
COMPUTING IN SCIENCE & ENGINEERING THIS ARTICLE HAS BEEN PEER-REVIEWED. 53

P E T A S C A L E
C O M P U T I N G
S O F T W A R E

I N T E G R A T I O N

Python Bindings for the
Open Source Electromagnetic
Simulator Meep
Meep is a broadly used open source package for !nite-difference time-domain
electromagnetic simulations. Python bindings for Meep make it easier to use for researchers
and open promising opportunities for integration with other packages in the Python
ecosystem. As this project shows, implementing Python-Meep offers bene!ts for speci!c
disciplines and for the wider research community.

I n photonics and microwave design, it’s es-
sential to be able to accurately simulate
electromagnetic wave propagation through
subwavelength-scale structures. To achieve

this, researchers often use the !nite-difference
time-domain (FDTD) method.1 Because it mod-
els Maxwell’s equations in a fully vectorial way,
FDTD is one of the most powerful and general
techniques, but it’s also rather brute force. It’s com-
putationally intensive, but well suited for massive
parallelism, making it scalable on large clusters
or supercomputers. There are several commer-
cial and open source FDTD packages available,
but many researchers choose the open source
package Meep, which was developed at MIT2 and
has a broad user community.

Meep’s standard version de!nes a simulation as
a script written in the Scheme language. Scheme
is a powerful and compact programming lan-
guage, derived from LISP and belonging to the
group of functional programming languages.3,4
Mostly popular for educational purposes, Scheme
can present newcomers with challenges in getting
started. Although not inherently more dif!cult,
Scheme has a somewhat different syntax, coding
convention, and execution strategy than more
mainstream, or imperative, languages. Many re-
searchers interested in Meep aren’t familiar with
this programming paradigm.

In contrast, Python follows a more traditional
approach. Like Scheme, it’s a dynamically typed
language and is thus well suited for scripting and
rapid prototyping. It has also become widely ad-
opted over the past decade, both in the industry
(as in the Google Apps Engine platform) and in
many open source projects. Python is especially
popular in scienti!c and academic communities,
and, as we discuss later, many Python libraries—
most of them open source—are available and cover
a wide spectrum of functionalities.

Scripting Meep using Python would make Meep
easier for researchers to use, as well as permit seam-
less integration with other existing Python software.

1521-9615/11/$26.00 © 2011 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Emmanuel Lambert and Martin Fiers
Ghent University, Belgium
Shavkat Nizamov
Samarkand State University, Uzbekistan
Martijn Tassaert
Ghent University, Belgium
Steven G. Johnson
Massachusetts Institute of Technology
Peter Bienstman and Wim Bogaerts
Ghent University, Belgium

!"#$%&'%'%()*+,-./01223334' 546576&&333&894&3:;

54 COMPUTING IN SCIENCE & ENGINEERING

Here, we describe how Python bindings for Meep
leverage the tool in several ways, and how the
research community bene!ts from this extension.

Leveraging Meep with Python
We’ve developed with Python for many uses over
the years in our research on silicon photonics
and plasmonics. At Ghent University (UGent)/
IMEC, we’ve developed a litho mask design tool-
kit for silicon photonics in pure Python. We’ve
also developed add-on tools and libraries for
electromagnetic modeling, design optimization,5
and process simulation.6 Our long-term goal is
to further automate closed-loop optimization of
photonic circuits.7 To this end, a powerful tool
like Meep enriches our modeling framework.
It also broadens our research capabilities in de-
sign optimization because it lets us leverage fully
vectorial 3D FDTD simulations from inside a
Python-driven design optimization process.

Bene!ts of Python Bindings
Python bindings offer several generic bene!ts to
the wider community of Meep users. First, they
enable the integration of Meep with existing Py-
thon open source libraries—such as the popular
Numpy and SciPy (www.scipy.org)—for scienti!c
computing. Numpy is an extension to the Python
language that adds support for large, multidimen-
sional matrix operations and related mathemati-
cal functions.8 SciPy is a higher-level library with
mathematical tools and algorithms.

Suppose, for example, that we want to ex-
plore a certain parameter space for the optimal

con!guration of a photonic waveguide—that
is, we want to use Meep to simulate the wave-
guide’s electromagnetic behavior for various
parameter values. It’s now possible to use opti-
mization algorithms, such as simulated annealing
(provided by SciPy) or genetic algorithms (provid-
ed by PyGene), to explore this parameter space on
a supercomputer and optimize against a particu-
lar target function. Numerical algorithms offered
by Numpy can be used for processing simulation
results. Combining these libraries with Meep is
a promising option for the many researchers
already familiar with them.

Visualizing Simulation Results with Python
In Meep’s currently deployed versions, visualiz-
ing electromagnetic !elds relies on external tools
(with !les for data interchange) and it’s largely
a manual process. With Python-aware Meep,
we can develop visualization functionality using
popular Python libraries such as Matplotlib for
2D (see http://matplotlib.sourceforge.net) and
Mayavi2 for 3D (see http://code.enthought.com/
projects/mayavi) and tightly integrate them with
the simulation script. We can automatically gen-
erate the waveguide’s visualization, the position of
the excitation source, and the data-collecting 6ux
planes. This allows for rapid, visual veri!cation of
the Meep script before running it.

At UGent, we built this functionality on top of
the standard Python-Meep, which we integrated
with a more general simulation framework used
by our research group (for this reason, it’s cur-
rently a proprietary extension and isn’t included
in the public release of Python-Meep). Figure 1
shows a 2D-visualization made by this frame-
work. Because the Python bindings provide di-
rect access to core Meep functionality, we could
even make a live visualization of the 6uxes or elec-
tromagnetic !elds as the simulation progresses.
Generally speaking, such automated and ad-
vanced visualization functionalities save time and
can save reiterations of failed or ill-conditioned
simulations.

Parallelizing Meep Simulations
Meep’s standard version can be enabled for the
message passing interface run (MPI-run), which
means that the computation is distributed over
multiple computing cores (on one or more nodes).
MPI is an industry standard that de!nes message
passing between software components executing
in parallel.9 Using MPI, we can easily parallelize
an FDTD algorithm. We can split up the simu-
lation problem in cells: in a given time step, the

Figure 1. The automatic visualization of a 2D
simulation landscape based on Python-Meep and
Matplotlib. This visualization shows a ring resonator
with access waveguide in silicon (orange), the
position of the source (tan line), two !uxplanes
(blue lines), and a probing point (tan circle).

–10
–10 –5 0

Micrometers
5 10

–5

0
M
ic
ro
m
et
er
s

5

10

!"#$%&'%'%()*+,-./012233347 546576&&333&894&3:;

MAY/JUNE 2011 55

calculation for one cell is dependent only on the
cell’s previous states and the surrounding cells’
boundaries. Each computing core processes one
cell and exchanges boundary information with its
neighbors.

The Python-Meep bindings are fully compat-
ible with Meep’s MPI-capabilities. However, such
an MPI-distribution doesn’t scale in!nitely: add-
ing cores increases communication and synchro-
nization overhead, which at some point limits
further scaling. Even if we have a massive amount
of cores at our disposal (such as on a supercom-
puter or cluster), we often can’t ef!ciently exploit
the full capacity with one MPI-run alone.

Integration with the IPython Framework
At UGent, we’re developing a generic photonic
simulation framework based on IPython,10 a
Python environment enhanced for parallel com-
puting. IPython largely abstracts the technical
aspects of parallel computing from the user and
allows robust error handling. It lets users submit
scripts to a controller, which in turn scatters the
code to engines on several nodes for execution.
Results and exceptions are then gathered and pre-
sented to the client shell in a user-friendly manner.

The Python bindings for Meep let us inte-
grate Meep with this IPython framework. Such
integration shows a clear bene!t, letting us com-
bine MPI-runs of Python-Meep with IPython’s
scatter-gather capabilities. As Figure 2a shows,
in this architecture, we basically have a 2D space
over which we can spread many simulations (such
as in a parametric scan). The !rst dimension is
the number of computing cores to which we can
scale one simulation in an MPI-run. The second
dimension is the number of different simulations
that we want to run simultaneously (with each
simulation assigned a set of MPI-enabled IPython
engines). In this scheme, we can use the capac-
ity of a cluster or supercomputer in an optimal
way for a large set of simultaneous Python-Meep
simulations. Finally, a user interface lets us launch
simulations for a certain set of parameters and
view a speci!c simulation’s progress.

Suppose, for example, that we have a computer
cluster with 1,600 cores and we want to scan a pa-
rameter space with 150 parameter combinations.
Let’s assume that each simulation can be ef!-
ciently scaled over 16 cores with MPI. Combining
MPI and IPython, we can run 100 Python-Meep
simulations simultaneously, with each simula-
tion consuming 16 cores. If each simulation takes
30 minutes to complete, we can execute the full
parameter space in just one hour (30 minutes for

100 simultaneous simulations on 16 cores per sim-
ulation, followed by another 30 minutes for the
subsequent 50 simultaneous simulations).

Both dimensions are independent of one another
and have different scaling properties. Python-
Meep’s scaling behavior over the !rst dimension
(the number of cores for MPI-run) is similar to
standard Meep: the Python layer doesn’t interfere
with the MPI-speci!c commands in the Meep core.

Figure 2b shows the scaling of a benchmark 3D
simulation with MPI. The total calculation time
is shown for different resolutions (sizes of compu-
tational volume). This is compared with the scal-
ing we ideally expect—that is, when we double the
number of nodes, we expect the calculation time
to halve. For a given resolution, there’s an upper
limit to the number of cores over which we can
scale ef!ciently. For a 3D simulation, the commu-
nication and synchronization overhead increases
with the 4th power of the number of computing
cores. At some point, the added bene!t of extra

calculation power is smaller than the additional
overhead created: in such a case, the total run-
ning times increase. As Figure 2b shows, scaling
performance is better for more complex, high-
resolution problems.

For the second dimension (the IPython engines),
there’s no inherent scaling limit as the different
IPython engines are essentially separated programs
running in parallel, with no intercommunication.
Figure 2c shows a graphical user interface that we
built with PyQt (www.riverbankcomputing.co.uk/
software/pyqt/intro) on top of this IPython-based
framework. Using it, we can conveniently launch
new Python-Meep simulations and inspect results
of terminated simulations.

A Taste of Python-Meep
Figure 3 shows a short example of a Python-
Meep script, which offers a glimpse of the coding
conventions. In this example, we calculate the 2D
electromagnatic !eld pro!le in response to a line
source located at the left of a straight waveguide.

IPython largely abstracts the technical aspects

of parallel computing from the user and allows

robust error handling. It lets users submit

scripts to a controller, which in turn scatters the

code to engines on several nodes for execution.

!"#$%&'%'%()*+,-./012233344 546576&&333&894&3:;

56 COMPUTING IN SCIENCE & ENGINEERING

The !eld’s Ez component is periodically written
to a HDF5 !le, which the user can then further
process (HDF5 is a standard !le format for scien-
ti!c datasets; see www.hdfgroup.org).

Figure 4 shows an equivalent script imple-
mented with Scheme. As these code samples
show, the Scheme version de!nes the problem
in terms of higher-level expressions. Functional
languages such as Scheme are inherently highly

expressive,11,12 and the authors of Meep fully
exploited this feature when they created the
Scheme interface. They thus overcame the fairly
low-level style of the Meep C++ core. Addition-
ally, the Scheme interface was complemented
with user-friendly functionality that isn’t avail-
able in the underlying Meep C++ core (and
thus, by default, isn’t available yet in Python-
Meep).

Figure 2. Integrating Meep with the IPython framework. (a) A schematic representation of 100 simulations—
each with different parameters—on a supercomputer. Each simulation executes in an IPython engine and
is scaled with MPI over 16 computing cores. (b) Scaling a 3D Python-Meep simulation with MPI. The actual
calculation times are shown for different resolutions and compared with the calculation times that we ideally
expect. (c) The graphical user interface of UGent’s photonic simulation framework, along with the parameters
used in a range of Python-Meep simulations and the results for each simulation (that is, the transmission
calculated from the !uxes). The GUI lets users inspect results and subsequently launch new simulations
(with different parameters) to a computing cluster. This high level of automation aids in the rapid design
of new components.

(c)

8

C
om

pu
tin

g
co

re
s

pe
r

sim
ul

at
io

n
16

MPI

IPython
(Different engines)

pa
ra

m
et

er
se

t
1

pa
ra

m
et

er
se

t
2

pa
ra

m
et

er
se

t
10

0

IPython client

User interface

1 2 100...

...

(a) (b)

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

1684
Nodes (1 node = 8 processors)

21

Ti
m

e
(h

ou
rs

)

Resolution = 20
Resolution = 20, ideal
Resolution = 40
Resolution = 40, ideal

Resolution = 60
Resolution = 60, ideal

!"#$%&'%'%()*+,-./01223334< 546576&&333&894&3:;

MAY/JUNE 2011 57

Figure 3. Example of a basic Python-Meep simulation script, which uses its own coordination system.

x

4

5

1 14.5

(Source plane) (Probing point)

y

from meep_mpi import *

#define the waveguide material as a function of a vector(X,Y) :
#we create a straight waveguide of widdth 1 over the full length
class epsilon(Callback):

 def double_vec(self,vec):

 if ((vec.y() >= 4) and (vec.y() <= 5)):

 return 12

 else:

 return 1

#create the computational grid of size 16 x 32 with resolution of 10
vol = voltwo(16,32,10)

#create a structure with PML of thickness = 1, using the class 'epsilon'
material = epsilon()

set_EPS_Callback(material.__disown__())

s = structure(vol, EPS, pml(1))

#define a gaussian line source of length 1 at X=1, Y=4
#with center frequency 0.15 and pulse width 0.1
srcGaussian = gaussian_src_time(0.15, 0.1)

srcGeo = volume(vec(1,4),vec(1,5))

#create the fields
f = fields(s)

f.add_volume_source(Ez, srcGaussian, srcGeo)

#export the dielectric
epsFile = prepareHDF5File("./sample-eps.h5")

f.output_hdf5(Dielectric, vol.surroundings(), epsFile)

#define the file for output of the field components
ezFile = prepareHDF5File("./sample.h5")

#define a probing point at the end of the waveguide
#to check if source has decayed
probingPoint = vec(14.5,4.5)

#start the simulation, sending HDF5 output to the file 'ezFile'
runUntilFieldsDecayed(f, vol, Ez, probingPoint, pHDF5OutputFile = ezFile)

!"#$%&'%'%()*+,-./01223334= 546576&&333&894&3:;

58 COMPUTING IN SCIENCE & ENGINEERING

The Python-bindings directly expose the low-
level Meep C++ core, which is re6ected in the
Python script’s coding style. In Python-Meep,
we’re now adding similar high-level helper func-
tions to facilitate simulation script writing, and
we’ll increase this effort in future versions. Al-
though such functions are useful, they’re not
necessary to take advantage of Meep’s function-
alities. Scheme interface users are limited to the
functionality it offers, while users of Python-
Meep have more 6exibility: they can use both
the Meep C++ core’s low-level functionality
and the Python interface’s higher-level helper
functions.

Implementing the Python Bindings
In addition to outlining actual technical imple-
mentation of the Python bindings, we now ex-
plain why we choose the Simpli!ed Wrapper and
Interface Generator (SWIG) as the basic integra-
tion technology and weigh alternative implemen-
tations against each other.

Integrating the Meep Callback Mechanism
The Meep core library (written in C++) pro-
vides a callback mechanism that integrates with
the simulation script: whenever the runtime en-
gine needs information about a simulation’s spe-
ci!c properties, it calls a user-de!ned function.

x

0.5

–0.5

–7 6.5
(Source plane) (Probing point)

y

;define the simulation volume
(set! geometry-lattice (make lattice (size 16 8 no-size)))

;define the geometry of the straight waveguide and the PML layer
(set! geometry (list

 (make block (center 0 0) (size infinity 1)

 (material (make dielectric (epsilon 12))))))

(set! pml-layers (list (make pml (thickness 1.0))))

;define the Gaussian source
(set! sources (list

 (make source

 (src (make gaussian-src (frequency 0.15) (fwidth 0.10)))

 (component Ez)

 (center -7 0))))

;define the resolution
(set! resolution 10)

;start the simulation, sending HDF5 output to file
(run-sources+

 (stop-when-fields-decayed 50 Ez

 (vector3 6.5 0 0)

 1e-3)

 (at-beginning output-epsilon)

 (at-every 0.6 output-efield-z))

Figure 4. Example of a basic Scheme simulations script. As the code sample shows, Scheme uses a different
coordinate system than Python-Meep.

!"#$%&'%'%()*+,-./01223334> 546576&&333&894&3:;

MAY/JUNE 2011 59

This mechanism is used intensively, such as in de-
!ning the simulation volume’s material properties
or de!ning a custom electromagnetic source.

We developed the Python-Meep bindings us-
ing SWIG, an open source tool that connects
programs written in C/C++ with a variety of high-
level programming languages.13 As the sidebar,
“Choosing SWIG” describes, SWIG’s 6exibility
allows for an elegant integration with this call-
back mechanism. As Figure 5 shows, based on our
experiences with performance and ease of use for
the end user, the actual implementation technique
evolved in three phases.

In a !rst straightforard implementation, Python-
Meep provides an abstract Callback class
from which the user inherits in pure Python.
In that class, the user implements the required
functionality, such as de!ning the material prop-
erties (see Figure 3). However, for many complex
simulations—such as those with high resolution—
the performance of this pure Python callback was
insuf!cient because the callback function for de-
!ning materials is typically called a million times
or more. The overhead of swapping from C++
to Python—subsequently running a piece of in-
terpreted Python code and returning the results
back to C++—is small, but it becomes problematic
when the callback is executed hundreds of thou-
sands or millions of times.

Initially, we addressed this drawback by let-
ting users de!ne a callback function in C or C++,

with the rest of the simulation script in Python.
In this scheme, the user’s C++ code is compiled
at runtime and dynamically linked with the
Python-Meep bindings: the callback is then
done completely inside the C++ domain. This
solution provides the required performance. The
Python package “weave” allows for very elegant
inclusion of inline C/C++. It largely abstracts the
user’s overhead for mixing Python with C/C++.
Nevertheless, combining two languages remains
a drawback for some end users, particularly those
who aren’t familiar with C/C++.

In the original Scheme interface, the perfor-
mance issue with this repeated callback occurs less
often because Meep’s authors largely bypass the
standard callback mechanism. This results in a
tighter integration of the C++ core and the Scheme
de!nitions. We subsequently worked toward
a similar solution that would allow a pure Python
de!nition of even complex high-resolution simu-
lations. The breakthrough came by combining
SWIG with Numpy matrices.

Numpy is known for its great performance
because it stores and processes its data in C and
exposes only a thin interface to Python. There-
fore, if we de!ne a Numpy matrix in Python
with our simulation volume’s material prop-
erties, the matrix is directly accessible from
Meep using C coding conventions (basically, a
pointer). The integration then comes down to
writing a wrapper around the Meep callback

CHOOSING SWIG

As alternative approaches for implementing our Python
wrapper, we initially compared both SWIG1 and

Boost.Python (www.boost.org/doc/libs/1_43_0/libs/python/
doc/index.html).

Boost is a well-established and recognized set of open
source C++ libraries that runs on almost any operat-
ing system. Its Boost.Python subset supports seamless
interoperability between Python and C++. We had very
good experiences with “Boost.Python; it offers a tutorial,
the semantics of the API are clear, and it required only
limited code writing. However, there was one important
drawback: during the technical build process, we had to
link our code to Boost-speci"c dynamic libraries. Although
such libraries can be compiled from source, they have a
large footprint. This is a major dependency that poses an
additional threshold for deployment on third-party systems
such as supercomputers. We prefer to keep Python-Meep
lightweight, with as few dependencies as possible. There-
fore, we decided to use SWIG.

SWIG is a dedicated framework for connecting C/C++
programs with many different programming languages. We
must write an interface "le, from which SWIG’s engine gen-
erates two additional "les: one with C code and the other
with Python code. There are no other dependencies. Once
this code is generated, it can be transferred to any operat-
ing system and compiled there. The footprint is thus limited
and users don’t need to install SWIG on their host systems.

SWIG’s documentation is quite detailed, but the seman-
tics of various constructs aren’t always easy to understand.
The technical implementation was rather complicated
and required much trial and error before we obtained the
required behavior. The typemap de"nition was especially
error prone and hard to debug. These were serious draw-
backs. However, once up and running, the Python/C++
interface works without a !aw.

Reference
1. D.M. Beazley, “Using SWIG to Control, Prototype, and Debug

C Programs with Python,” Proc. 4th Int’l Python Conf., IOS Press,

1996; www.swig.org/papers/Py96/python96.html.

!"#$%&'%'%()*+,-./01223334? 546576&&333&894&3:;

Peter Bienstman is an associate professor at the Pho-
tonics Research Group of Ghent University/IMEC.
His research interests include applications of nano-
photonics in biosensors and photonic information
processing, as well as nanophotonics modeling. Bien-
stman has a PhD from Ghent University. Contact him
at Peter.Bienstman@intec.ugent.be.

Wim Bogaerts is a professor at the Photonics Re-
search Group of Ghent University/IMEC, where he
coordinates silicon photonics activities in process
development, all-silicon integration, and photonic
design tools. Bogaerts has a PhD in applied physics
engineering from Ghent University. Contact him at
Wim.Bogaerts@intec.ugent.be.

References
1. A. Ta!ove and S.C. Hagness, Computational Electro-

dynamics: The Finite-Difference Time-Domain Method,
3rd ed., Artech House Publishers, 2005; www.artech-
house.com/Detail.aspx?strBookId=1123.

2. A.F. Oskooi et al., “MEEP: A Flexible Free-Software
Package for Electromagnetic Simulations by the
FDTD Method,” Computer Physics Comm., vol. 181,
no. 3, 2010, pp. 687–702.

3. G.J. Sussman and G.L. Steele, Jr., “Scheme: An
Interpreter for Extended Lambda Calculus,”
AI Memos, no. 349, MIT AI Lab, Dec. 1975.

4. IEEE Std. 1178-1990, Scheme Programming Language,
IEEE CS, 1991.

5. D. Vermeulen et al., “Silicon-on-Insulator Nanopho-
tonic Waveguide Circuit for Fiber-to-the Home Trans-
ceivers,” Proc. 34th European Conf. Optical Comm.,
2008; doi: 10.1109/ECOC.2008.4729214.

6. P. Bienstman et al., “Python in Nanophotonics
Research,” Computing in Science & Eng., vol. 9, no. 3,
2007, pp. 46–47.

7. W. Bogaerts et al., “Closed-Loop Modeling of Silicon
Nanophotonics from Design to Fabrication and Back
Again,” Optical and Quantum Electronics, vol. 40,
no. 11, 2009, pp. 801–811.

8. T.E. Oliphant, “Python for Scienti"c Computing,” Com-
puting in Science & Eng., vol. 9, no. 10, 2007, pp. 10–20.

9. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Por-
table Parallel Programming with the Message-Passing
Interface, MIT Press, 1994.

10. F. Perez and B.E. Granger, “IPython: A System for In-
teractive Scienti"c Computing,” Computing in Science
& Eng., vol. 9, no. 3, 2007, pp. 21-29.

11. J. Hughes, Why Functional Programming Matters,
Addison Wesley, 1990.

12. M.P. Atkinson, P. Buneman, and R. Morrison, Data
Types and Persistence, Springer Verlag, 1988.

13. D.M. Beazley, “Using SWIG to Control, Prototype,
and Debug C Programs with Python,” Proc. 4th Int’l
Python Conf., IOS Press, 1996; www.swig.org/papers/
Py96/python96.html.

14. B. Spotz, “numpy.i: a SWIG Interface File for
NumPy,” SciPy, Dec. 2007; http://docs.scipy.org/
doc/numpy/reference/swig.interface-"le.html.

!"#$%&'%'%()*+,-./0122333<' 546576&&333&894&3:;

60 COMPUTING IN SCIENCE & ENGINEERING

functionality. This wrapper retrieves the actual
values from the Numpy matrix and returns them
to Meep.

Figure 5 further illustrates this architecture in
contrast with the other two. Code-wise, we provide
a user-friendly class CallbackMatrix from which
the user inherits. In the class, users create a Numpy
matrix, with its size corresponding to the dis-
cretized simulation volume (or a multiple for better
accuracy). This architecture offers great perfor-
mance and lets users work in pure Python. How-
ever, it increases memory consumption because we
have to store the Numpy matrix before it’s inter-
faced to Meep. Figure 6 illustrates the technique
for the straight waveguide example in Figure 3.

Let’s take a more detailed look at the techni-
cal implementation. As the last line of code in
Figure 6 shows, the Python-Meep function set_
matrix_2D is used for interfacing the Numpy
matrix with the underlying C++ code. In the C++
code of the Python-Meep wrapper, the function
signature is

void set_matrix_2D(double* matrix,

int dimX, int dimY, ...).

Similarly, for a 3D simulation we have

void set_matrix_3D(double* matrix,

int dimX, int dimY, int dimZ, ...).

The !rst parameter is of type double* and is a
pointer to the actual values in the Numpy matrix.
The following two or three int parameters indi-
cate the matrix dimensions. In Python the matrix
is of type numpy.ndarray.

Our goal is to seamlessly pass the Numpy
matrix as a parameter to the functions set_
matrix_2D and set_matrix_3D. We therefore
have to de!ne some kind of translation between
the Python type numpy.ndarray and an equiva-
lent tuple of parameters double* and int in C++.
In SWIG, the technique for such a translation is
called a typemap. Typically, de!ning typemaps is
a complicated and tedious task. Luckily, a range
of Numpy typemaps are already available in the
open source community (numpy.i14). These type-
maps are called IN_ARRAY2 and IN_ARRAY3 for
2D and 3D Numpy arrays, respectively.

In our SWIG de!nition !le, we must link the
signature of the set_matrix_2D function with
the typemap. We do this using the code below.
When we pass a Numpy array to the function in
Python, it’s automatically expanded in the C++
function’s three or four corresponding parameters.

Figure 5. Alternative architectures implemented for de"nition
of the material properties in the simulation volume. (a) The "rst
architecture uses a pure Python class for callback. In this case,
the C++/Python boundary is crossed whenever callback occurs
(potentially millions of times for material de"nition). (b) The second
architecture uses inline C/C++ for large simulation volumes with
many grid points. The callback occurs completely in the C/C++
domain, offering great performance. (c) With the third architecture,
users work in Python alone, creating a Numpy matrix with the
material de"nition. Meep can directly access this matrix using a
pointer. This also offers great performance, but with increased
memory consumption.

Pure Python
user-inherited class
implementing the

actual callback

Simulation script

(a)

(b)

(c)

Abstract
Callback class

<<
in

he
rit

s>
>

<<refers>>

<<uses>>

<<uses>>

Meep core

Python

C++

Python reference
to inline C code

Inline C/C++ class
implementing the

actual callback

Simulation script

Abstract
Callback class

<<refers>>

<<uses>><<uses>>

Meep core

Python

C++

User class which creates
the Numpy matrix as attribute

Numpy

Numpy matrix
with epsilon values

(type ‘numpy.ndarray’)

Simulation script

Abstract
CallbackMatrix

class
<<refers>>

<<uses>>

<<
de
!n

es
>>

<<uses>>

Meep core

Python

C++

!"#$%&'%'%()*+,-./0122333<5 546576&&333&894&3:;

MAY/JUNE 2011 61

//Include the Numpy header file,

so that Numpy types are known

%{

#define SWIG_FILE_WITH_INIT

#include <numpy/npy_common.h>

%}

//Include the Numpy typemaps

%include "numpy.i"

%init %{

 import_array();

%}

%apply (double* IN_ARRAY2, int DIM1,

 int DIM2)

 {(double* matrix2, int dimX,

 int dimY)};

%apply (double* IN_ARRAY3, int DIM1,

 int DIM2, int DIM3)

 {(double* matrix3, int dimX,

 int dimY, int dimZ)};

Similarly, we needed typemaps for interfac-
ing parameters that represent complex numbers.
Both Python and C++ have separate de!nitions of
a complex type and thus we need a mapping or
translation for seamless integration. The de!ni-
tion of these typemaps is quite complicated; for
details, consult the !le py_complex.i in the pub-
lic Python-Meep distribution.

All three of these techniques for de!ning ma-
terial geometries are available to Python-Meep
users. The Numpy matrix approach is preferred

for moderately sized simulations with relatively
simple geometry. For very large simulation vol-
umes, using a C/C++ callback function might
be more appropriate, as it has lower memory re-
quirements. It’s also important to consider the
simulation of bended waveguides: the approach
with the Numpy matrix discretizes the geometry
and thus creates a staircase approximation of the
waveguide edges. In some cases, this might im-
pact the simulation’s accuracy. In such case, using
a C/C++ callback function is more appropriate, as
the simulator will then always dispose of a perfect
representation of the geometry.

A fourth, more advanced technique was re-
cently added to Python-Meep that allows the
de!nition of the material geometry based on
polygons. In this approach, the Python script
de!nes a set of polygons, whereby each polygon
outlines an area with unique material properties.
The polygon coordinates are interfaced by the
callback class with the Meep core engine without
consuming large amounts of memory or process-
ing time. Meep then disposes of an analytically
correct representation of the materials and can
resolve a full material geometry without recur-
ring callback to Python. This results in excellent
performance and great accuracy.

Interfacing External Data
with a Python-Meep Script
Posters on FDTD mailing lists frequently express
concerns about specifying external sources—
that is, electromagnetic sources that are de!ned
by some other software and exported as data !les.
Python has extensive features for interchanging

class epsilon(CallbackMatrix2D):

 def __init__(self, volume):

 CallbackMatrix2D.__init__(self)

 #create a numpy matrix with correct size and
 #default value of 1.0 (air)
 resolution = volume.a

 grid_points_x = 16*resolution

 grid_points_y = 32*resolution

 self.eps = numpy.ones([grid_points_x, grid_points_y],dtype = float)

 #set the epsilon value for y in the range [4,5] to 12.0
 #(this defines the straight waveguide)
 index_begin = 4*resolution

 index_end = 5*resolution + 1

 self.eps[:, index_begin:index_end] = 12.0

 #send the matrix to the Meep core
 self.set_matrix_2D(self.eps, volume)

Figure 6. Combining SWIG with Numpy matrices to describe the straight waveguide in Figure 3. The user
inherits from CallbackMatrix2D and assigns the Numpy matrix to an attribute.

!"#$%&'%'%()*+,-./0122333<& 546576&&333&894&3:;

62 COMPUTING IN SCIENCE & ENGINEERING

data that come in handy in such a case. One example
is the excitation of a speci!c mode of a photonic
waveguide (a photonic waveguide can typically
guide waves with speci!c pro!les, or modes).

Realistic simulations often let just one speci!c
mode be excited at a time. The only solution then
is to create a source with the exact spatial amplitude
shape of the mode that we want to excite. Python-
Meep conveniently addresses this problem. The
commercial package Fimmwave (www.photond.
com/products/!mmwave.htm) is well known for cal-
culating such modes. We can use Fimmwave to calcu-
late a target model’s spatial amplitude and export the
resulting matrix to a text !le. In Python-Meep, we
create a callback function that uses this matrix to
calculate the source’s exact amplitude pro!le. We
then run the Python-Meep simulation with a custom
source that matches accurately with the waveguide’s
physical properties. At UGent, we implemented
such an integration scheme between Fimmwave and
Python-Meep in several simulations (see Figure 7).
During these efforts, the availability of Python’s
Numpy library proved useful because the resolu-
tion of the matrix that Fimmwave exports might not
be the same as the resolution we want to use in the
Meep FDTD simulations. Using Numpy, we can
conveniently interpolate values to get the !eld pro-
!le value at each target position in the FDTD grid.

W e distribute the Python-Meep
bindings under the terms of the
GNU General Public License, ver-
sion 2. The source code is publicly

available on Launchpad (https://launchpad.
net/python-meep), and we welcome further con-
tributions to the project’s development.

Acknowledgments
The European Union, under its FP7-integrated proj-
ect Helios, partially funded this work. Also, Martin
Fiers and Martijn Tassaert received funding from the
UGent Special Research Fund, Shavkat Nizamov’s
work is supported by a Russian Foundation for Basic
Research grant 09-02-90205, and Wim Bogaerts re-
ceived a postdoctoral grant from the Flemish Fund for
Scienti!c Research (FWO).

Emmanuel Lambert is a research and development
engineer with the Photonics Research Group of Ghent
University-IMEC, where he’s working on an integrated
software framework for designing photonic compo-
nents and circuits. His research interests include mod-
eling nanophotonic circuits, large-scale computing,
and integrating different software tools. Lambert has
an MS in engineering from the University of Leuven.
Contact him at Emmanuel.lambert@intec.ugent.be.

Martin Fiers is a PhD student at Ghent University,
where his research topic is photonic reservoir com-
puting. His research interests include modeling of
photonic components and designing software for
phenomenological modeling. Fiers has an MS in
electronic engineering from Ghent University. Con-
tact him at Martin.Fiers@intec.ugent.be.

Shavkat Nizamov is a postdoctoral researcher at
Lausitz University of Applied Sciences in Germany.
His research interests include investigating and im-
proving a new biosensing methods based on sur-
face Plasmon resonance. Nizamov has a PhD from
the Heat Physics Institute in Tashkent (Uzbekistan).
Contact him at nizamov.shawkat@gmail.com.

Martijn Tassaert is a PhD student at Ghent University.
His research interests include heterogeneous integra-
tion of SOI waveguides and III-V active devices. Tas-
saert has an MS in engineering from Ghent University.
Contact him at Martijn.Tassaert@intec.ugent.be.

Steven G. Johnson is one of the original authors of
the Meep software and an associate professor at the
Massachusetts Institute of Technology. His research
interests include photonic crystals and electromag-
netism in structured media and high-performance
computation (from fast Fourier transforms to large-
scale eigensolvers for numerical electromagnetism).
Johnson has a PhD in physics from MIT. Contact him
at stevenj@math.mit.edu.

Figure 7. The shaping of an electromagnetic source in Python-Meep.
(a) The "eld pro"le without spatial shaping of the source compared to
(b) a "eld pro"le when the source is shaped according to an amplitude
matrix calculated by Fimmwave and imported by Python-Meep. A
"eld pro"le that is useful for a realistic design should have a constant
spatial distribution of the power intensity over time for a given cross-
section. In (a), there are major changes over time in the power intensity’s
spatial distribution for the chosen cross-section. In contrast, (b) shows a
constant spatial distribution of the power intensity across the waveguide.

(a)

(b)

!"#$%&'%'%()*+,-./0122333<8 546576&&333&894&3:;

