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Simulation of nonlinear optical resonator circuits
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mrrﬂfi"ﬂ"ce“tly’ we proposed a node-based framework to
Jarge circuits of nonlinear photonic components. This
tpol can be used to simulate circuits that contain a variety
pents both in time-domain and in frequency-domain.
iﬂP;aper. we extend the node-definition of this framework
h {hat that the linear coupling between access waveguides
i rsonance states in optical resonators can be more efficiently
ted. We demonstrate that this results in an important

.o of the simulation time in large circuits of nonlincar
jc cavities.

The function N; describes the nonlinear contribution, e.g., due
to changes in absorption or refractive index by the Kerr non-
linearity. If the cavity model contains additional dynamic vari-
ables, such as the number of free carriers, or the temperature,
these exlra equations can as well be shoehorned in the previous
matrix format, by extending KT in the appropriate places with
zeros and M; with lincar contributions of the corresponding
Ordinary Differential Equation {ODE). while the remaining

nonlinear terms can be incorporated in Ni{a,f,..). More

generally, every MC component can be trivially transferred
into this format, by extending the original ODE system with
additional M;, K7 and D; matrices equal to zero. As we

use sparse matrices, these additional zeros have no significant
influence on the simulation speed.

j I. INTRODUCTION
Many optical resonators can be described using a Coupled
¢ Theory (CMT)-like format for the equations concerning
al field. For instance, the models that used to describe
ics of a passive nonlinear microring [1], [2] or a
laser [3], [4], are CMT-based. In this section we
L out how the framework presented in Ref. [3] can”
4l o CMT-style models, and how this adaptation can
tases result in an additional increase in simulation

instance, the large circuit simulations done in [2]
e of this speed up.

Even if the resonator is nonlinear, the coupling of the
modes and input signals to the output stays linear:
Si,out = SiSiin + Dia, (3)

We now define the linear coupling matrices M, K7 and D
for the circuit as a whole. These matrices are block matrices,
constructed from the submatrices M;, K7 and D; for all
the MC nodes ¢ € {0,..,.N — 1}. Using the same syniax
as before, M linearly couples the states to the states, K¥
couples the input to the states, while D couples the states to
the output. If we suppose the system has s states, then M is
s % s dimensional, while D and K are both p = s dimensional.

Using those matrices, we write down the total ODE of the
circuil as:

SSHAPING THE SYSTEM EQUATION TOWARDS CMT

5) . , :

) :Td' generalized connection matrix Cjy, e models
"Nstantaneous transmission of the waves that
o 1 - Seneralized “external’ sources vector Seq(t)

ough the components of the circuit. This con-
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8, laser, & memory-containing (MC) components o . 5o
g ) Need to be calculated for a given s . (t), The generalupd source term defined in [3] can be split into
5 the Memoryless (ML) components (splitters two parts: a linear part, related to the linear coupling by D,
i Waveguiges, ..) from the circuit. One singl:; of the resonators in the circuit. and an external source term
uct Sy (F) OF which the linear coupling terms are substracted (e.g2.,
. containing the input signals of the sources in the circuit, or the
Mo (t) = Cin,eaSezs(t), {1y outputs of waveguides with delay or Semiconductor Optical
: 15 0 e Amplifiers ( . such that:
.. En{ ;':lb MC simultaneously for all the nodes. Rl el “
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III. INCREASING SPARSENESS

In this subsection, we will use the knowledge of the
positions of resonators, detectors and sources in a circuit (o
make the matrices in the system equations sparser, resulting in
a speed improvement of the calculation time,

If a circuit contains cavities with a CMT model, then we

know that s, will be equal o zero at those port positions.
Similarly, port positions of detectors in the circuit will also
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correspond to additional zeros in gl We will now introduce a *| _a inline: witheut CHT extansian » M it
diagonal p % p matrix 1M, that contains a Cro on the diagonal I e Mty e ’;' i k‘“f’"“;"."'*fur'e:t.';ffﬁé‘n“““
for cach port that corresponds 10 & resonator or a deteclor. e St v . h\
Using this matrix and Ed. (5), assuming that the rows of D 3 "L"" %u ;'{ E\? i 'j}' ‘
are only nonzero al {he port positions of resonators we obtain: ; p-“: ¥ 21l E} '}j] -'_‘”' v ! |
: : e T s
Sin, M = C'r'.-u.uﬂ: l_(]- 1{::{:) Da + Iﬂ:iﬂi._:,_-!l s {()) § ", " 3 | f -'-___c" &
7 L R
The presence of 1M in the previous equation generates addi- ] = __“' ‘_:’{'%i il dett
tional zeros in the matrix products, making them sparser and T e R oty W
hence potentially speeding up {he calculations. Hence, M can ( o 2
he considered Lo be some kind of 'mask’ matrix. 2 Ve, 1. (left) In a long chain of inline PhC cavities, |
Additionally, when domg & time-domain slmulz}l!nn. s C‘.l\ﬁle -I‘urmnlimn impmvis 1'n|u gimulation :'.pc.l:.d.L';’%t;l::ﬁw-l“"."_“"ll of
not necessary 10 calculate Sin MO al the porl posiions that the corresponding simulation in [5). (right) A similar in: “I‘_::U"l iy Im.gm;
conlain sources (assuming that these sources are not influenced seen in a simulation of 2 nanophotonic reservoir of inline ;‘-],.;1\' :",‘“”f“} G
hy reflected signals from the circuit, as is the case in most opology discussed in [21, 13- T !
simulations). We will now introduce a second diagonal p = p A
mask matrix T}, that conlains a zero on the diagonal for each : . o e
port Lhat corresponds o 2 resonator o a source. BY defining framework results in & 2‘)&4-“‘”“[“}" in the number of g,
s, Mo = IM i, mc a8 the vector that monitors the inputs of zeg0 elomont 1 the matrix products. As a large part of gy
all the ML nodes, except for the sources and the resonators, simulation tme 15 spent in the calculation of these matrix s
we can FEWnite Sin,Mc 10° ucts, this rc:-:lml.s inan almost cqually large decrease of the
simulation time. In Fig. 1(b) we simulate a large nanophols:

8o piG = S Mot (1 IMY s M0 (7)  reservoir of PhC cavitics. In this case, the relative reductie

! o : in calculation time is cven stronger. This is mainly due o i

Assuming that only the columns of KT corresponding o large number of sources and deteclors in the nanopholos:

the resonators are different from Zero, K'sl, pe = 0 and reservoir, which brings along a lot of unnceessary calculation

introduction of Eq. (7) in Eq. (4) results in: per time step in the original framework (e.g., propagiis
nonexistent output signals of the detectors 1o the Sources)

la ; ,
Lﬁ _ Ma KT (112 simaic + N(@ibyo): (®)
e _ y. CONCLUSION
guhstitution of Hq. (6) gives:
By tak
optical resonators, W

ing benifit of the lincar part in the CMT-cquation s
e showed how the node-hased f

da g T M My
dt lM HEK (1 L) Cingea (1 1"::#) D] 2 proposed in [5] can be optimized for the simulation of
KT (1 1) Cinexlls] Seat N(a,t,...), 9 resonator-circuits, Due to the use of sparse MALices
' extension of the framework docs not affect the simd
while s}, ae €an be calculated 1o be: speed of optical components that do not such & lineaf
y of the original [

M M Y g M Therefore, the general applicabilit
i C’”!-.f‘-!l: (I = Il::]:) D\ a -+ [_I-i.ﬂ.(—"ﬂ‘!-;l-'it‘-'[n:r:] Seat: s pl".).‘icl'\’(.‘-d.

! 2 [
Sin, MO = l_-[m
(10)
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