.
Inside solid angle of the lobe.
Outside solid angle of the lobe.
Antinode factor, same factor for theth mode.
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Extraction efficiency, extraction per cycle, ef-
fective extraction with recycling (II).
Extraction efficiency of horizontal, vertical,
and isotropic dipoles (II).
Wavelength.
Wavelength of optimal extraction, Bragg
wavelength of DBR mirror.
Angle.
Critical angle.
Smallest inside resonant angle.
Angle of stop-band edge for DBR mirrors.
Critical angle for DBR low index medium.
Light pulsation.
Solid angle.
Internal solid angle below the critical angle.
Internal solid angle of guided and leaky
modes.

Meaning of some long sub and superscripts:

bare Bare cavity, without distributed mirrors.
crit Critical value to obtain most of the extraction en-

hancement.
esc In escape window, refering to spectral width.
mono Cavity-limited with reference to (solid) angle of

lobe.
lim Limit value between the monochromatic “mono” and

“poly” cases.
loss Optimized value of, e.g., mirror reflectivity in the

presence of losses.
max Maximum value of, e.g., extraction efficiency in the

presence of losses.
poly Spectral width-limited with reference to (solid) angle

of lobe.
sp Optimized value in the presence of spectral width.
sym Symmetric cavity.
asym Asymmetric cavity, with two different mirrors.

I. INTRODUCTION

SPONTANEOUS emission from solid-state sources such
as semiconductors (SC’s), for example, in light-emitting

diodes (LED’s), can often be considered internally isotropic.
Since only those directions within the critical angle

allow escape to the outer medium index
of semiconductor, index usually index of air or epoxy
in commercial LED’s [1], [2]), the internal solid angle

for escape to air is of the order of
at a planar face. For a bare source and the high indices
2.5–4 of SC media, a very small fraction of
emission may directly escape, of the order of only 2% for
GaAs bandgap radiation [3].

Extracting the majority remainder light translates into severe
technological complexity and/or material requirements: trans-
parent substrate, surrounding of die with reflectors to redirect
side-emitted light, at the expense of absolute brightness [2],
[4]–[7], or extremely high internal quantum efficiency to
attempt escape again through reabsorption and reemission,
the mechanism known as photon recycling [8]–[12]. Another
way is to redirect photon momentum through rough interfaces

[13]. Instead, we discuss here what can be expected from
microcavities [11], [12], [14]–[21] to alleviate the poor ex-
traction efficiency of high-index materials retaining a simple
planar structure but redirecting as many photons as possible
into the escape cone by means of interferences. In the GaAs
testbed case, optimized microcavity LED’s at 980 nm already
demonstrated 22.8% [22]–[25], prompting us to generalize
this result and to determine what are the ultimate perfomances
one can expect.

Microcavity effects have widely been demonstrated re-
garding directionality and spectral narrowing of emission
from otherwise isotropic and/or broad-spectrum structures
[15], [16], [21], [26]–[35]. As for total emission and hence
spontaneous lifetimes, they are weakly affected for elec-
tron–hole pair recombination and the rather low reflection
coefficients considered here [17], [36]–[39]. This is the so-
called “weak coupling” regime, to be distinguished from the
situation of exciton fluorescence in high-reflectivity cavities
leading to a “strong-coupling” regime and vacuum Rabi os-
cillation [40]–[45]. This is also to be distinguished from the
case of spontaneous emission rate enhancement by the Purcell
factor occuring in three-dimensional (3-D)
optical cavities of volume and narrow emission linewidth

around where is here the smallest of the quality factor
or . Focusing on the weak coupling regime, obtainment
of a sharp directionality, and spectral narrowing with resonant
cavities does not necessarily translate into increased extraction
efficiency for the overall light emission. To increase this latter,
one should gain emission in one mode at the expense of all
other modes. In this respect, devices with large monochromatic
brightnesses in a narrow cone rely rather on spatial and spectral
features of a given mode than on the relative weight of this
mode to all others.

In Section II we will in deal with a simple model of planar
microcavities aimed at understanding the physics of photon
redirection for an emitter inside a cavity. It is divided in many
subsections dealing first with interferences seen by a source in
front of a single mirror (Section II-A), switching then to cavity
effect, summarizing microcavity basic formulae and stressing
the need for low (micro-)cavity order to enhance extraction
(Section II-B). Next, a useful “working point” suitable for
lossless cavities is analyzed (Section II-C). Optimization con-
siderations for lossy cavities follow (Section II-D), detailed in
Appendix A. Spectral linewidth, directionality, and brightness,
and their interplay are considered in Section II-E and Appendix
B. Systems based on distributed Bragg reflector (DBR) mirrors
and their leaky modes are dealt with in Section II-F and
Appendix C. A brief account is made for smaller aperture
requirements, e.g., for fiber coupling in Section II-G. Finally,
Part II [46] complements this paper by focusing on selected
exact simulations and the role of photon recycling.

II. A PPROXIMATE APPROACH FOR

EXTRACTION FROM A MICROCAVITY

How to extract as much light as possible from high-index
spontaneously emitting materials retaining a planar structure
is the issue addressed in this section from the mode structure
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point of view, using a scalar approximate approach to retain
simple analytical results. We will point out how the mode
structure of planar stacks can be engineered to overcome the
intrinsic limitation set by the higher photonic density-of-states
of these materials, scaling like , meaning that much more
modes are found for radiation inside the material than outside.
We first briefly recall here how a lossless mirror affects
radiation pattern from a dipole, and in the next subsection
how a cavity does. This will allow us to define what we term
“close” and “far” mirror configurations and naturally focus on
the first one since it is based on effects similar to those of the
microcavity regime.

A. Interferences from a Single Mirror for Extraction

Let us consider a monochromatic source such as an oscillat-
ing dipole, at vacuum wavelength pulsation in a medium
of index of associated wavevector but located
at a distance from a planar mirror of amplitude
reflectivity close to unity with usual notations
(see Fig. 1; applies to metal mirrors, the case sketched
in Fig. 1 for simplicity). Retaining a simpler scalar approach
and neglecting lifetime, polarization, and orientational effects,
the upward-radiated electric far field in the anglefrom such
a dipole in front of the mirror is [47]–[49]

(1)

where for a metal-type mirror and
is the dipole far field without mirror. is also called the
antinode factor. Assuming constructive interference at normal
incidence, hence with (half-)integer for

we get the two-wave interference result
constructive for even or odd multiple of

(2)

Consider now that we collect emission within the
cone with for simplicity. If (for
metal mirror), the dipole lies at a quarter-wave from the
mirror, the r.h. factor reads and it remains
close to on the useful range since

(the outside index is taken
as 1 here). It vanishes only for destroying light
emission along the mirror plane.

Conversely, if the source is located so far that
even within the small escape angles both constructive
and destructive interferences occur,deviating from by
more than . Asymptotically, the mere geometric mirror
effect is retained on the average

(3)

yielding at most a trivial factor of two on emitted power
and extraction. Clearly, (thus ) sets the
limit between what we will term “far” and “close” mirror
configurations. Figures for extraction from bare, far-mirror,
and close-mirror configurations and typical semiconductors are

Fig. 1. Extraction efficiencies for emitter (stars) in a bare situation (top) or
modified by a mirror. For an emitter lying close to a mirror (bottom), there is a
negligible phase change for rays emitted between normal incidence and critical
angle, unlike for an emitter far from the mirror, with a phase change larger
than� (middle). Corresponding extraction efficiencies for two representative
indices are indicated.

collected in Fig. 1: from 2% in a single escape cone
in GaAs-like materials ( 3.55), only 4% are extracted
in the far-mirror configuration (two cones) reaching 8%
for the close-mirror one (when 1.6 m for 900 nm).
These extractions are doubled in a higher bandgap SC of index

2.55, typically corresponding to visible green light: 4%,
8%, and 16%, respectively, (now for 0.75 m).

Let us insist that, at those particular wavelengths and angles
achieving constructive interference, the mirror yields a factor
of 4 on the emitted intensity for any distance
even much further than . The trend of monochromatic
brightness is seen in this simple case to differ widely from
that for global extraction, which justifies the distinction made
in the introduction. Thus, the doubled extraction when
arises from the larger modifications of free-space mode density
in -space (directions) enforced in the mirror vicinity. More
control of the optical environment in a planar Fabry–Perot
cavity is shown below to result in still improved extraction
because it rests on the spectrally sharper multiple-beam spatial
interference phenomenon rather than on the spectrally broader
two-beam phenomenon.

B. Cavity Single-Mode Extraction: Role of the
Order and Index of the Microcavity

How is emission controlled when placing dipoles in a
Fabry–Perot (FP) cavity of index and of thickness along
axis (Fig. 2) adding a front mirror of reflectivity

? Either using multiple-beam summation from an internal
source, or using reciprocity of emission and absorption [39],
one finds some ansatz of the Airy formula [32], [24], as
explained, e.g., by Kastler [47]. It is seen in Fig. 2 that in
a given direction, two series of multiple beams are to be
summed, each yielding the same Airy factor. These two series
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Fig. 2. Schematic cavity of indexn; ordermc; limited by two mirrors, with
an emitter inside emitting two series of waves.

add just as in the single-mirror case, with the same antinode
factor . The result reads for the upward-radiated field outside
the cavity, still in a scalar view

(4)

where

(5)

is the cavity round-trip phase and for a lossless mirror
. The separated rightmost Airy factor accounts

for the cavity mode structure.
In the rigorous approach indicated in [46], a method based

on internal source terms is used to calculate exactly the
emission pattern of a collection of dipoles. When solving
for the outside field, internal source terms also appear in
a numerator, together with the above antinode factor, while
the denominator is characteristic of the structure itself and is
basically the same one as Airy’s formula.

An obvious consequence of the peaked Airy function at
large finesses is that, still more than a mirror, a cavity
favors different wavelengths at different angles following
the dispersion relation of quasi-modes (or

. Also, in (4), while the Airy factor yields
the intrinsic enhancement/inhibition of each mode (i.e., each
wavelength–angle pair), the remaining antinode factor reflects,
for all modes, the coupling strength. Going from continuous
to discrete modes, light emitted in guided modes can also
be treated with the antinode factor for coupling strength and
discrete dispersion relations at angles larger
than .

For extraction on the top side, is obviously advisable
to reflect the downward energy flux, and the same trends as
those outlined for a single mirror apply to the antinode factor

: the source should lie at an antinode close from this mirror,
closer than . In the following, we assume for simplicity
that the average for distributed emitters. A specific
mention will be made whenever we consider, for example, a
more localized source at an antinode .

We will define below the microcavity regime as the one
where extraction is achieved through a single resonance. In
order to obtain a simple description of the phenomena, we
first give some practical FP formulas. We then define and

discuss the cavity order and present a– diagram useful to
understand extraction physics in this section’s approach. The
next subsections specify the mirror reflectivity needed to put
the microcavity to good use in extraction terms for lossless
and lossy cases. This will be further applied to distributed
mirror design through the increase they cause to effective
cavity order.

Practical formulas of Table I are obtained either di-
rectly from (4) or from a standard approximate development of
Airy function denominator yielding a well-known Lorentzian
function (see examples below). Cavity finesseis introduced
in equations (T9) [47], [50], [51] of Table I. Unless indicated,
angular quantities are referred to the cavity medium. Note the
singular situation of resonance exactly at normal incidence: the
mode solid angle, a cone of semi-angle in an intuitive
representation, is halved compared to resonances at oblique
incidence. For this latter and more general case, the mode
solid angle is indeed comprised of two cones separated by
and the mode is fully analogous to the FP rings.

Let us introduce now the cavity order, an essential quantity
in the following. Resonances of the Airy function are-
periodic with respect to and hence are also periodic with
respect to . Resonances may thus be consecutively
numbered 1, 2, 3, . For a given wavelength in the
source spectrum, let us denote the associated wavevector.
The number of resonances is limited since and

at normal incidence . The cavity order
is the number of resonances, giving

[see (T3)]. As a consequence of
there are resonant angles with equally

spaced . We denote here the closest to normal of these
resonant angles, for which we have

(6)

Among ’s, resonant angles larger than are those of
truly guided modes (without mirror phase shifts), whereas
resonances with angles smaller than(if at all), being coupled
to the continuum of modes propagating in the vacuum, are
spread over a finite angular width related to the cavity finesse

. It is only in the limit that these
modes can rigorously be considered as discrete.

For more complex cavities with, e.g., distributed mirrors
(see Section II-F), the most meaningful measure of cavity
order is indeed how fast changes with angle (as well
as wavevector or frequency).

For further analysis, the scheme of Fig. 3 in– plane is
useful. Here, the axis is normal to the cavity. A monochro-
matic source defines a quarter-circle of radius (spectral
linewidth would be accounted for by replacing the circle by
an annulus). The source is taken here as isotropic, unlike real
dipoles. To quantify light extraction, we use the vertical axis:
the identity tells us that the
angle subtends a solid angle given within a constant
factor by the projection of the elemental arc .
To further account for the FP resonances (dropping the slowly
varying antinode factor for simplicity), we thus plot as a
function of the Airy function of (4) as indicated, peaking
when (i.e., . Light emission within is
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TABLE I
BASIC EQUATIONS FOR AN FP CAVITY AND ITS MODES IN A SCALAR VIEW; LAST COLUMN: BRIEF EQUATION DESCRIPTION

Equation N� Comments

Airy =
T1

j1� r1r2e2i�j2
and2� = 2kL cos �; k = n

!

c

(T1)
Airy factor, round-trip phase, and

wavevector versus pulsation

2kL cos � =
4�

�
L cos � = 2m�; m � mc

(T2) Dispersion relation (internal angle)

mc = Int
2nL

�
= Int

kL

�

(T3) Cavity order (within a half-integer for
mirror phase)

2nL cos � = m�
(T4)

Mode wavelength versus internal
angle

d�

d�
=
�2nL sin �

m

(T5) Derivative of above relation

�kz =
�

L

(T6) Mode spacing

�� =
2nL cos �

m(m+ 1)
(T7) Next mode wavelength�m � �m+1

Airy =
T1

(1� r1r2)2 1 +
2r1r2

(1� r1r2)2
(1� cos 2�)

(T8) Airy factor with normalized
denominator

2� = 2�mc
cos �

cos �o

k

ko
� 2�mc 1� 1

2
(�2 � �2o) + s ; s =

k � ko

ko

(T9a) Phase expansion and definition of
relative spectral shifts

sin2 � � 1

4
�mc(�

2 � �2o + 2s)
2 (T9b) Approximate squared sine of phase

F =
�(R1R2)1=4

1�pR1R2
=

�
p
r1r2

1� r1r2

(T9c)
Finesse (high reflectivity

approximation)

F � 2�

1�R1
; R2 = 1; R1 ! 1 (T9d) Finesse trend for perfect back mirror

Airy � T1

(1� r1r2)2(1 + F 2m2
c(�

2 � �2o + 2s)2)
(T9e) Airy factor expansion as a Lorentzian

basically proportional to the product Airy . Light that may
be extracted is just that emitted at anglessmaller than .
Thus, extracted light is measured by the area under the Airy
function between boundaries and
shaded in Fig. 3(a). This range of from to will
be termed below the “escape window.” Note that the relative
width of this window compared to is .

At this stage, two questions can be simply answered. 1) How
small should a cavity be to have a single resonance throughout

the escape cone? 2) What is the benefit in terms of extraction
and brightness? The second question may be answered from a
mode-counting argument by remarking that, in the
limit where the Airy function is a Dirac comb, all resonances
gather equal fractions of emission as far as the Airy function
is concerned. Although this does not hold for the antinode
factor it does not affect mode-counting arguments by more
than a factor of two: namely, a source located at the center
of a symmetric cavity couples only to symmetric modes. The
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TABLE I (Continued.)
BASIC EQUATIONS FOR AN FP CAVITY AND ITS MODES IN A SCALAR VIEW; LAST COLUMN: BRIEF EQUATION DESCRIPTION

Equation N� Comments

��

�
� �k

k
=

�!

!
= S =

1

�mc

1�
p
R1R2

(R1R2)1=4
=

1

Fmc

(T10)
Relative spectral width at

half-maximum of Airy factor

�2
fwhm

� �2o =
1

�mc

1�
p
R1R2

(R1R2)1=4
=

1

Fmc

(T11)
Half-maximum internal angles from

Lorentzian expansion

�� = 1=(Fmc�o); �� < �o
(T12a) Internal angle (off-axis)

�
 = 2�=Fmc; idem (T12b) Internal solid angle (idem)

�fwhm = 1=Fmc; �o � �fwhm
(T13a) Internal angle (on-axis lobe,�o = 0)

�
 = �=Fmc; idem (T13b) Internal solid angle

�
out = (2�=Fmc)n
2(cos �out)

�1 � 2
p
2((�=Fmc)n

2); �� < �o =
1p
2n

(T14) Outside solid angle, 45� off-axis
resonance

�
out � (�=Fmc)n
2; �o � �fwhm

(T15) Outside solid angle (on-axis lobe)

a =
�

4n

p
Fmc =

��L

8n

(R1R2)1=4

1�
p
R1R2

(T16) Mode radius (on-axis lobe)

(a) (b)

Fig. 3. Plot ink-space depicting cavity modes, critical angle, monochromatic
emission, and the Airy function. (a) Emission from the microcavity is
essentially proportional to the shaded area below the Airy function. (b) At
angles above�c; there is one guided mode at each Airy peak, at a discrete
angle. The FP mode is the single outgoing one, if at all, in a microcavity.

equality of mode weights is also easily derived in quantum
mechanics using the product of single-photon field amplitude,
whose only space-averaged square is considered here, with
the density of photon final states, involving group velocity of
guided modes (see below and [46] about mode weights). In our
approximate approach, Fig. 3 still accounts for the two most
important features of outside and guided modes: their about-
equally-spaced values and their equal coupling weights
within an antinode factor correction; it is only misleading in

suggesting some finite angular spread for guided modes instead
of Dirac peaks of equivalent area.

With modes equally coupled, it becomes obvious that ex-
traction in a cavity with sharp well-separated resonances is the
ratio [number of outside modes/total number of modes],
or the same ratio for odd modes in the centered source case.
In the large-cavity limit, as illustrated in Fig. 4(a), this ratio
tends toward the ratio of solid angles
because the ’s are equally spaced from 1 to 0 and thus
extraction tends toward as in the far-mirror case
above due to the naive power reflection at the back mirror.

To take advantage of microcavity effects, there should not
be many modes but only a few, and only one going out
[Fig. 4(b)], a situation where the extraction is straightfor-
wardly

(7)

A direct approach from (4) in the same limit amounts to the
sum of a Lorentzian function as a limit form of the Airy factor
and also yields .

For those concerned at this stage with the role of the
antinode factor we temporarily reintroduce it still in the
mode-counting limit (infinitely sharp resonances) and get
a slightly more general result: for each resonance labeled
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(a)

(b)

(c)

Fig. 4. (a) Large-cavity limit: many modes are extracted but the ratio of
extracted to guided modes tends toward the no-cavity far-mirror extraction
ratio. (b) Microcavity regime: one out of a small number of modes is extracted.
(c) Centering the Airy peak in thekz escape window gives a 45� outside angle.

the more exact mode weight is given by
its antinode factor which accounts for the source position
into the profile of the th mode. Then the extraction is
the ratio [ of extracted modes )/ of all modes)],
which becomes of all modes for a single extracted
mode of antinode factor . It can be shown that except for

the ’s average value is generally close to unity,
hence in (7) for . In the following, we
restore the assumption . A full discussion is needed
to take into account polarizations, dipole orientations, lifetime
modifications, etc. (see [46] and also [17], [38], [40], [52],
[53]).

Let us now discuss extraction enhancement taking as a
reference the far-mirror case in which the back mirror just
reflects emitted power toward without any interference
effect so that the extraction is Clearly, from (7), a
cavity may increase above the value only if its
order is smaller than . Thus, the threshold

(8)

defines the onset of the extraction-wise microcavity regime.
We may also answer the first question: the limit to have a single
resonance in the escape cone is when the round-trip phase
exactly spans on the domain, much in the same
way as for the close-mirror case. Assuming
we have

(9)

and we obtain the same threshold for microcavity regime
not surprisingly. In this regime, modes have to

be treated individually for all properties of the cavity, and
chiefly angle- or spectrum-averaged ones such as extraction
efficiency or brightness. Above this regime starts a “meso-
cavity” regime where a small number of outgoing modes still
leave pronounced directional features in the emission diagram
rather than a smooth Lambertian law. Defining the upper
bound of this meso-cavity situation is, however, strongly
dependent on more cavity parameters, not just the index. We
shall denote in the following a ratio that will
appear in many formulas.

Coming back to a single extracted mode, let us discuss the
exact resonance location for optimal extraction. To obtain the
largest area under the Airy function, the peak resonant angle
should be centered into the escape window by symmetrizing
phases at window edges and and
leaving halfway between 1 and

(10)

At first-order . Then, evolves at most from
at normal incidence to at grazing

incidence, yielding antiresonances at escape cone edges [Fig
4(c)] and a 45 peak outside angle; the cavity is “detuned” to
oblique angles to take advantage of the increase in the solid
angle, but qualitatively not above about 45: further gain in
extraction is balanced toward grazing outside incidence angles
by the decreased “solid angle transfer ratio”

, resulting from Snell’s law cusped
evolution at grazing incidence which dictates that external
power in the largest outside angles has to be fed from
vanishing internal solid angles.

We need in the following an approximate analytical expres-
sion of the Airy denominator, denoted around its
resonance which we briefly detail here. Starting from

(11)

and using in (5) a development of and we
have at first-order

(12)

and since is a multiple of we have when taking
the cosine

(13)

where denotes the relative spectral shift.
Taking (13) into (11), the Airy factor is transformed into the
Lorentzian form (T8) or (T9b).

Integration of these formulas over angle and spectrum
give the main trends to extraction evolution with microcavity
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parameters. In Section II-C, a simple practical working point
is determined to reach most attainable extraction in a lossless
case.

C. Practical Working Point for Lossless FP Cavities

The main scope of this section is to discuss intrinsic reasons
why optimizing light extraction requires only moderate reflec-
tivities and finesses. Two extrinsic reasons to be discussed
later are: 1) losses, preventing a large number of round-trips
in the cavity and 2) the nonzero natural linewidth which
leads to a situation where improving extraction efficiency at
some wavelengths only occurs at the expense of other ones,
resulting in an efficient spectrally-narrowed source but with no
wavelength-integrated extraction enhancement (see Section II-
E for details). In general, highly resonant cavities could even
lead to an unwanted angle dependence of perceived color for
display applications.

But even without such considerations, when the effort for
maximizing extraction is balanced with the expense of higher
reflectivity mirrors, a “working point” appears beyond which
increased reflectivity hardly translates into a sizeable increase
of extraction. Although it may be satisfactory to extract a
peaked spectrum or a very narrow cone from an otherwise
broad or Lambertian emitter, we will show that the highly
reflective mirrors needed for this purpose bring only minute
improvements to extraction, if at all, switching to a detrimental
effect when going beyond extrinsic limits such as those of
lossy cavities (Section II-D).

For simplicity, we consider here as unity, which leads
to an upper estimate for the front reflectivity which is
the only variable. This study of a “working point” to get
light in the natural escape cone will be easily extended to
smaller aperture requirements as those for coupling to fibers

outside, Section II-G).
Our basic argument is as follows. Once a single Airy peak

has been reasonably squeezed to fit well into the escape
window increased reflectivity only marginally
translates into increased extraction.

On the way to increased extraction via increased,
we want to know when most of the improvement from

toward is reached, say 80% or 90%, to trade far
easier fabrication requirements with minute “imperfections.”
Referring to Figs. 3–4, increasing amounts to concentrate
emission of a slice of extent into each
mode. As a minimum requirement, we want this emission to
be concentrated in a window of width . Hence,
the required finesse is of the order of
increasing for larger indices (smaller final window) and for
smaller cavity orders (larger initial slice).

These trends are illustrated in Fig. 5 presenting extraction
as a function of for extreme indices

and cavity orders [Fig. 5(a)] and
[Fig. 5(b)]. Even for the “worst case”
reflectivities of 90%–95% are enough to achieve 80%–90%
of . For less stringent cases, say 2 (hence

50%) and 1.7, reaches 40%, i.e., 80% of
using as low as 65%, a very moderately resonant cavity.
For still larger cavities, close to the limit most of

(a) (b)

Fig. 5. (a) Extraction as a function of top mirror reflectivityR1 for indices
n = 1.7 (dash–dotted lines) andn = 3.7 (solid lines) for cavity order 1. (b)
The same for cavity order 2; crosses are drawn atR1 = 1�mc=n2.

the improvement is gained for reflectivities below 50% with
a flat trend beyond.

A more general rule is obtained by imposing that the Airy
factor has to be at the edges and of the escape
cone about ten times smaller than its peak, because then there
is little light lost between the extracted Airy peak and the
next one. Noting that the Airy denominator [(T8)] increases
at and from its resonance minimum to a
value approximately given by

(14)

most of the concentration in the resonant mode is achieved
when the second factor is about 10. This translates into

as a safe practical “working point” and

(15)

a value generally below 90%, in agreement with recent mi-
crocavity LED’s in particular studies [9], [11], [18]–[20],
[22]–[25], [32]. It is easy to show that such a reflectivity gives

80%, leaving little room for
improvements. The validity of this rule of thumb is of course a
matter of application. Notice also that the extracted mode solid
angle (at half-maximum) for this peculiar reflectivity value is

in the solid and thus about 1 sterad in air (see
Table I). Beyond this point, directionality may increase but not
extraction because the main lobe is only more squeezed but
does not carry more power.

D. Effect of Losses

When losses are present, interferences in the FP cavity
are diminished through the diminished reflectivities and/or
the absorption in the cavity itself. Since all loss mechanisms
eventually attenuate the round-trip amplitude, their effect for
extraction can be cast in a unique cause, for example, only a
back mirror of reflectivity and a lossless cavity, as we
shall do here. Losses per pass are thus . Effects neglected
in doing so are those depending on the peculiar position of the
absorber with respect to the profile of the relevant modes. This
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(a)

(b)

Fig. 6. Emission enhancement forkz value in the escape window for (a)
large losses and (b) small losses for variableR1. In this case, maximum
extraction (left arrow) occurs at a much lower reflectivity than maximum
resonant intensity (right arrow). Successive reflectivitiesR1 are, for example,
60%, 80%, 90%, 95%, etc, i.e.,1�R1 forms a geometric series of ratio 2.

provision is similar to the one made about antinode factors,
now applied to localized absorbers.

In this view, one obtains for the Airy function as a function
of but restricted to the escape window the
graphs of Fig. 6, depicting how the Airy peak builds up, when
front reflectivity is increased at given losses . Two
values of losses are chosen in this example: in
Fig. 6(a) (large losses) and in Fig. 6(b) (small
losses). In both cases, the resonant Airy peak value goes
through a maximum when exceeds the maximum at
resonance thus corresponding to equal power flows at the two
mirrors. This is the obvious result that “exit losses” at the
front mirror should be larger than dissipative
losses to collect more power on the front side, i.e.

as a basic requirement [16].
It clearly appears in Fig. 6(a) that the Airy peak remains

so broad for large losses that the extraction efficiency, i.e.,
the area below the curves, closely follows the evolution of
emitted intensity at the resonant angle, peaking at about the
same condition .

The behavior of extraction efficiency at low losses is obvi-
ously different in Fig. 6(b) where the Airy peak gets sharp
enough to largely fit into the escape window as soon as

and well before the emitted intensity at exact
resonance reaches its own maximum . This implies
that the peak area now diminishes far before this maximum:
since the tails play here a negligible role, the peak relative
sharpening is not compensated by a sufficient increase of its
height. Hence, optimal extraction is attained for (“exit
losses”) much larger than the losses unlike the case
of strong losses. In other words, concentrating photons into a
sharply resonant mode rapidely demands so many round trips
that cumulated losses degrade extraction. Optimal extraction
then corresponds to a tradeoff between mode sharpening which
diminishes the fraction lost in mode tails outside the escape
window, and mode spreading which diminishes the number of
round trips and associated losses.

A quantitative account of these trends requires a few cal-
culations given in Appendix A as well as the crossover
outlined above. The space of parameters can be reduced to
the plane under some assump-
tions. The enhancement of the extraction coefficient over
the bare case is numerically optimized resulting into two
maps giving: 1) the optimized front reflectivity in the

plane and 2) the optimized
extraction enhancement factor. In a large part of the parameter
plane, analytical optimization could be also performed. Finally,
the tradeoff between cavity order and losses arising when
choosing distributed reflectors rather than metals is detailed
in Section II-F.

Summarizing this subsection and the previous one, in the
presence of losses, the basic design rule becomes

the latter stemming from the above opti-
mization. Of course, in the vanishing loss limit, the large re-
flectivities of, e.g., 99% as those needed for the much-studied
vertical (micro)-cavity surface-emitting lasers (VCSEL’s) are
in principle the best, since without losses more resonance
always brings more light into the favored mode, saturating
at the value given by mode counting . But this
limit, dictated by the specific VCSEL’s need for strong optical
feedback, is less relevant for extraction purpose for which the
design rule we propose implies reflectivities below 90%.

We have so far been concerned with a quasi-monochromatic
approach. Introducing the effect of spectral linewidth is now
appropriate.

E. Impact of Spectral Width of Sources, Brightness,
and Directionality Issues

Dealing in terms with sources of finite spectral width, we
denote the relative width for natural width at half
maximum centered at and
the relative shift of a particular frequency. We introduce
here the brightness (or radiance), which is the wavelength-
integrated emitted power per unit area and unit solid angle. In
microcavities, brightness and directionality are closely related
due to the unavoidable angle-wavelength dispersion of cavity
modes [11], [15], [16], [28], [33]. This dispersion follows from
(6), which is conveniently written for the
extracted mode as

(16)

at resonance. However, due to the partial mirror reflectivities
and finite finesses, each wavelength is emitted in a lobe with an
internal angular width given by (T12). This spread is denoted
here as it has a monochromatic origin. On the other
hand, it follows from (16) that the finite spectral width
translates into an angular spread . We give in Appendix
B the detail of these quantities and the various regimes
that occur depending on and on the cavity characteristics;
we present here the main conclusions concerning brightness
enhancement denoted directionality and extraction.

In a perfectly monochromatic case and without losses, the
brightness of the resonant lobe extracted from a microcavity
normalized to a unit emitter is essentially the ratio of extracted



BENISTY et al.: IMPACT OF PLANAR MICROCAVITY EFFECTS ON LIGHT EXTRACTION—I 1621

(a)

(b)

(c)

Fig. 7. (a) Cavity resonance larger than the source natural spectral width, no
directionality. (b) Cavity resonance narrower than the source natural spectral
width, the different wavelengths are emitted into different directions. (c) The
same as (b) but for very large spectral width: extreme wavelengths cannot
be extracted.

power, at most by the lobe solid angle, which is well
approximated by [(T12b) of Table I] for the internal
lobe [(T12b)]. Compared to the no-cavity normalized value

this yields a brightness enhancement (as
argued by [47] some time ago). External brightnesses are in
the same ratio as internal ones and need not be explained here.
This monochromatic enhancement has no intrinsic upper limit,
unlike extraction, which was argued to saturate for finesses
above the moderate one associated with .

However, taking spectral width into account, brightness may
follow the increase in finesse only if
viewing each mode as a ring, as in a classical FP interferom-
eter, this condition ensures that each FP ring is still broader
than the chromatic angular separation, and only the ring edges
experience some chromatic effects [see Fig. 7(a)]. Conversely,
if for large finesses, rings of the different
emitted wavelengths are well separated [Fig. 7(b)]. In this
limit, brightness, a wavelength-integrated quantity, cannot in-
crease anymore since each elemental angleis uniquely cou-
pled to a given spectral slice according to (16).
High brightness is thus best achieved with a very monochro-
matic source and a very high-finesse cavity, and
inevitably translates into a highly directional emission pattern.

An overall rule for both regimes is

(17)

where is the brightness enhancement over the no-cavity
case, and is the largest of the
two solid angles with obvious notations. This originates in
the fact that the cavity distributes the light previously emitted
over sterad over Airy peaks (or, in other words, FP
rings) within a solid angle for each. Brightness increases
just as directionality, until a saturation is reached due to the
finite spectral width in which case directionality saturates
to In this regime if light is
detected only within a infinitely small solid angle, e.g., very
close to normal incidence, spectral narrowing takes place:
it is easy to find that the apparent spectral width becomes

. This is, understandably, one of
the most popular microcavity effects on spontaneous emission
(refs), useful in cases where spectral narrowing is needed,
but not leading to wavelength-integrated extraction efficiency,
being even detrimental in the presence of losses.

In deriving (17) above, it was assumed that all wavelengths
within the spectral width could resonantly escape at some
angle. This is impossible, however, if exceeds a limit
spectral width because the resonant mode
is either cut-off on the small (large wavelength) side or
resonant at angles above the critical angle on the large(short
wavelength) side [Fig. 7(c)]. Above the limit we can
crudely neglect the tails of all modes with such nonescaping
resonances and insert a factor in the left-hand side
of (17). Brightness thus scales like in this regime, a
diminished part of emitted power being resonantly extracted
when increases.

Extraction efficiency follows the same rule: extraction en-
hancement up to the best value of (7) holds in the
regime and conversely, extraction is diminished
by a factor of at least in the large spectral width
regime . In this case, we find in Appendix B a
critical reflectivity

(18)

which is an analog of beyond this reflectivity value,
there are only marginal gains for extraction. Notice that escap-
ing to epoxy rather than air brings a substantial improvement
for the many materials featuring linewidth in the 5%–10%
range by pushing away the limit set by in epoxy
is 2.25 times larger than in air (the squared epoxy index) and
falls in the useful 10% range for typical semiconductor indices
slightly above 3, instead of just 5% in air.

The overall trends exposed in this section are summarized
in Fig. 8 reporting the main trends of extraction, brightness,
and directionality in a characteristic example that can be easily
generalized ( 3.16 and 2). The ordinate is
the spectral width while the abcissa was chosen here as
the top mirror reflectivity but can easily be interpreted
in terms of the lobe internal solid angle or
the finesse . Trends for
extraction efficiency are simple in the case 5%
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Fig. 8. Summary of the trends of extraction and brightness increases in the
(reflectivity, spectral width) or(�
; S) plane in the particular casemc =
2 andn2 = 10. In region A, both quantities increase. In regions B and C,
none of them increase. In region D, only brightness increases. Above lineX;
spectral width causes more angular spread than does cavity finesse. Going
from C to B prevents all wavelengths to be extracted(S>Sesc = 1=2n2).
The frontier between A and B is atRsp; crit

1 . The frontier between A and C
is at R1 = Rcrit

1 and�
 = 1=n2.

here: there is an increase for reflectivities below in region
A followed by a saturation when is above . But, if
exceeds 5% (region B), saturation occurs at the lower
reflectivity .

Trends for brightness improvement are different because
angular integration is not required for this latter quantity.
Hence brightness cannot increase when the monochromatic
mode solid angle becomes smaller than the source-
dependent but cavity-independent solid angle This
cross-over between and occurs along the line
labeled on the right of which brightness cannot increase.
Thus brightness and directionality may further increase to-
gether only into region D (smaller spectral width at given
where . Conversely, if
(region C, larger spectral width at given ), the cavity
resonance is too monochromatic to accomodate all emitted
wavelengths into .

Thus, spectral narrowing occurs if a measurement is per-
formed, for example, at normal incidence. A small part of
region A, right of the crossover line follows the same trend.
Finally, in region B, due to the large spectral width, not only
is brightness saturated, but the whole outside emission in
sterad is truncated to the5% maximum spectral width which
can be resonantly extracted from a cavity of index
3.16.

Eventually, for a general situation with both losses and non-
negligible spectral width, the suggested design rule for optimal
extraction is to take the smallest of the three reflectivities

(19)

F. Distributed Bragg Reflectors (DBR) Systems

Turning to realistic LED and emitter systems, DBR stacks
made of alternate low-index /high-index layers,
denoted are often the only low-loss or simply
feasible mirror solution [16], [18], [23], [32], [39], [44],
[54]–[57]. Their key parameter is the relative index differ-
ence where is the average DBR index [58].
Attainable values are dictated by epitaxial or deposition
constraints inherent to materials, notwithstanding conductance
considerations. We briefly recall some DBR features before
discussing how they degrade extraction due to their finite
penetration length which increases the effective cavity order.

DBR mirrors capitalize on successive reflections at dielec-
tric interfaces [50], [51], [59]–[61]: For quarter-wave-layer
optical thicknesses, phases from such waves are separated by

at their central (nominal) wavelength . A typical
case is GaAs–AlAs 2.9, 3.5 around 1 m
with each normal reflection being only 1.2% in power but
11% in amplitude. To grossly approach unity
reflectivity, about reflections are needed, e.g., six
pairs for our example. This suggests a penetration length of
a few per DBR mirrors, a quantity that will be detailed
below in a DBR-bounded cavity and which will help us to
still apply the above approach, but with an increased effective
cavity order.

Departing from the central wavelength, an infinite DBR may
still build up unit reflectivity across a so-called stopband. At
stopband edges, the penetration lengthdiverges and photon
states are standing waves with antinodes either inor
layers, just like bonding and antibonding states in the tight
binding model of periodic electron potentials [62], [63]. The
relative stopband width is given to a very good approximation
by the first Fourier component of index profile

[59]–[61]. Beyond their stopbands, DBR’s
are no longer “mirrors” and allow propagative photon states
often called leaky modes.

In a finite DBR consisting of pairs sandwiched between
any two media, schematically reflec-
tivity at stopband center reads [59], [60]

(20)

when is the incident medium. If the stopband center lies at
oblique incidence, ’s are to be replaced by e.g. in
-polarized case (TE) with obvious notations.

We now examine the role of penetration length and phase
evolution on cavity order. We stated above that the most
meaningful measure of cavity order is how fast the round-
trip phase evolves with angle or wavevector. To emphasize
this, we may write as follows:

(21)

When compared to a localized mirror (metal, single interface)
with a well-defined phase change determined by dielectric
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(a)

(b)

Fig. 9. (a) Power reflectivity of a DBR mirror with indicesnhi = 3 and
nlo = 2.5 ornlo = 2 as a function of the angle of incidence�. (b) Phase of
the reflectivity referenced at the first DBR layer (solid line) as a function of
cos � showing the linear phase shift. Dashed lines: phase of a perfect mirror
located at�mc half-wavelengths for�mc = 0 and 5.

constants, a DBR mirror gives an angle and wavelength-
dependent phase change at thefirst DBR interface with the
cavity due to the phase changes of partial beams reflecting on
successive interfaces. One thus has to add to the cavity phase
change twice the phase changes at the DBR/mirror interfaces.
These nonconstant phase changes then increase the bare cavity
order a modification which in turn accounts
for those of all the other interrelated properties of the cavity
(quality factor, etc.).

We plotted in Fig. 9 the amplitude and phase of the com-
plex reflectivity of (quasi-)infinite DBR’s of various indexes
contrasted at their nominal wavelengthas a function of
or . An angular stopband arises, as a natural
counterpart of the spectral stopband [see (5)]. Across this
angular stopband, it is seen that phase essentially evolves
linearly, just as would do a wave reflecting at an imaginary
perfect mirror placed at some location inside the DBR. This
equivalent location is of course the penetration length
which we may conveniently express in reduced units as

. In agreement with (5) and (6), a real
mirror located at would indeed give rise to a reflected phase

as suggested by the dashed lines in Fig. 9(b).
The penetration length is also illustrated in Fig. 10(a).

This discussion is made quantitative by the following for-
mula for penetration length [60]

(22a)

(22b)

and the order increase referenced to the high-index medium,
which is within a factor of two inverse to the relative index
step . With (22), we account for the extraction trends of
DBR-bounded cavities as follows.

Since cavity order essentially accounts for round-trip phase
evolution either with detuning or with angle [(21)], to
account for a symmetric cavity bounded by identical DBR’s, as

(a)

(b)

Fig. 10. (a) DBR mirror made of quarter-wave stacks and its penetration
length, which adds to the bare cavity effective length, as pictured in (b) for
a DBR/cavity/DBR system.

pictured in Fig. 10(b), we add twice to the “bare” cavity
order and obtain as the effective order of the compound
cavity

(23)

We now examine important consequences of this larger
order, firstly concerning the possibility of a microcavity at all,
and secondly for adapting the above work to the DBR case,
specifying in particular the numberof layer pairs needed at
the critical working point .

For vanishing index steps can be ne-
glected, and the enlarged effective cavity order becomes

. It exceeds the threshold of the microcavity
regime (single outgoing resonance) for in a
symmetric case in an asymmetric one for which

. Fortunately, in the (In, Ga, Al)As testbed
system [9], [18], [54], and this system
remains in the microcavity regime. It is not so clear cut for,
e.g., InP- or II–VI-based systems where material constraints
impose index steps of the order of 0.2 (see [46]).

We come back to the case of nonvanishing . When a
single mode escapes, we may rewrite the critical reflectivity
formula (15) in terms of index step rather than cavity order

(24)

working with successive approximations of moderate index
step and short bare cavity. We may also set up a simplified
expression for the finite DBR reflectivity assuming similar
indices of cavity and, e.g., DBR substrate

(25)
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Matching to gives the critical number of DBR
pairs needed to gain most of the attainable extraction

(26)

This formula yields 6.2 for the GaAs–AlAs system
( 3.5, 0.6) in which a careful optimization gave
a similar result [18], [19], 6, actually as a result of
compensations among a number of factors.

As for the back mirror in cavities bounded by two DBR
mirrors, it should obviously be far more reflective than the top
one to ensure escape on the front side. As a rule of thumb,
when the number of pairs in the second mirroris twice
we have which is in general sufficient.

A more profound modification arises when mirrors are
asymmetric in nature: in many cases, one can take advantage
from asymmetric DBR/cavity/metal structures, where one di-
minishes the cavity order from [(23)] to
about but at the expense of metal losses. The
basic trend is that if is small enough, we just halve the
cavity order and expect ideally a doubled extraction

if losses were absent.
Let us further the analysis and evaluate how much metal

losses are permitted before losing the advantage of
reduced cavity order. We neglect the half-order (quarter wave)
needed to accomodate the changed reflection sign of metals
compared to dielectric cavity–DBR interfaces. We need also
the constant extraction contours in the
plane of Fig. 12(b) given in Appendix A, and in particular
their approximate constant slope of1.6 in a large region.
The upper value of metal losses to retain an extraction gain
can be obtained by comparing the displacement in this plane
to these constant extraction contours: one does not gain or
lose extracted power if the variation is accompanied by
a loss variation such as 1.6 (losses) . Since we
diminish by we have . Hence,
the allowable round-trip losses due to the metal for overall
gain using a metal instead of a DBR back mirror are

(27)

This is a modest demand except for extremely contrasted
DBR’s, say which would call for limited round-
trip losses not exceeding 5%. Thus, asymmetric structures
probably offer the best compromise in many cases. Because it
is impossible to grow epitaxial material on metal, DBR’s on a
substrate are preferred escape mirrors, whereas a thick gold or
silver layer as the back mirror features low losses (it can also
be deposited close enough to quantum wells, typically witin
two or three half-wavelengths to ensure an antinode factor

for all escape angles). One exception could be the rough
or optically poor contacts based on some transition metals
used as the easiest solution to fulfill electrical requirements
and prevent, e.g., gold diffusion in highly injected structures.
In this case, a hybrid metal–DBR mirror should probably
be implemented. Assuming a reflective enough contact, and
following for such an asymmetric DBR/cavity/metal structure
the approach leading to (26) the diminished cavity order

Fig. 11. Contour map of approximate extraction efficiency� (thinner dashed
lines) and critical number of DBR pairs [according to (28), thicker lines]
in the (nlo; nhi) plane for an asymmetric DBR/cavity/metal light-emitting
structure: the source is monochromatic, the metal is lossless, the antinode
factor is � = 1; and the bare cavity order ismo = 0:75 (see Fig. 3 of
[Section II] for comparison). The index contrast�n increases linearly above
thenlo = nhi line. Validity tends to break down for large�n and�> 50%:

implies slightly more pairs in the remaining DBR
mirror even if we do not neglect

(28)

For 2, 3.5, 0.6 (GaAs–AlAs), we find
7.4 instead of 6.2, not a major

change. In this system, limits for metal losses are as high as
17%, easily satisfied by noble metals. Without

losses, the diminished cavity order instead
of would translate into an extraction
increased from 11% to 20%. Additional enhancement factors
[9], [18], [19], [22], [24] including, e.g., dipole orientation,
photon recycling, etc., indeed resulted in 23% efficiency [23],
[25] in such an asymmetric structure with a six-pair DBR on
one side and a nonalloyed high-reflectivity metal contact on
the other side.

To illustrate in a single figure the essential result of the ana-
lytical approach for an asymmetric DBR/cavity/metal structure
[(7), (22b), and (28), namely], we present in Fig. 11 a map
in the plane showing the locus (contours) of given
extraction efficiency and given value of for
a short bare cavity, 0.75. In this plane, there are of
course no data below the line . Above this line, the
index contrast of the DBR linearly increases, and the cavity
order diminishes leading to a rise in efficiency as well as a
smaller number of DBR pairs needed to reach the critical
reflectivity value (15). A similar map based on a more exact
approach is presented in [46, Fig. 3]. Let us stress that this
is a monochromatic lossless approach, thus a rather optimistic
case. See Appendixes A and B for the effect of losses and
spectral trends. Even without such detrimental factors, it is
clear that the validity of this approximate scalar analysis breaks
down in the large index contrast regime where there
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are very few modes so that the exact knowledge of their
antinode factors, for example, becomes crucial.

Finally, in the particular case of vanishing , it may be
advantageous in theory and in practice to shorten the DBR and
replace its last layers by the natural DBR–air interface to build
a shorter cavity. Given the large number of parameters, we
only give here a hint on this case, assuming that the air–DBR
reflectivity, typically 30%, is a given parameter: starting from
the bare cavity bounded by air, one inserts DBR layers of small
index contrast, thus enlarging the cavity. This increases both
the reflectivity and the cavity order which in turn
decreases . One should then self-consistently select the
reflectivity which satisfies the criterion of Section
II-C, now seen as an implicit equation with the number of
pairs as a parameter.

In this section, we insisted on the enlarged cavity order
to draw the main consequences for extraction. It is also
interesting to restate the Airy function approach (Fig. 3) in
the presence of DBR’s which display large reflectivity only
in their stopband. This is done in Appendix C where leaky
modes allowed outside the stopband are discussed in this
framework based on reflectivities (see Fig. 13). This also
allows to give a hint on design rules for DBR-based cavities.
The main conclusion of Appendix C is the importance of large
index contrasts to diminish unwanted emission into
leaky modes (see Fig. 14). It also gives hints on the spectral
dependence of emission into leaky modes, on the role of leaky
modes in hybrid DBR–metal cavities and on the role of guided
modes of the bare cavity.

G. Dealing with Small Aperture Requirements

It is rather easy to now account for optimized coupling to
some limited external angle denotedfor simplicity
numerical aperture, n.a.) and solid angle
typically 0.3–0.5 sterad for a multimode glass fiber [16], [32],
[33], [53], 1–2 steradians for LED’s embedded in focussing
lens-shaped epoxy packages, etc. [2]. We just have to look at
the round-trip phase variation from (14) and impose concen-
trating the resonance over a narrower angular region

(29)

rather than just now yielding

(30a)

(30b)

for, respectively, a general case and the DBR–DBR config-
uration with negligible . For example, to couple from a

50- m-diameter LED to a 100- m core fiber with
0.25 n.a. 14 we get, for GaAs–AlAs, 14.3 pairs
instead of 6.2 previously. For an intermediate case, 0.5
n.a. 30 10.3 pairs (four extra pairs per factor
of two in aperture). Note that brightness trends of Section II-
E still hold in their principle. Referring to Fig. 8, the vertical
boundary between regions A and D lies at smaller solid angles

i.e., larger reflectivities and larger finesses, by a factor

. Also, the horizontal boundary between regions B and
C lies at a smaller spectral linewidth,
This indicates that very large brightness enhancements from
microcavities coupled to fibers are expected for narrow sources
with typically 1% (however a rare case, that could be
realized at room temperature only in controlled quantum dot
systems not well mastered yet): for such sources, the power
of the whole resonant mode is fully coupled to the fiber at
all emitted wavelengths, instead of the fraction
of the solid angle from an isotropic source. The

extraction coefficient still holds for this monochromatic
limit because the same extracted mode as above may be
squeezed into a cone of smaller angle. The fiber-coupled power
enhancement is thus in this case

(31)

which exceeds one hundred for the optimistic example of
Fig. 8 10 and and 0.25. Losses
tend to grow in this more resonant case, so that the number
of parameters (indices, cavity order, losses, spectral width,
aperture) require a separate study for more details [16], [21],
[32].

III. CONCLUSION OF THEAPPROXIMATE APPROACH

We gave an analytical account of the large potential held by
planar microcavities for improving light extraction from large
index emitting systems such as semiconductors . We
showed through the number of competing FP modes why a
small cavity order is crucial in achieving enhanced
extraction. The naive limit to the extraction coefficient is then
found to be simply where we purposely omitted
the effects of antinode factor at most factors of two. Note
also that lifetime effects play no role in this result, based
on the way modes share-space. The useful dimensionless
parameter is found to be . An important result
for applications is that the practical top mirror reflectivity
that yields most of the extraction expected in the naive limit is
given by generally well below 90%. This is
sufficient to concentrate the extracted lobe (i.e., the outermost
FP ring) into the escape cone. We also discussed how losses on
the round-trip cavity path could possibly diminish the optimal
top mirror reflectivity.

Spectral effects are important. We showed in Fig. 8 how
brightness improvements first follow extraction improvements
but then evolve differently depending of the source natu-
ral linewidth. Directionality is a consequence of strongly
resonating cavities where, as a rule, front reflectivity
is much closer to unity than and the source should
be of sufficient purity. The tradeoffs between directonality,
brightness enhancement, and cavity order clearly appear in
(17), where is the the largest internal solid
angle between that of the cavity mode and that deduced from
the material emission linewidth.

Systems with DBR mirrors were studied introducing the
penetration length which unfortunately increases cavity order
according to [(23)]. An approximate critical
number of DBR periods for the front mirror was given
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in (26) and (28) for, respectively, symmetric and asymmetric
cavities. Leaky modes have been analyzed in Appendix C.
Adaptations to the small aperture case, e.g., for coupling to
fibers, was also given in (30b).

In Part II [46], we introduce an exact approach to predict
more accurately extraction of systems that could be used for
real microcavity LED’s, mainly focusing on an asymmetric
DBR/cavity/metal structure. Selected parameters are varied in
order to give a consistent set of performances for most existing
semiconductors systems.

APPENDIX A
EFFECT OF LOSSES

As explained in Section II, losses can be assumed to be
due to the back mirror and taken as a parameter
reflecting any loss per round-trip, whether they actually arise
in the cavity itself or at the mirror. To go beyond the basic
requirement we have to sum the approximate Airy
factor (T9) over angles. Neglecting again spectral width as well
as the antinode factor, and with approximations in agreement
with (11)–(13), one obtains for extracted power per emitter
the following integral:

(A1)

where the choice of the centered angle inside the escape cone,
(10), has been made. Analytical maximization of

integral (and hence of the extraction within a factor) is
unfortunately impossible due to the function. But we
can, without loss of generality, limit the number of parameters
to two by calculating extraction enhancement over the bare
case, or here which then only
depends on and the parameter according
to

(A2)

where and have been expressed as a function of
and .

Results obtained upon maximizing (A2) for and
losses may be displayed as two contour
maps in the plane: contours of optimized
[Fig. 12(a)] and contours of extraction enhancement
(A2) [Fig. 12(b)]. The resulting behavior for optimized
respects the prediction but may be considerably lower
especially for large values of as explained in Section II-D.
On the second map [Fig. 12(b)], enhancement contours are
quite straight and parallel with a single constant slope (about

1.6, see below) in the useful range allowing
extraction to be described versus a single parameter if the

(a)

(b)

(c)

Fig. 12. (a) Optimized top mirror reflectivitiesR1 contours in the
(1 � R2; v = mc=n2) plane. (b) Optimized extraction enhancement
(�=�bare) contours in the same plane. (c) Extraction enhancement as a
function of losses, for various values of parameterv = mc=n2: This is
obtained from the results of (b) but can be transformed to the exact extraction
of any particular case just by vertical rescaling.

optimization condition is fulfilled. When extraction gain from
the shortened cavity is balanced by increased losses, as occurs
when going from DBR to metallic back mirrors (see Section
II-F), this simple law eases decision.

Extraction enhancement appears as the ordinate
on Fig. 12(c) displaying in the plane the
very results of Fig. 12(b), but here as-indexed contours.
This map is closer to applications: one directly reads the
obtained extraction enhancement stemming from the value
of cavity parameter known from material and
technological considerations, and the value of losses, known
from mirror performances and possible intracavity losses.
Absolute extraction is just obtained by multiplying the ordinate
of Fig. 12(c) by the bare extraction, .

Analytical formulas demand additional approximations.
When we may take in (A2),
thus slightly underestimating extraction. Also, in the region of
Fig. 12(b) with about constant slope,
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is acceptable in (A2). These approximations give

(A3)

This is readily maximized, yielding the following approximate
optimized reflectivity and extraction enhancement

(A4)

(A5)

Still in this approximation, studying in the plane
constant enhancement curves analogous to those of
Fig. 12(b), one finds an inflexion point located at

(A6)

(A7)

characterized by a constant slope close to1.6

(A8)

which we use in the discussion of Section II-F to decide
how much metal losses will still be acceptable due to the de-
creased cavity order in asymmetric metal/semiconductor/DBR
microcavities.

APPENDIX B
SPECTRAL WIDTH AND SPONTANEOUS

EMISSION IN A MICROCAVITY

A. Angular Widths

Let us recall that denotes the angle of the extracted
mode for monochromatic radiation at [refer to
(T11)–(T13) of Table I to deal with the special case ].
The internal angular width of this mode is denoted here

to avoid confusion and is obtained from the Airy
denominator (T9e) by making (since ) and
requiring that for .
One then finds (T11) and (T12a). Since is a small angle,
the corresponding solid angle is

hence (T12b).
As for the linewidth-limited angular width it is

obtained from the resonant angle evolution in approximate
form, when requiring to reach

(B1)

which yields

(B2)

Similarly, we have

(B3)

Four remarks can be made at this stage.

1) An optimized value for was argued to be
. It can be reported into the above equations to

yield internal angular widths.
2) For this case, the resonant angle being 45in air, the

useful outside angular widths, denoted may be
expressed from a differentiation of Snell’s law as

(B4)

(B5)

[see (T14) for outside solid angle].
3) For resonance at normal incidence, one half of the FP

peak is cut off (see Fig. 3), ’s are halved, and angular
widths are given by different formulas, e.g., (T13a),
since in this case .

4) For the practical working point of Section II-C,
is just sterad and 18

rad, a value independent of index and cavity order.

B. Brightness and the Crossover

With these formulas, the crossover between the case
—where lobe brightness can still in-

crease—and the converse case—where it saturates—is given
by the three equivalent forms

(B6)

(B7)

(B8)

The latter form clearly appears in Fig. 8 as the main diagonal.
The microcavity gives a brightness enhancementof its

resonant lobe (i.e., FP ring) over the no-cavity Lambertian
emission. We first determine the enhancement in the
monochromatic case. In the no-cavity case, the normalized
internal power per steradian is just (isotropic source)
whereas in a lossless microcavity of sufficient front reflectivity

the fraction of emitted power is con-
centrated within the solid angle giving

for the normalized power per steradian. Hence, from
the ratio, we have the two equivalent forms for the brightness
enhancement

(B9)

which is also (17).
Above the crossover, one follows the same approach, but

the fraction of the emitted power is now concentrated
over hence the brightness enhancement now
takes the following forms:

(B10)

yielding again (17) [32]–[34].
In between, around the crossover, one may use an inte-

gration of the Lorentzian form of the Airy function, which
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is legitimated by the microcavity regime (small order ).
Brightness enhancement reads in this approach

(B11)

which reduces to the above equations for
(monochromatic case) or (polychromatic case).
Let us finally emphasize that the calculated enhancement also
holds for outside radiation even though it was calculated from
the internal point of view.

C. Very Large Spectral Width and Extraction

A large spectral width translates into an angular spread
exceeding the escape window. Noting that

it is obvious that if exceeds the value

(B12)

which is typically 3%–10%, a cavity enhances only a part
of the source spectrum outside and inhibits other frequencies
(see Section II-G for smaller aperture requirements where a
similar effect arises). For largely exceeding (very strong
pumping, long wavelength, ), benefits from microcavity
for extraction clearly decrease. But by using epoxy as the
outer medium, one has the possibility to increase the threshold
linewidth by a factor of more than two , gain-
ing, thus, a comfortable margin where microcavities are still
interesting. With this provision, i.e., when we have
the spread in internal angles is smaller thanso that all
wavelengths are extracted at some angle. But this is no more
true in the large spectral width limit which we consider here
for completeness [Fig. 7(c)]. Using Fig. 3, we replace the ring

by a thick annulus. It is here so thick that some
wavelengths never lie into the resonant outgoing FP peak.
Obviously, only a fraction may lie in this peak. It is
then clear that extraction follows at first order the ratio
of extracted to total spectral width, being thus of order

(B13)

It is interesting in this case to parallel for spectral width the
approach made when defining through angular variations
of the Airy denominator. We now want this denominator to
increase by for the extreme radiations
i.e., instead of an angular variation. One gets a
spectral-width-wise critical transmission and
the associated critical reflectivity is

(B14)

This latter value falls below if in
agreement with the discussion. As for the brightness, the first
form of (B10) still holds. In the somewhat extreme limit

it yields a factor of two due to the mere back-mirror power
reflection. However, due to the numerous approximations
made, such formulas should be taken as guidelines when

.

(a) (b) (c)

Fig. 13. Same plot as Figs. 3 and 4 when using DBR mirrors. (a) Comb-like
Airy function of an ideal cavity with constant reflectivities. (b) DBR reflectiv-
ity, with the stopband, the window at smallerkz and the about total reflection
at critical angle with the low index medium. (c) Modified Airy function, with
the extracted FP peak, but losing the structure of (a) especially in the leaky
mode region. Emission in the various modes is indicated.

APPENDIX C
STOPBAND AND LEAKY MODES OFDBR STRUCTURES

When a DBR with moderate-index step is used on a high-
index substrate as the output side (the wafer being eventually
antireflection coated, but far from the cavity), its limited
angular acceptance allows light to escape toward the substrate
at oblique angles still larger than referred to as “leaky
modes” [17], [18], [39], [40], [44], [64], [65]. We discuss here
the main trends that can be predicted for these modes and how
we can picture them in the – diagram of Fig. 3.

Let us first broadly define three regions in this diagram
(Fig. 13): We start from the same – diagram as Fig. 3
[Fig. 13(c)] with the critical angle for outside radiation. The
regular comb of the Airy function due to cavity round trips
with angle-independent reflectivities is illustrated in Fig. 13(a).
Whether the cavity is made from two similar DBR’s or a
metal and a DBR mirror, the power reflectivity product that
enters into the Airy function has the typical shape of a DBR
reflectivity of Fig. 13(b), with a stopband surrounded by an
oscillating small reflectivity region around it. At larger angles
(smaller ), there is again a unit reflectivity region due to
the fact that we view the DBR from the high-index medium
of the cavity. Thus, as indicated in Fig. 13(c) where angles
are counted in the cavity medium, there is a critical angle

beyond which only evanescent waves are present in the
DBR low-index medium, and the reflection becomes 100%
toward the cavity. Let us discuss these three regions (stopband,
leaky modes, and total reflection from the DBR) as well as the
interplay between them and their possible design rules.

In the stopband region, the cavity just mimics a perfect
one, with the same enhancement and inhibition of the Airy
function. One should thus again, to extract as much light as
possible, aim at fitting a single mode in the center of the
escape window corresponding to outside-coupled angles. For
this purpose, the DBR stopband has to cover this window
as well as possible. The DBR stopband center is determined
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by the sole DBR layer thicknesses. On the other hand, the
resonant mode position depends essentially on the bare cavity
thickness [57], [60], [19]. Finally, the width of the resonant
mode depends on the cavity finesse, which is given in the
stopband by the number of DBR pairs (until other losses limit
the finesse) via mirror reflectivities. The situation pictured in
Fig. 13 is close to the preferred “working point” with
a moderately high FP peak, but still fairly concentrating the
power into the escape window.

Here only one FP mode is found through the stopband.
But for larger stopbands or larger bare cavities, the stopband
may contain more than one mode. The relevant mode spacing
here is that of the compound cavity, including the penetration
lengths of DBR’s, (or equivalently, taking their linear phase
response of Fig. 9(b) into account to obtain the round-trip
phase condition). It is also important that the stopband is
centered on the extracted mode. Otherwise, if the mode
lies close to a stopband edge, a longer penetration length
into the DBR results, hence a larger effective cavity order
and a diminished extraction. For stopbands much larger than
the escape window (large index contrasts), one part of the
stopband thus lies at where it would be naive and
useless to forbid emission.

What happens in the converse case of small index contrast
where the stopband width is narrower than the escape window?
Noticing that this corresponds approximately in relative terms
to this means thus which
approximately amounts to violate the microcavity criterion
for DBR-bounded cavities . We then enter the
meso-cavity regime. The extraction coefficient is thus no
more the microcavity regime one
because two or more resonant modes may take place into the
escape window. Referring to the mode-countings arguments
developed in Figs. 3–4, there is in this case not much room
for the extraction enhancement, which will necessarily be less
than a factor of two. A more quantitative prediction can be
devised in this meso-cavity case using the ratio of the number
of modes in the escape window to the total number of modes

and leads to an asymptotic extraction enhancement
of the form over the trivial power reflection effect
(“far mirror”), the coefficient being of order unity.

In the adjacent regions, those of leaky modes, cavity modes
do not appear at all because the reflectivity product is small
in the Airy function. Only complex oscillations due to the
interplay of the peculiar phase response of the DBR with
the bare cavity round-trip phase are visible. In the optimized
case of Fig. 13, the solid angle subtended by leaky modes
is just given by where the first
angle denotes here the bottom of the DBR stopband. Since
we have the identities and

we can thus conclude that the
fraction of the solid angle for leaky modes is

(C1)

It is plotted in Fig. 14 as a function of for 2, 3,
and 4. For example, it is 33% only in the case 3.5,

Fig. 14. Left scale: approximate fraction of emission in leaky modes cal-
culated from the subtended solid angle as a function of�n for high index
n = nhi = 2, 3, and 4. On the right is the normalized solid angle where guided
modes occur for comparison. The total is below unity because extracted modes
are not included.

0.6, where the last term, in excess of one half, is crucial in
determining the result. This simplified picture is modified in
the two following cases.

1) Close to the DBR critical angle Fresnel reflection
coefficients become large even though may be weak.
Thus the shorter bare cavity may at this stage act as a
peaked FP cavity. An overall account of the transmission
and reflection windows in this complex region is beyond
our scope. It is analogous to the problem of Bloch waves
in a square potential with minibands, etc. [59], [66], [67].

2) Substrate lift-off [5], [6]: in most light emitting devices,
leaky modes are lost because the emitted light even-
tually reaches the substrate where it is often absorbed.
One remedy is to remove the substrate to deposit the
sole heterostructure layers on a low index substrate,
causing total internal reflection at the angles of these
leaky modes (the further interaction of these modes
with the possibly absorptive emittor may cause some
reabsorption and photon recycling, see [46]). In the new
lift-off structure, almost all the modes of large angles are
indeed guided modes of the detached layer stack. Then,
the emission pattern of the previously leaky modes turns
into a discrete one, but the cavity size is larger than at
normal incidence since waves make round trips with
unattenuated amplitude throughout both mirrors (we
have, say, a configuration thicker DBR/bare cavity
and thinner DBR) instead of being limited by the
DBR penetration length at normal incidence. Teeth of the
corresponding mode “comb” thus lie closer. However,
on the average, overall emission in these modes has no
reason to largely differ from the “ordinary” leaky mode
emission, e.g., that calculated in [46].

Let us finally discuss spectral aspects: how do leaky modes
vary for other wavelengths than the resonant one of Fig. 13?
If, slightly abusively, we term “leaky modes” all the emission
between both critical angles whatever its origin, then detuning
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to the short wavelength side of the resonance gives rise to
an important enhancement of these leaky modes: for this
detuning, the resonant mode finally goes beyond the critical
angle, causing a much stronger contribution than that of
an isotropic source. On the contrary, detuning to the long
wavelength side does not usually cause such an increase. See
[46, Fig. 5] for details.

The last class of modes are akin to truly guided modes,
with an angle larger than DBR critical angle . In this class,
round trips essentially take place in the bare cavity. Even if the
substrate has the same index as the cavity, tunneling through
low index layers is the only mechanism allowing coupling to
radiative substrate modes. Given the thickness of low index
layers, the exponential decay at the angles of concern is so
important that these modes can hardly be distinguished from
true guided modes with zero coupling to the outside world. On
this basis, the “comb” made by these modes is usually very
largely spaced since the bare cavity is generally narrow (
seldom exceeds 3 or 4, i.e., at most a cavity) [16], [18].
Notice, however, that even for the shortest high-index cavity

the structure always sustains a guided mode, and that
this guided mode tends to carry away a very large fraction of
spontaneous emission, as is suggested by the large solid angle

between and the equator However, for short
bare cavities bounded with DBR mirrors, the guided power
fraction may largely deviate from the ratio especially
at large index contrasts such cavities have very few
modes among which a strong resonating mode close to normal
incidence and the fraction in the guided mode is the result of
a somewhat complex competition between these modes. As
a rule, the fraction of power in guided modes at large
when leaky modes tend to a small fraction, is complementary
to the power in outside modes, being diminished for structures
with enhanced extraction and enhanced in the converse case
of a structure inhibiting emission in the escape window, e.g.,
a cavity between two DBR’s. These approximate trends
are quantified in a particular case in [46, Fig. 5].
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