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Abstract—This paper summarizes recent advances of integrated
hybrid InP/SOI lasers and transmitters based on wafer bonding.
At first the integration process of III–V materials on silicon is de-
scribed. Then the paper reports on the results of single wavelength
distributed Bragg reflector lasers with Bragg gratings etched on
silicon waveguides. We then demonstrate that, thanks to the high-
quality silicon bend waveguides, hybrid III–V/Si lasers with two
integrated intra-cavity ring resonators can achieve a wide thermal
tuning range, exceeding the C band, with a side mode suppression
ratio higher than 40 dB. Moreover, a compact array waveguide
grating on silicon is integrated with a hybrid III–V/Si gain section,
creating a wavelength-selectable laser source with 5 wavelength
channels spaced by 400 GHz. We further demonstrate an inte-
grated transmitter with combined silicon modulators and tunable
hybrid III–V/Si lasers. The integrated transmitter exhibits 9 nm
wavelength tunability by heating an intra-cavity ring resonator,
high extinction ratio from 6 to 10 dB, and excellent bit-error-rate
performance at 10 Gb/s.

Index Terms—Hybrid photonic integrated circuits, silicon laser,
semiconductor lasers, silicon-on-insulator (SOI) technology, adia-
batic taper.
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I. INTRODUCTION

S ILICON photonics is attracting a lot of attention due to the
prospect of low-cost, compact circuits that integrate pho-

tonic and microelectronic elements on a single chip [1], [2]. It
can address a wide range of applications from short-distance
data communication to long-haul optical transmission [3]. To-
day, practical Si-based light sources are still missing, despite
the recent promising demonstration of an optically pumped ger-
manium laser [4], [5]. This situation has propelled research on
heterogeneous integration of III–V semiconductors with silicon
through wafer bonding techniques [6]–[8]. In this approach, un-
structured InP dies or wafers are bonded, epitaxial layers facing
down, on a silicon-on-insulator (SOI) waveguide circuit wafer,
after which the InP growth substrate is removed and the III–
V epitaxial film is processed. Such an approach exploits the
highly efficient light emission properties of some direct-gap
III–V semiconductor materials such as compounds based on
GaAs and InP.

Important achievements have been made in the past on the
heterogeneous integration of III–V on silicon as reported in [6]–
[8]. Two different waveguide structures for the hybrid III–V/Si
integration have been investigated. In the first one, as described
in [6] and [8], the mode is mainly guided by the Si waveguide
and evanescently couples with the III–V waveguide, using a
very thin bonding layer (<5 nm, corresponding to the Si native
oxide). In the second one described in [7], the mode in the hybrid
section is mainly guided by the III–V waveguide, and the light
is coupled from the III–V waveguide to the silicon waveguide
through waveguide tapering. In this case, the bonding interface
can be relatively thick (from 30 to 150 nm, typically). The
advantage is that the optical mode experiences a high optical
gain in the central region of the laser structure. This paper will
focus on the second waveguide structure, and will demonstrate
that efficient mode transfer can be achieved between III–V and
silicon waveguide [9], [10]

Large progress has also been made in the past on the emis-
sion spectrum control. For instance, distributed feedback (DFB)
and distributed Bragg reflector (DBR) lasers with single lon-
gitudinal mode emission have been reported in [8]. In those
lasers, the Bragg gratings are etched on silicon waveguides by
keeping the III–V waveguide as simple as possible. More re-
cently, wavelength tunable lasers with large tuning range have
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Fig. 1. Process flow of heterogeneous integration of III–V on silicon.

been published, showing very promising results [11]–[13]. We
demonstrate that the use of two silicon ring resonators (RRs)
allows us to achieve a tuning range of more than 45 nm and a
side mode suppression ratio (SMSR) larger than 40 dB over the
entire tuning range [11].

Thanks to the mature silicon fabrication process, even more
complicated silicon waveguides structures can be integrated
within a hybrid III–V/Si laser and used for laser wavelength
control. For instance, an arrayed waveguide grating (AWG) fil-
ter can be integrated in a laser cavity, together with several
semiconductor optical amplifiers (SOA), in order to make an
AWG laser. The first AWG laser on Si was reported in [14] with
4 channels spaced by 360 GHz. The threshold current ranged
from 113 to 147 mA, and the output power to a fibre from −23
to −14.5 dBm. We recently demonstrated a 5-channel AWG
laser with 392 GHz separation [15], and also a 4-channel AWG
laser with 200 GHz channel spacing [16]. The threshold current
ranged from 38 to 42 mA, and the output power in a single-mode
fibre from −8.4 to −2.2 dBm.

Integrated transmitters incorporating lasers and modulators
on silicon are of primary importance for all communication
applications, and at the same time are the most challenging
to fabricate due to the need of hybrid III–V integration. The
first demonstration of such a photonic integrated circuit (PIC)
was reported by A. Alduino et al. [17]. This silicon PIC trans-
mitter is composed of hybrid III–V/silicon lasers and silicon
Mach–Zehnder modulators (MZM) operating in the wavelength
window of 1.3 μm. However, wavelength-division-multiplexing
applications usually require wavelength-tunable laser sources.
Moreover, tunable transmitters are considered to be an attractive
option in optical network terminal transceivers for future access
networks. The very large market of access networks provides
an opportunity for silicon photonics. We reported for the first
time on an integrated tunable laser MZM (ITLMZ) operating
in the wavelength window of 1.5 μm, which combines a tun-
able hybrid III–V/Si laser and a silicon MZ modulator [18]. Our
ITLMZ demonstrates several new features: i) wavelength tun-
ability over 9 nm; ii) a silicon modulator with high extinction
ratio (ER) between 6 and 10 dB, and 3 dB modulation band-
width as large as 13 GHz; and iii) excellent bit-error rate (BER)
performance.

Fig. 2. (a) Cross-sectional SEM picture of a hybrid waveguide with white
lines added to make the silicon waveguide visible. (b) Schematic cross section.

This paper will summarize our recent advances on integrated
hybrid InP/SOI lasers and transmitters based on wafer bonding.
It is organized as follows. Section II is devoted to the heteroge-
neous integration process of III–V material on silicon, including
one of the key points of hybrid III–V/Si lasers: the optical mode
transition from III–V to silicon waveguides. Section III gives
the results of single-wavelength DBR lasers with high output
power. Section IV will focus on wavelength-tunable lasers, and
Section V on wavelength-selectable AWG lasers. Section VI
reports on the performance of an ITLMZ operating at 10 Gb/s.
Finally, a conclusion is drawn in Section VII.

II. HETEROGENEOUS INTEGRATION OF III–V ON SILICON

A. Heterogeneous Integration Process of III–V Material
on Silicon

Fig. 1 outlines the process flow for silicon PICs using the
heterogenous integration of III–V material on Si.

The fabrication starts with 200 mm SOI wafers with a typical
thickness of 440 nm thick silicon top layer. The first step is the
formation of passive rib waveguides by etching the top silicon
layer. These waveguides are optimized for the coupling with
III–V waveguides that will be aligned on top of the silicon
waveguides in a later step. After this etching step, the remaining
silicon layer has a thickness of 220 nm. For the passive circuitry,
additional etching steps are applied to form strip waveguides
and other elements such as Bragg reflectors or vertical output
couplers. To planarize the surface of the SOI wafer, a silica layer
is deposited and a chemical-mechanical polishing is applied
[19].

In the meantime, 2” InP wafers are grown. The III–V re-
gion consists of a p-InGaAs contact layer, a p-InP cladding
layer, typically 6 InGaAsP quantum wells surrounded by two
InGaAsP separate confinement heterostructure layers, and an n-
InP layer. Optimized growth conditions have been established in
order to simultaneously achieve a defect-free surface morphol-
ogy required for bonding and high laser performances. These
InP wafers can now be bonded onto the SOI wafers [20].

After wafer bonding and InP substrate removal, dry etch-
ing is used to etch through the InGaAs layer and partly etch
the InP p-doped waveguide cladding layer. The InP etching is
completed by chemical selective etching. The MQW layer is
etched by CH4 :H2 RIE. Fig. 2 shows a scanning electron mi-
croscope (SEM) picture of a III–V waveguide on top of a silicon
waveguide.
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Fig. 3. Top and cross-sectional views of the coupling structure of the hybrid
laser with representative mode profiles in three cross-sections.

The active waveguide is encapsulated with DVS-
benzocyclobutene. A Ti/Pt/Au alloy is used for metallization
on both p and n sides. Finally, the fabricated lasers are ready
to be tested on the wafer through the use of vertical grating
couplers.

B. Adiabatic Coupling Between III–V and Silicon Waveguides

Fig. 3 gives a schematic view of the laser structure, which
can be divided into three parts. In the center of the device the
optical mode is confined to the III–V waveguide, which pro-
vides the optical gain. At both sides of this section there is a
coupling region that couples light from the III–V waveguide to
the underlying silicon waveguide. After the coupling region the
light is guided by a silicon waveguide without III–V on top.

The intensity profiles of the fundamental mode are calculated
using the film mode matching method, and are given in Fig. 3
at different points of the laser cavity. The calculated optical
confinement in the MQW layer in the center of the laser cavity
is in the range between 5% and 12%.

To achieve index matching between the two waveguides, a
deep ridge III–V waveguide is usually used in the double taper
region. As shown in Fig. 3, a double taper structure is used
to allow the efficient coupling of the fundamental mode from
the III–V waveguide to the silicon waveguide [10]. In the right
double taper region, the silicon waveguide has an increasing
width, while the III–V waveguide’s width is decreasing. Fig. 4
shows the coupling efficiency of the double adiabatic taper for
three values of the III–V tip width: 0.4, 0.8 and 1 μm and a
silicon waveguide thickness of 400 nm. We can see that perfect
coupling can only be achieved using a tip width of 0.4 μm or less.
This requirement on the tip width is linked to the 400 nm silicon
waveguide thickness. For thicker silicon waveguides a larger
tip width can be tolerated. We can also observe highly efficient
coupling for short taper length (around 30 μm). However, the
coupling efficiency varies quickly with the taper length and other
parameters for such a short taper. Longer (> 100 μm) tapers are
preferred in order to get more robust coupling.

In the case of thicker silicon waveguides (≥ 500 nm), only the
silicon waveguide needs to be tapered for the mode-transfer from
the III–V waveguide to the silicon waveguide [9]. As narrow

Fig. 4. Coupling efficiency for different III–V taper tip widths as a function
of the double taper length.

Fig. 5. a) Schematic representations of the hybrid III–V/Si laser, top and side
views. b) Optical microscope image of the final fabricated device.

III–V tapers are no longer required, the process of III–V waveg-
uides becomes much more tolerant.

III. SINGLE MODE DBR LASERS

A. DBR Laser Structure

In this section, we report on the experimental demonstra-
tion of a heterogeneously integrated III–V/Si DBR laser with
low threshold (< 20 mA) and high output power (> 15 mW).
The laser performances are similar to those obtained by A. J.
Zilkie et al. who built a hybrid external-cavity DBR laser from a
III–V reflective SOA butt-coupled to a 3 μm-thick Si waveguide
containing a Bragg grating reflector [21].

The optical cavity is defined by a III–V gain section of 400 μm
length and two DBRs spaced 600 μm apart, as shown in Fig. 5.
The Bragg grating was etched into a silicon waveguide with a
width of 10 μm. The grating pitch is 237 nm and the duty cycle
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Fig. 6. L–I characteristics of the hybrid DBR laser for different temperatures.

is 50%. The etching depth is chosen to be only 10 nm, resulting
in a reasonable grating coupling coefficient, κ, of 83 cm−1 . The
back-side Bragg grating has a length of 300 μm, leading to a
calculated modal reflectivity of 97.3% and a 3 dB bandwidth of
2.58 nm. The front-side Bragg grating has a length of 100 μm.
From calculation, this Bragg grating has a modal reflectivity
of 46.4% and a 3 dB bandwidth of 3.98 nm. The combined
Bragg gratings lead to a sufficiently narrow filter to allow single
longitudinal mode operation of the DBR laser.

B. Experimental Results

The continuous wave laser output power is collected through
a surface-grating coupler by a multimode fiber and then charac-
terized by using both a spectrum analyzer and an optical power
meter. To determine the output power at the low-reflectivity side
of the hybrid DBR laser, we measured the insertion losses using
a reference structure on the same wafer.

Fig. 6 shows the fiber-coupled and front mirror output power-
current (L–I) characteristics for operating temperatures ranging
from 15 to 65 ◦C. As can be seen from the L–I curves, the laser
threshold is 17 mA with a maximum output power of 15 mW at
20 ◦C (> 4 mW in the fiber), leading to a differential quantum
efficiency of 13.3%. The differential quantum efficiency is de-
fined as the derivative of the L–I curve, multiplied by e/hν, with
e the electron charge and hν the photon energy. It operates up to
a stage temperature of 60 ◦C with a front mirror output power
exceeding 2.4 mW.

The lasing spectrum for a drive current of 118 mA is shown in
Fig. 7. We can see that there is a dominant mode at 1546.97 nm,
with a SMSR of about 50 dB.

Fig. 8 shows the lasing spectrum as a function of the drive
current along with the corresponding L−I−V curves. Mea-
surements were performed at room temperature. We can see
that the device has a lasing turn-on voltage of 1.0 V and a series
resistance of 7.5 Ω. From the optical spectrum, we can clearly
observe jumps in the lasing longitudinal mode due to mode hops.
This is due to the fact that the increase of the injection current
into the gain section results in an increase of the temperature of
the III–V waveguide. Consequently the refractive index of the
III–V materials increases, leading to a red shift of the longitu-
dinal mode of the hybrid DBR laser. When the lasing mode is
far enough from the reflectivity peak, the dominant longitudinal

Fig. 7. Lasing spectrum measured at a bias current of 118 mA.

Fig. 8. Fiber-coupled L–I–V characteristic and normalized contour plot of the
lasing spectra at room temperature.

mode hops to another mode closer to the reflection peak of the
Bragg grating.

The small-signal modulation response of the laser is shown
in Fig. 9. One can observe a flat response at low frequencies
and also resonance due to relaxation oscillations. The 3 dB
bandwidth of around 7 GHz is obtained for bias currents ranging
from 125 mA to 150 mA.

IV. WAVELENGTH TUNABLE LASERS

A. Design and Fabrication

The tunable laser, as schematically shown on Fig. 10 (top),
consists of an InP-based amplification section, tapers for the
modal transfer between III–V and Si waveguides, two RRs for
single mode selection, metal heaters on top of the rings for
the thermal wavelength tuning and Bragg gratings providing
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Fig. 9. Room temperature frequency response of the hybrid DBR laser for
different bias currents.

Fig. 10. Schematic view (top) and photograph (bottom) of the widely tunable
single-mode hybrid laser.

reflection and output fibre coupling. The straight III–V wave-
guide has a width of 1.7 μm and a length of 500 μm. In the
silicon sections, RR 1 (R1) and 2 (R2) have a free spectral range
(FSR) of 650 and 590 GHz, respectively. The slight difference
between these two values allows taking advantage of the Vernier
effect for the wavelength tuning. Moreover, the bandwidth of
the double ring filter is designed to select only one Fabry–Perot
mode of the cavity. The Bragg reflectors are made by partially
etching the silicon waveguide. The two Bragg reflectors, each
with a pitch of 290 nm and 60 periods, are designed to have a
reflectivity of more than 90%, and a 3 dB bandwidth larger than
100 nm.

In addition to the fabrication steps detailed in Section II, a
NiCr metal layer is deposited on top of the RRs with contacts
pads. This is to allow tuning of the RR wavelength via thermo-
optic effect by heating the silicon waveguides. The last steps
are the metallization for the laser contacts and heater contacts.
Fig. 10 (bottom) shows a picture of the fabricated tunable lasers.

B. Testing of Passive Circuit Elements

The passive RRs were measured on separated test samples
on the same wafer area. Fig. 11 shows the transmission curves

Fig. 11. Measured transmission spectra of the RRs. Inset: photo of the fabri-
cated silicon RR.

Fig. 12. Laser emission spectrum at 20 ◦C, 80 mA.

of the two RRs from the input port to the “through” port. Two
combs of resonance peaks are observed, corresponding to the
two RRs with slightly different FSRs. It is remarkable that for
each resonance peak, the full width at half minimum is estimated
to be around 0.5 nm. Such narrow resonance peaks show the
high quality of the fabricated silicon waveguides, and are key to
achieve a large tuning range with high SMSR. It is to be noted
that the amplitude variation in the presented curves is due to the
limited resolution bandwidth (0.07 nm) of the optical spectrum
analyzer used.

C. Laser Measurements

The lasers are tested on wafers with vertical Bragg gratings
coupling the output light into a cleaved SMF. The coupling
losses were measured to be around 10 dB. At 20 ◦C, the laser
has a threshold current of 21 mA. The slope efficiency of this
kind of laser is of the order of 0.1 mW/mA, leading to a dif-
ferential quantum efficiency of around 8%. Fig. 12 shows the
laser spectrum at 20 ◦C for a current of 80 mA, measured by
heating the RRs. It clearly shows single-mode operation with
50 dB SMSR. Such a large SMSR is attributed to the narrow
bandwidth of the RRs.

The laser linewidth was measured using a self-homodyne
technique and also by a heterodyne technique through the beat-
ing with an external cavity laser. We found that the linewidth
varies with the current injected into the gain region, and with
the heating power applied to the RRs. Its values are in the range
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Fig. 13. Measured heterodyne spectrum through the beating with an external
cavity lasers. A Lorentzian fit is also plotted.

Fig. 14. Superimposed laser spectra for different currents injected into heater
1, at 20 ◦C, laser injection current of 80 mA. Current applied to heater 2 was
fixed.

between 1 and 10 MHz. Fig. 13 shows a typical example of
the measured heterodyne spectrum, with a Lorentzian fit. We
can see that the lineshape is very close to a Lorentzian, and the
linewidth is found to be 2.3 MHz.

Fig. 14 shows the superimposed laser emission spectra ob-
tained by changing heating power levels applied to the two
RRs. On the backgrounds of these spectra, as well as on that of
Fig. 12, one can observe transmission peaks created by R2 and
transmission dips created by R1. This is due to the fact that the
spontaneous emission generated by the active III–V waveguide
is modulated by the drop transmission of R2 and by the through
transmission of R1. The power variation across the wavelength
range is 6 dB and corresponds to the gain curve of the III–V
material and the vertical coupler spectrum.

Fig. 15 shows the wavelength tuning curves of the laser by
heating simultaneously the two RRs with a laser injection cur-
rent of 80 mA at 20 ◦C. With less than 400 mW of combined
power in both heaters, a high SMSR (>40 dB) wavelength range
over 45 nm is achieved. For a given power P1 in heater 1, as
the power P2 in heater 2 increases, the ring peak wavelengths
shifts, and the laser wavelength jumps to the next ring interfer-
ence order for which the two ring resonance peaks match. For
wavelength setting, both ring power must be adjusted so that
one transmission peak of R1 matches the one of R2 at a desired
wavelength. The wavelength tuning range is currently limited
by the too large difference in the FSR between the two RRs. An
optimized design should allow covering the whole gain band-
width of the III–V active material. Also, the laser does not have
a phase section and hence the wavelength is always bound to a

Fig. 15. Laser wavelength as a function of the electrical power in heater 1,
for different electrical powers in heater 2, at 20 ◦C and laser injection current of
80 mA.

Fabry-Perot mode of the cavity. For a more precise wavelength
tuning (<0.2 nm), this laser requires adjusting of the injection
current.

We demonstrated that such a hybrid III–V/Si laser can be
directly modulated at 10 Gb/s [22], an interesting feature for
access and metropolitan networks. Moreover, we demonstrated
that such a laser can be used as a local oscillator in a coherent
receiver for polarization division multiplexing-quadrature phase
shift keying signal at 100 Gbit/s [22]. No penalty was observed
compared to a commercially available external cavity tunable
laser. Those results constitute an important milestone towards
real applications of tunable hybrid III–V/Si lasers.

V. AWG-LASER DESIGN AND FABRICATION

A. Design

An AWG laser is a wavelength-selectable source consisting of
several independent gain sections that are merged into a single
output waveguide by means of an AWG inside the laser cavity,
as schematically depicted in Fig. 16. Another solution to make
a wavelength selectable laser source is to have an array of single
frequency lasers, which are connected to an AWG outside the
laser cavity. The main advantage of an AWG laser with respect
to a laser array is the fact that the wavelength spacing between
the different operation channels is fixed by the AWG, hence
there is no need for active control of each wavelength if the
device is used in a transmitter circuit.

An AWG will introduce some losses in the range between 2.5
and 6 dB in our samples. If the AWG is outside the laser cavity,
the power losses are the same as the AWG losses. Now if the
AWG is inside the laser cavity, the effect on laser output power
can be predicted using a laser model. Our calculation showed
that a 4 dB loss of an AWG will result in a decrease of the external
quantum efficiency in the range between 20% and 30%. Hence
the AWG laser is more efficient than the combination of a laser
array and an external AWG.

First AWG lasers on an InP substrate were reported in 1996
[23], [24]. However hybrid III–V/Si integration brings new ad-
vantages for AWG lasers. As silicon based AWGs [25] have a
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Fig. 16. (Top) Schematics and (bottom) photograph of a fabricated AWG-
laser.

reduced size compared to those on InP due to the high refractive
index contrast, the laser cavity becomes shorter. For instance,
although deeply etched InP waveguides allowed the fabrication
of very compact InP AWG lasers, the laser chip size was still 2
× 3 mm2 , as demonstrated in [25], [26]. We report here a hybrid
III–V/Si AWG laser with a footprint of 1.4 × 0.8 mm2 . As a
consequence of the smaller cavity, a high SMSR can be easier
to achieve.

Fig. 16 (top) shows a schematic of the AWG laser structure.
The AWG laser consists of an AWG made from SOI waveg-
uides and III–V gain sections. The AWG has a size of 300 ×
400 μm2 . It counts 5 output channels with designed 400 GHz
spacing. The designed interference order is 20, with 50 strip
waveguides in the array part. To reduce the insertion losses of
the filter and minimize the reflections, the tapers between the
waveguides and the slab propagation region are etched in two
steps [24]. The FSR is designed to be 46 nm, approximatively
the bandwidth of the III–V material gain curve. Such a large
FSR allows a single-mode laser operation by preventing the
neighboring orders from lasing. The Bragg reflectors that ter-
minate the laser cavity are broadband; consequently they do not
participate in the wavelength filtering for single-mode selec-
tion. The back reflectors R1 are longer and designed for a 99%
reflectivity; the transmitted power through R1 can be used for
monitoring purposes. The front reflector R2 is designed for a
30% reflectivity and closes the Fabry–Pérot cavity at the other
side. At the output side, a vertical grating coupler is used to
couple the output light to a cleaved single-mode fiber.

TABLE I
LASER CHARACTERISTICS AT 20 ◦C FOR THE FIVE SECTIONS

B. Laser Measurements

The lasers are tested on wafers, using a single-mode cleaved
fiber to collect the light that exits the chip through the vertical
grating coupler. The test bench temperature is regulated at 20 ◦C.
All the measurements are performed using electrical probes. The
5 SOAs of the AWG laser have a series resistance around 7 Ω.
Table I shows the main characteristics of each wavelength chan-
nel biased at 110 mA. The lasing threshold remains around 40 ±
2 mA for all channels, with the highest threshold corresponding
to the lowest wavelength, because this channel has the largest
detuning with respect to the peak gain wavelength: 1535 nm.
For a given injection current (110 mA), the power coupled to the
fibre ranges from −8.63 to −10.93 dBm. The coupling losses
from the vertical coupler to a single-mode fiber (SMF) were
measured to be in the range of 12–10 dB between 1513 and
1525 nm. Therefore, the power in the silicon output waveguide
is estimated to be in the range of 1–3 mW. The corresponding
differential quantum efficiency is around 5%. The high loss of
the vertical coupler comes from the fact that the laser emission
wavelength does not match with that of the maximum trans-
mission. In fact, the coupler has a peak transmission around
1560 nm, and a 3 dB passband of 45 nm. The power variation
with the wavelength channel can be explained by the shift be-
tween the AWG filter passband (1513 to 1525 nm) and the III–V
gain peak around 1535 nm. This detuning is due to the devia-
tion of the fabricated waveguide dimensions with respect to the
designed ones. The lasing wavelengths are spaced by 392 GHz
on average, with ± 40 GHz deviation. This deviation is due to
the Fabry–Pérot mode selections inside the AWG passband.

Fig. 17 shows power versus injection current for each wave-
length channel biased individually. The irregularities on the
curve are due to mode hops. The Fabry–Pérot modes shift with
injection current due to temperature effects in the SOA sections,
whereas the AWG wavelengths stay constant as the test bench
temperature is regulated at 20 ◦C. Apart from these mode hops,
the AWG laser remains in a single-mode operation regime at
currents up to 200 mA and temperatures up to 60 ◦C.

Fig. 18 shows the temperature behaviour of the laser for
channel 5 between 10 ◦C and 60 ◦C. When the temperature rises,
the output power coupled to the fibre remains above 0.1 mW
at a bias current of 200 mA. It is remarkable that despite the
thermal insulation due to the buried oxide layer and the silica
bonding layer, the laser can still operate up to 60 ◦C in the CW
regime.
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Fig. 17. Power coupled to the output fibre versus injection current for each
channel at 20 ◦C.

Fig. 18. Power coupled to the output fibre channel 5 versus injection current
at 20 ◦C.

Fig. 19. Superimposed laser spectra for each channel with injection current
of 110 mA at 20 ◦C.

Fig. 19 shows the superimposed spectra of all 5 channels
when being independently biased at 110 mA. The measurements
were made using an optical spectrum analyzer. As the Fabry-
Pérot modes of the AWG-laser are spaced 18 GHz apart, the
spectral resolution of 0.07 nm allows to verify that each channel
clearly operates in a single-mode regime with an SMSR larger
than 30 dB for all channels at 110 mA. Such SMSR values are

Fig. 20. Spectrum of the laser with both channel 1 and 2 being switched ON,
with 110 mA current at 20 ◦C.

Fig. 21. Schematic view (top) and picture (bottom) of the ITLMZ chip.

already sufficient for a number of applications, although they
can still be improved in future designs by decreasing the 3 dB
bandwidth of the AWG filter from the current value of 190 GHz.
It is also to be noted that despite the shift between the AWG
filter wavelength and the maximum of the gain curve, the SMSR
limited by the AWG next order in the wavelength range 1560–
1575 nm remains at least 45 dB.

Fig. 20 shows the output spectrum when two channels are
biased simultaneously. Both operate in a single mode regime
as in the case of single channel operation. Such a behaviour
shows independent operation of the two channels with negligible
thermal cross-talk.

VI. INTEGRATED TUNABLE LASER

MACH–ZEHNDER MODULATOR

The developed ITLMZ chip consists of a single-mode hybrid
III–V/silicon laser, a silicon MZM and an optical output coupler,
as shown in Fig. 21 (top: schematic view, and bottom: a photo-
graph). The single-mode hybrid laser includes an InP waveguide
providing light amplification, and a RR allowing single-mode
operation. Two Bragg reflectors etched into the silicon waveg-
uides close the laser cavity. The MZM allows modulation of the
output light emitted by the hybrid laser.

In addition to the fabrication steps outlined in Sections II
(hybrid III–V/Si integration) and IV (heaters), the integration of
an MZM necessitates several ion implantation steps in order to
realize p++, p, n and n++ dopings.
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Fig. 22. Lasing wavelength as a function of the heating power (top) and
super-imposed optical spectra (bottom).

A. Tunable Laser Characteristics

The RR-based hybrid laser exhibits a CW threshold current
around 41 mA at 20 ◦C and the output power coupled to the
silicon waveguide is around 2.5 mW for an injection current
of 100 mA. The maximum output power is around 6.5 mW at
20 ◦C, and the output power is still higher than 1 mW at 60 ◦C.
Electrical current injection into the heater allows thermal tuning
of the ring resonance wavelength. As a result, the selected cavity
mode will jump to another one having the lowest threshold [27].
Fig. 22 (top) plots the lasing wavelength as a function of the
heating power. One can observe from this figure that a tuning
range of 8 nm is achieved. The wavelength tuning is incremental,
due to the mode jumps with the increase of heating power. This
phenomenon is typical of this kind of cavity, and very similar
to that observed in classical DFB Bragg lasers made on InP.
The heater resistance is in the range of 20–100 Ω, and the
thermal tuning efficiency is in the range of 0.15–0.4 nm/mW.
Fig. 22 (bottom) shows an example of the superimposed optical
spectra for 10 values of the heating power. Clearly, single-mode
operation with SMSR larger than 40 dB is achieved.

Fig. 23. Small-signal modulation response of the MZ modulator for different
values of the applied voltage.

B. Silicon Mach-Zehnder Modulator Characteristics

The silicon modulator is a depletion type lateral pn junction
modulator as described in [28]. The length of the modulated
phase shifters is 3 mm. The arm length difference of the MZM
is 150 μm, resulting in a FSR of around 4.5 nm. The estimated
V πLπ for the modulator is around 3 V cm. The ER depends
on the operation point. Its value is larger than 10 dB when
the operation point is close to the minimum transmission, and
6.5 dB close to the maximum for a peak-to-peak voltage swing
of 8 V. Thus the average losses are higher for the case of a larger
ER. A trade-off between the losses and the ER for the modulator
is made in the BER measurements. Moreover, from the power
level measurement from a laser alone with the same structure
and from the output of the ITLMZ chip, the intrinsic losses of
the MZM are estimated to be around 13 dB at its maximum
transmission point.

Fig. 23 shows the small-signal modulation response of the
integrated MZM for several values of the applied voltage. One
can see that the modulation bandwidth increases with the rising
reverse bias voltage of the pn junction due to a reduction of
the capacitance with voltage. For a reverse bias larger than
2 V, the 3 dB modulation bandwidth is larger than 13 GHz. The
modulation response decreases very slowly with the modulation
frequency. Such a modulation response guarantees operation at
10 Gb/s, and should allow modulation at bit rates up to 25 Gb/s.

C. BER Measurement of the ITLMZ

The output of the ITLMZ chip is coupled to a lensed fiber,
amplified by an erbium doped fiber amplifier and then filtered
out. One arm of the MZM is modulated with a voltage swing of
around 7 V, at 10 Gb/s using a pseudo-random binary sequence
(PRBS). The BER measurement is performed for 8 different
wavelengths distributed inside the tuning range by changing the
power dissipated in the RR heater [18]. Fig. 24 shows the BER
curves for all the wavelengths and also a reference curve for
a directly modulated laser, measured using a high sensitivity
receiver including an avalanche photodiode. The PRBS length
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Fig. 24. Bit error rate for different wavelengths.

Fig. 25. Eye diagrams for different wavelengths.

is 27–1, limited by the photo-receiver used in this experiment.
Fig. 25 shows the corresponding eye diagram for all those chan-
nels, independent of the length of PRBS in the range from 27–1
to 231–1. The ER of the different wavelengths varies from 6 to
10 dB, while the ER for the reference is only 4 dB. One can see
from Fig. 4 that all channels have better BER performance than
the reference for received power levels lower than −25 dBm,
due to the higher ER of the ITLMZ compared to that of the
reference. For power levels higher than −25 dBm, channels λ2,
λ3, λ4 and λ5 behave slightly better than the reference, achiev-
ing error-free operation with BER < 10−9 . Other channels have
minimum BER between 10−7 and 10−8 , mainly limited by the
optical signal to noise ratio (OSNR) due to the high coupling
losses between the ITLMZ output waveguide and the lensed
fiber used. The power level difference to achieve the same BER

among all channels is around 4 dB, explained by the difference
in OSNR and the achieved ER among those channels. Finally,
the smaller slopes for all wavelength channels compared to that
of the reference in the BER curves is attributed to their lower
OSNR

VII. CONCLUSION

Heterogeneous integration of III–V on silicon seems to be a
very promising way to fabricate laser sources on silicon. Large
progress has been made on the performance of the fabricated
III–V on silicon lasers. Moreover, the silicon waveguides enable
additional functionalities such as spectral filtering in a DBR
laser or wavelength-tuning in lasers with integrated RRs. The
integration of hybrid lasers on silicon further allows the fabri-
cation of more complete photonic circuits such as transmitters
and receivers.

However, some improvements on laser performance are still
to be made in order to reach specifications for practical appli-
cations. For instance, the slope efficiency of the hybrid lasers
reported in this paper is in the range of 0.1 – 0.15 mW/mA range
for 400 μm length devices. There is still of factor between 2 and
3 to be improved in order to compete with the state of the art
monolithically integrated InGaAsP lasers on InP substrate. In
terms of thermal behavior, measurements on our lasers showed
that thermal impedance is in the range of 120 K/W for devices
with a length of 400 μm. With an injection current of 100 mA,
the temperature increase is around 20 K. There are basically
two ways to improve the thermal performance. The first one is
the thermal management. For instance, a thermal “shunt” was
introduced into a device by etching away the SiO2 and silicon
epitaxial layers, and backfilling the etched regions with high
thermal conductivity material [29]. It is also possible to intro-
duce some heat sinks on the top of III–V lasers, for example,
very thick metallic layers for the electrodes. The second ap-
proach is to use much less temperature sensitive III–V materials
such as quantum dots as the gain material inside the laser cavity.

Another important development direction of hybrid III–V
lasers on silicon is the demonstration of DFB type single fre-
quency lasers. Such lasers present the advantage of maintaining
the single frequency behavior without mode hopping due to tem-
perature or injection current variations. They can have a number
of applications in particular for short range optical communica-
tions, in which active temperature control is to be avoided. Most
lasers (DBR lasers, tunable lasers and AWG lasers) presented in
this paper have mode jumps when the temperature or injection
current varies. Those lasers are more suitable for applications in
which active temperature control can be applied.
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