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Abstract: Silicon represents a mature, affordable platform for fabricating electronic and optical 

signal processing devices. We discuss all-optical 170 Gbit/s switching, a 42 Gbit/s electro-optic 

modulator, and proof-of-concept results for a surface plasmon polariton absorption modulator. 
OCIS codes: (190.0190) Nonlinear optics, (130.0130) Integrated optics, (130.4815) Optical switching devices, 130.7405 

Wavelength conversion devices, (130.4110) Modulators, 250.5403 Plasmonics  

 

1.  Introduction 

Nonlinear effects in silicon support a large assortment of techniques for processing optical signals near wavelengths 

of 1.55µm at very high speed [1]. Especially the silicon-on-insulator (SOI) platform — typically a 220 nm thin sili-

con slab on top of a thick silicon oxide layer residing on a silicon substrate — allows strong field confinement in 

high index-contrast waveguides, thereby enhancing the native (3)
-nonlinear response of silicon. The technology 

lends itself also to co-integrate electronic CMOS components [2], and to hybridly integrate active III-V [3] or Si/Ge 

devices [4]. The use of silicon nanocrystals [5] or amorphous silicon [6], and the addition of organic materials 

[7,8,9] (silicon-organic hybrid, SOH), of graphene [10,11], or of metallic structures [12,13] widens the scope even 

more by providing what silicon misses: A TPA-free (3)
 and a (2)

-nonlinearity. In the following, we choose from the 

diverse applications of silicon-based devices [14] three important examples that exploit nonlinear effects on the sili-

con platform: An all-optical switch, a high-speed electro-optic modulator, and a plasmonic absorption modulator. 

2.  All-optical switching with FWM and XPM in (3)
-nonlinear strip and SOH slot waveguides 

The SOI waveguides under consideration are depicted in Fig. 1a,b. The large (3)
-nonlinearity of silicon cannot be 

fully exploited for fast all-optical switching due to the long lifetime and the loss of free carriers generated by two-

photon absorption (TPA) [7,8]. To avoid these limitations experienced with a strip waveguide covered with air only, 

Fig. 1a(field lower left), we employ a highly nonlinear organic material [7,15] that does not suffer from TPA and 

has a low refractive index. Such SOH systems combine the strengths of both materials resulting in extremely large 

effective nonlinearities [7,9,15,8]. The SOH waveguides are silicon strips or vertical-slot SOI-structures (Fig. 1a,b) 

with a cladding of (3)
-nonlinear organic material (DDMEBT [15]). The resulting SOH waveguide is described by a 

complex nonlinearity (NL) parameter γ. For maximum NL we need to optimize Re{} = n2 k0 / A
(3)

eff (effective area 

A
(3)

eff, vacuum wave number k0, nonlinear-index coefficient n2). Optimized horizontal-slot quasi-TM waveguides 

were published recently [16]. TPA is quantified by a figure of merit FOMTPA = Re{} / (4 Im{}) (= n2 / (2 ) 

with spatially homogeneous cross-section, TPA coefficient 2). For the structures in Fig. 1a,b we measured [8]: Lin-

ear loss 0 strip = 1 dB / mm, 0 slot = 1.5 dB / mm; FOMTPA core = 0.38, FOMTPA clad = 1.2, FOMTPA slot = 2.2; Re{}NL 

in core = 307/(Wm), Re{}NL in clad = 108/(Wm), Re{}NL in slot = 100/(Wm). For FOMTPA > 0.5, TPA can be neglected. 

We demonstrated the high-speed capability of nonlinear SOH slot waveguides with a number of experiments. 

Four-wave mixing (FWM) as in Fig. 2 demultiplexed a 170.8 Gbit/s OTDM signal to its four 42.7 Gbit/s tributaries 

[15]. The same setup is used for wavelength conversion with retiming. By FWM, a 42.7 Gbit/s RZ-OOK data signal 

at 1559 nm and a 42.7 GHz clock at 1550 nm generate a converted signal at 1541 nm with a quality factor of 

Q
2
 = 11.3 dB and on-chip powers for data (clock) of  P1 = 11.3 dBm (21 dBm). We performed a similar experiment 

with NRZ DPSK data at 56 Gbit/s using an SOH strip waveguide as in Fig. 1a(field plot lower right). Finally, we 

demonstrated the transfer of 42.7 Gbit/s 33 % RZ-OOK PRBS data at 1541 nm to a CW carrier at 1544.5 nm via 

cross-phase modulation (XPM). In all cases, no bit pattern dependence was to be seen. 
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3.  Electro-optic modulator with (2)
-nonlinear SOH slot waveguide 

The CMOS-compatible SOH approach for optical modulators exploits the properties of a (2)
-nonlinear organic ma-

terial which covers a slot waveguide, Fig.1b and Fig. 3a. A metallic travelling-wave transmission line connects the 

modulator voltage to the electro-optic active slot region. It must be both optically transparent and electrically highly 

conductive, so we induce a highly conductive electron accumulation layer by an external DC “gate” voltage Vgate. As 

opposed to doping, the electron mobility in this case is not impaired by impurity scattering. Using a first-generation 

device at a data rate of 42.7 Gbit/s, widely open eye diagrams were recorded [17], Fig. 4. The measured frequency 

response suggests that significantly larger data rates are feasible. Compared to a recently published similarly fast pn-

junction modulator [18], our device is more broadband (> 60 nm) and more sensitive (V = 9 Vmm @ 1 kHz). 

4.  Surface plasmon polariton absorption modulator 

To reduce the modulator footprint even further, an electrically controlled ultra-compact surface plasmon polariton 

(SPP) absorption modulator (SPPAM) was investigated. The device can be as short as 10 µm, depending on the re-
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Fig. 1. Silicon waveguides (height 220 nm) with air or organic cover and electric field magni-
tudes [8]. (a) Si strip, width 360400 nm, quasi-TE mode, SiO2/air cladding, Si core nonlin-
earity (lower left), and quasi-TM mode, strong cover nonlinearity (lower right). (b) Quasi-TE 
Si slot waveguide, rail widths 220 nm, slot width 160200 nm, cladding/slot nonlinearity 

Fig. 2. Setup for FWM demultiplexer with 4 mm 
long SOH slot waveguide, Fig. 1b. Output spectrum 
before and after bandpass filter BP [15]. Tx: trans-
mitter; Rx: receiver; MLL: mode-locked laser 
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Fig. 3. SOH modulator, rail (slot) widths 240 nm (120 nm), 
length 1.7 mm, slot filled with organic material [17] (M1, 
chromophores dispersed in amorphous polycarbonate, APC). 
Electro-optic coefficient with optimum in situ poling 
r33 = 70 pm/V. (a) Silicon strips connect optical region with 
metal electrodes. A positive gate voltage Vgate bends the bands 
(EC,V,F: conduction, valence band, and Fermi energy; q: ele-
mentary charge) resulting in a highly conductive electron 
accumulation layer. (b) Waveguide cross-section and electric 
optical field magnitude with equivalent circuit (C: slot capaci-
tance; R: strip resistance). [Reprint from [17] © 2011 OSA] 

Fig. 4. SOH modulator (simplified realization compared to Fig.3a) and experimental 
results. (upper row) Setup with 42.7 Gbit/s pulse pattern generator (PPG) and delay 
interferometer (DI) for phase-to-amplitude conversion. (lower row) Phase modula-
tion index  for various gate electric field strengths Ɛgate and sinusoidal modulation 
voltages with 1 V amplitude and frequencies fmod = 1 kHz…60 GHz. For large |Ɛgate| 
the SI strips become more conductive due to an electron accumulation (hole inver-
sion) layer for Ɛgate > 0.025 V/nm (Ɛgate < 0.025 V/nm). Transmission of electrical 
waveguide (voltage ratio |S21|, ). For Ɛgate = 0.135 V/nm and fmod = 1 kHz 
(60 GHz) we found VπL = 9 Vmm (58 Vmm) corresponding to Vπ = 5.3 V (34 V). 
Flat response for fmod > 2 GHz, suggesting that data rates could be extended well 
beyond the 42.7 Gbit/s limit of our equipment. [Reprinted from [17] © 2011 OSA] 



quired extinction ratio (ER) and the acceptable loss. The absorption modulator Fig. 5 comprises a stack of metal / 

insulator / metal-oxide / metal layers, which supports a strongly confined SPP in the 1.55 µm wavelength region. 

The absorption is modulated by electrically changing the free carrier density in the intermediate metal-oxide layer. A 

three-layer prototype was designed, and the concept is supported by proof-of-principle experiments, Fig. 6. 
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Fig. 5 Surface plasmon polariton (SPP) absorption modulator (SPPAM). With a directional 
coupler, light is coupled from a silicon nanowire into an active plasmonic section, consisting 
of stacked layers of silver (Ag), indium tin oxide (ITO, 10 nm), and SiO2. The SPP absorption 
coefficient is modulated by a voltage U between the silver electrodes. Insets: The photonic 
mode (a) in the silicon nanowire excites via a hybrid mode (b) in the directional coupler an 
SPP (c). Inset (d) shows the electric field Ey, the magnetic field Hx, and the time-averaged 
Poynting vector 

zS  in the active plasmonic region, demonstrating the strong SPP confine-
ment in the ITO layer. The modulator length is L = 10 µm. [Reprint from [19] © 2011 OSA] 

Fig. 6. Measured (■) and predicted (──) extinction 
ratio (ER) at kHz-frequencies as a function of the 
applied modulation field. An ER of 1 dB is ob-
tained with an electric field of 100 V / µm. Such a 
field strength can be easily achieved in the struc-
ture Fig. 5, and is far below the dielectric strength 
in the order of 103 V/µm for materials like SiO2 
and Si3N4. [Reprint from [19] © 2011 OSA] 
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