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Abstract—We review recent progress in opto-electronic 
components and circuits for optical interconnect networks based 
on a silicon based photonic wire technology.   We discuss the 
transmitter part, the receivers and the integration with 
electronics. 

I. INTRODUCTION 
The continued reduction in transistor feature sizes has led 

to a paradigm shift in advanced micro processor design.  
Instead of further increasing the clock speed and the number of 
transistors within a single processor, multiple cores, each 
comprising a smaller number of transistors, are now integrated 
on a single die.  The main driver hereby is the increased power 
efficiency.  However, as a result, on-chip and off-chip 
communication is becoming increasingly the bottleneck in 
sustaining the performance growth foreseen by the 
International Semiconductor Roadmap (www.itrs.net).   A total 
data rate of 50-100TB/s is expected by 2015 and more than 
double that by 2022, with a maximum allowed power 
consumption of 0.1 to 1pJ/bit [1]. At this moment there is no 
known technology (neither using electrical connects, neither 
using other types of interconnects) that can fulfil this 
requirement.  For that reason several groups worldwide are 
now investigating the possibility of using an optical 
interconnect network to replace off-chip interconnects and 
maybe even the long range on-chip interconnects.  Although 
free space communication has been investigated intensively in 
the past almost all current work now focuses on guided wave 
solutions.  Solutions using VCSEL arrays and multimode 
waveguides are rapidly maturing and may be introduced in the 
coming years for board level interconnects [2].  However, such 
solutions are not compatible with on-chip optical interconnect.  
Therefore, approaches using silicon nanophotonic waveguides 
as the optical backbone are now heavily studied.  Different 
network topologies have been proposed, going from circuit 
switched networks [3] up to fully interconnected crossbar 
networks [4-7].  Nevertheless, the basic components from 
which these networks are built up are rather generic.  In most 
cases wavelength division multiplexing is used for increasing 
either the capacity or the flexibility of the network.  Therefore 
transmitters capable of generating data at multiple 
wavelengths, wavelength routing and switching circuits and 
wavelength selective detectors are required.  In this paper we 

will review state-of-the-art for all these components.  We will 
also discuss how these circuits can be integrated with 
electronic circuits. 

II.   PHOTONIC WIRING CIRCUITS 
To reach a high bandwidth density the waveguides used to 

route the traffic should be as small as possible, allow for short 
bends and exhibit negligible crosstalk even when two 
waveguides are placed close to each other.  To fulfill these 
requirements a high refractive index contrast between the 
waveguide core and cladding is required.  Therefore most work 
now focuses on silicon waveguides (n~3.5, with n the 
refractive index) embedded within a SiO2 cladding (n~1.5), 
which exhibits one of the highest refractive index contrasts 
currently available.  Moreover, these circuits can be fabricated 
using tools available within standard electronics circuit 
fabrication lines. Fig. 1shows a top view of a spiral waveguide 
used for measuring propagation and bend losses.  The inset 
shows the cross section of a waveguide.  Fabrication typically 
starts from a silicon-on-insulator wafer having a 2μm buried 
oxide layer, which will serve as the bottom cladding, and a 
220nm silicon waveguide layer on top.  For patterning often 
ebeam lithography has been used [8, 9].  However, we have 
focused on the use of deep UV lithography because of its 
compatibility with mass manufacturing [10]. Next the pattern 
is transferred into the silicon layer using a dry etching process.  
The typical waveguide losses (for a 450nm wide, 220nm high 
single mode waveguide)  vary from below 1dB/cm (using 
ebeam lithography [11]) to 3dB/cm and mainly originate from 
sidewall roughness.  Bend losses are as low as 0.04dB per 90o 
turn (2μm radius).  For a centre to centre waveguide separation 
of 1.6μm, the crosstalk over a 1cm link is less than 20dB.  We 
also reported waveguide crossings with <0.2dB loss per 
intersection and splitters with <0.1dB excess loss [12].  As an 
alternative for using crystalline silicon we also developed a 
process based on amorphous silicon.  Standard amorphous 
silicon layers exhibits too high losses for practical use.  
However, by using a process optimized for passivating the 
dangling bonds, we could reduce the loss of standard strip 
waveguides down to 3.6dB/cm [13].  This is a low temperature 
process (<400C) so in principle such waveguides could be 
defined in the back-end (on top or between the metal layers) of 
electronic chip fabrication (see also section V).  It is of course 
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important that the active components being 
compatible with these circuits.  This will be
sections III and IV. 

Fig. 1 Silicon on insulator photonic wire circuit (inset: 
section)(from [12]). 

Fig. 2 Optical cross-connect (4x4) build up from ind
elements. 
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B. On-chip directly modulated sources 
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