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Abstract—CMOS-compatible silicon photonics combined with 
covers of (2) or (3)-nonlinear organic material allows electro-
optic modulators and all-optical wavelength converters for data 
rates of 100 Gbit/s and beyond. The devices are not impaired by 
free carriers. 
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I. INTRODUCTION 

Silicon-on-insulator (SOI) photonics represents a CMOS-
compatible and therefore cost-effective technology for fabricat-
ing devices like modulators and all-optical wavelength con-
verters (AOWC) in the wavelength region near  = 1.55 µm. 
The large refractive index (nSi = 3.5) of silicon provides the 
strong light confinement and the high intensities that are desir-
able for nonlinear interactions. However, the (2)-susceptibility 
of silicon, which would be required for electro-optic modula-
tors, is negligibly small. As a consequence, plasma-effect based 
modulators [1] [2] were developed, but they suffer from speed 
limitations associated with charge carrier injection and re-
moval. A similar speed problem arises when exploiting the 
large (3)-nonlinearity of silicon [3], because two-photon ab-
sorption (TPA) generates free carriers with long life times lead-
ing to absorption (FCA) as well as bit pattern dependent phase 
shifts. So intensities have to be kept low, or the carriers must be 
removed by pn-junctions [4]. Our approach employs silicon-
organic hybrid (SOH) systems and combines silicon 
waveguides with a highly (2)-nonlinear electro-optic organic 
material [59], or with a Kerr-type (3)-nonlinear [914] or-
ganic cover, which reacts virtually instantaneously, has a low 
refractive index, and does not suffer from TPA. 

II. ELECTRO-OPTIC MODULATOR 

Fig. 1(left) shows the SOH slot structure of a phase modu-
lator (PM). The light is guided (effective group index 
nopt,eff = 2.9) by silicon strips which are embedded in an electro-
optic material (EO). Field discontinuities at the high index-
contrast Si-EO interfaces lead to a strong field enhancement 
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Figure 1.  Phase modulator (PM) schematic with (2)-nonlinear SOH slot 
waveguide (left) PM with doped-socket waveguide, colour-coded quasi-TE
field magnitude, electro-optic organic material EO (centre) SEM image of 
PM without metallization (right) Optical phase modulation index  vs. 
modulation frequency f for an on-chip RF voltage amplitude U = 1 V. Reflec-
tion at open end of broken RF electrodes strongly increases  with falling  f . 
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Figure 2.  Optical spectra for sinusoidal phase modulation at frequency f  
(left) f = 10 GHz, RF amplitude U = 5.2 V (right) f = 40 GHz, U = 3.8 V 
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between the strips. The modulating RF field (effective refrac-
tive index nel,eff = 2.5) is applied via two silver electrodes, 
which are connected to the L = 4 mm long strips by two 70 nm 
high and 2 µm wide sockets. The whole structure is As-doped 
to make it conductive without introducing too much optical 
loss. An SEM picture of the PM without metallization is dis-
played in Fig. 1(centre). During the metallization process, the 
electrodes broke at the far end of the slot region so that no im-
pedance matching 50  resistor could be connected. As a con-
sequence, the modulator does not operate in a travelling-wave 
mode as intended, but suffers from strong reflections at the 
open end of the transmission line. We measured the phase 
modulation index  by applying a sinusoidal RF voltage with 
amplitude U (assuming a 50  load) and frequency f. For small 
f the open-circuit reflection doubles the nominal modulation 
voltage U while this effect disappears asymptotically for large 
f, Fig. 1(right). Electrode losses start increasing for f  > 30 GHz. 

Measured optical spectra at f = 10 GHz; 40 GHz are shown 
in  Figure 2. The phase modulation index  was determined by 
evaluating the ratio of the heights of the central peak 2

0J ( )  and 
of the first sidebands 2

1J ( ) in Fig. 2 ( J ( )   are Bessel func-
tions of order .). The quantity U is the voltage resulting in a 
phase change of  = . The smallest U voltage we observed so 
far is U L = 2 Vcm. However, there are many opportunities for 
optimization. The value U is essentially determined by the 
material’s electro-optic coefficient r33 = 150 pm/V which must 
be adjusted to its full value by appropriately poling [7] the EO 
material, e. g. with a DC voltage at elevated temperatures. 

An amplitude modulator can be formed by inserting a PM 
in both arms of a Mach-Zehnder interferometer as in the sche-
matic Fig. 3(left). The bandwidth f3 dB due to walk-off between 
the optical field and the forward-travelling RF wave (negative 
sign), potentially superimposed by a reflected wave (positive 
sign), is well approximated by [6] (vacuum speed of light c) 
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With the data above and in a true travelling-wave configura-
tion, a limiting modulation frequency of f3 dB  94 GHz is to be 
expected. The RC roll-off frequency is even larger (about 
150 GHz). This modulation bandwidth would be more than 
sufficient for a data rate of 100 Gbit/s. A 40 Gbit/s modulator 
was already reported [8]. 

In the specific case of Fig. 3 the PM is a slotted slow-light 
photonic crystal. We expect [6] a modulation rate of 100 Gbit/s 
at a voltage amplitude of 1 V, and an optical bandwidth 2 THz. 

III. FWM WAVELENGTH CONVERSION OF DQPSK DATA 

For wavelength conversion of phase-encoded DQPSK sig-
nals the phase information must be conserved. This can be 
achieved by four-wave mixing (FWM) in an SOH strip wave-
guide that is simple to fabricate. The silicon strip is covered 
with a highly nonlinear organic material (DDMEBT) [10], 
Fig. 4(upper right). The device is operated in quasi-TM mode 
to reduce linear losses (1 dB/mm). The TPA figure of merit 
FOMTPA = 1.2 [13] is sufficient for all-optical signal process-
ing. NRZ-DQPSK data (56 Gbit/s, +16 dBm) and CW pump 
(+19 dBm) enter the strip and lead to a converted signal [14], 
Fig. 4(left). The quadrature channel data are displayed in Fig. 4 
(lower right). No bit pattern distortions are observed. Improv-
ing the 20 dB fiber-to-fiber loss would result in error-free 
transmission, enabling bitrates of 100 Gbit/s and beyond [12]. 
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Figure 4. FWM wavelength conversion of 56 Gbit/s NRZ-DQPSK data 
(left) Spectra after waveguide and in receiver (Rx) (upper right) SOH strip 
waveguide with quasi-TM electric field magnitude. Nonlinear organic cover 
(NL), h = 220 nm, w = 400 nm, L = 4 mm (lower right) Eye diagram of 
quadrature signal at 1547.7 nm, BER = 105, quality is Rx-noise limited. 
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Figure 3.  Mach-Zehnder modulator schematic (left) Modulator with
slotted photonic-crystal phase modulator sections (length L = 80 µm) covered 
by a (2)-nonlinear organic material (right) Colour-coded electric field
magnitude of quasi-TE mode in phase modulator section 

wgap = 150 nm
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