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A novel 2D finite difference time domain (FDTD) subgridding method
is proposed, only subject to the Courant limit of the coarse grid. By
making μ or ε inside the subgrid dispersive, unconditional stability is
induced at the cost of a sparse, implicit set of update equations. By
only adding dispersion along preferential directions, it is possible to dra-
matically reduce the rank of the matrix equation that needs to be solved.
Introduction: The FDTD method was first introduced by Yee in 1966
[1] and it allows the efficient computation of Maxwell’s equations in
the time domain. However, it suffers from two serious drawbacks.
First, the maximum time step is limited by the smallest cell size,
which makes it hard to model multiscale devices. Second, any straight-
forward refinement is obtained by squeezing the grid together, such that
the refinement has a global influence along one (or more) of the main
axes of the grid. Both of these problems can be tackled by introducing
a subgrid where the update equations are solved implicitly. This allows
for local refinement without the need to reduce the time step.

Many methods have been put forward to locally refine the grid. In
essence, there are always two problems that need to be solved: a set
of update equations needs to be defined in the refined region and a
method has to be constructed to deal with the interface between the
main grid and the subgrid. Using Huygens surfaces [2] for example, it
is possible to transfer fields between the main grid and the (implicit)
subgrid using equivalent currents. This method, however, suffers from
late-time instability.
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Fig. 1 Classical 2D Yee-cell for TE mode

New implicit subgrid update equations in x- and y-directions: The dis-
cussion below is restricted to the 2D TE-case. The whole simulation
space, i.e. main grid and subgrid, is modelled by Yee cells (see
Fig. 1). Hz is discretised at integer space steps iΔx, jΔy and half-integer
time steps (n + 1/2)Δt, with the usual FDTD-notation Hz|n+1/2

i,j . Similarly,
the discretised electric fields are denoted Ex|ni,j+1/2, Ey|ni+1/2,j . For
conciseness, we first define the following difference operator:

Dx f |mp,q =
f |mp+1/2,q − f |mp−1/2,q

Dx
, (1)

i.e. the x-derivative of f at pΔx, qΔy and time instant mΔt. The analogous
difference operators with respect to y and t are denoted Dy and Dt . We
also introduce the interpolation operator defined by

I t f |np,q =
f |n+1

p,q + 2f |np,q + f |n−1
p,q

4
, (2)

Using (1), the conventional FDTD update equations [1] can be written as

DtHz|ni,j =
1

m
DyEx|ni,j −

1

m
DxEy|ni,j (3)

DtEx|n+1/2
i,j+1/2 =

1

e
DyHz|n+1/2

i,j+1/2 (4)

DtEy|n+1/2
i+1/2,j = − 1

e
DxHz|n+1/2

i+1/2,j , (5)

The set of (3)–(5) can be combined to yield the discrete version of the wave
equation

meD2
t Hz|ni,j = D2

xHz|ni,j +D2
yHz|ni,j, (6)
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with, e.g.

D2
xHz|ni,j =

Hz|i+1,j − 2Hz|ni,j + Hz|ni−1,j

Dx2
. (7)

The reader can check that D2
x indeed corresponds to the repeated appli-

cation of Dx, i.e. D2
x f = Dx(Dx f ). As in [3], we can define the extended

Z-transform of Hz, with U, V and Z the transform variables corresponding
to x, y and t, respectively,

Ĥz(U , V , Z) =
∑1
i=−1

∑1
j=−1

∑1
n=−1

Hz|ni,jZnUiV j (8)

Applying this transformation to (6) yields

me
(Z − 1)2

ZDt2
Ĥz = (U − 1)2

UDx2
Ĥz + (V − 1)2

VDy2
Ĥz. (9)

The response for a plane-wave is obtained by setting [3]

Z = ejvDt , U = ejkxDx, V = ejkyDy, (10)

such that we arrive at the well-known dispersion relation

me sin2
vDt

2

( )
= Dt2

Dx2
sin2

kxDx

2

( )
+ Dt2

Dy2
sin2

kyDy

2

( )
. (11)

The reason for instability is that the right-hand side can assume values
larger than μe, whereas the left-hand side cannot. This leads to the
traditional Courant limit

Dt ,

�����������������
me

1/Dy2 + 1/Dx2

√
. (12)

This limit can therefore be traced back to the fact that the sin2-function
in the left-hand side of (11) is bounded by unity. To mitigate this, we can
make either e or μ dispersive. Let us first modify e by introducing the
following substitution in the Z-domain:

1

e
� 1

e

(Z + 1)2

4Z
. (13)

The action of this operator on a function f translates to the time domain as

1

e

(Z + 1)2

4Z
f̂ � 1

e
I t f . (14)

Applying this to (3)–(5) yields

DtHz|ni,j =
1

m
DyEx|ni,j −

1

m
DxEy|ni,j (15)

DtEx|n+1/2
i,j+1/2 =

1

e
I tDyHz|n+1/2

i,j+1/2 (16)

DtEy|n+1/2
i+1/2,j = − 1

e
I tDxHz|n+1/2

i+1/2,j. (17)

The corresponding dispersion relation (13) now takes the form

me tan2
vDt

2

( )
= Dt2

Dx2
sin2

kxDx

2

( )
+ Dt2

Dy2
sin2

kyDy

2

( )
. (18)

As the sin2-function in the l.h.s. is replaced by tan2, this readily implies that
the update scheme (15)–(17) is unconditionally stable, but no longer expli-
cit. Note that this dispersion relation is the same as for the unconditionally
stable Crank–Nicholson scheme [4]. Further note that (15) does not differ
from (3). This is crucial as this will later allow us to use Ex and Ey in the
classical Yee grid and glue it together with Hz of the subgrid in a stable
way. An alternative set of update equations is obtained by making μ dis-
persive in a similar way to e.

Birefringent subgridding: Above, the subgridding simultaneously
affects the x- and y-directions. Let us now switch to a birefringent (or
biaxial) medium with the following dielectric tensor, while leaving μ
unchanged:

e = e0diag(exx, eyy, ezz) (19)

Suppose we are only interested in applying the subgridding in the
x-direction (using an implicit FDTD-scheme), but want to leave the
y-direction unchanged, i.e. explicit. To this end the following
substitution is invoked:

1

eyy
� 1

eyy

(Z + 1)2

4Z
. (20)
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The FDTD updates (3)–(5) are now transformed to

DtEx|ni,j+1/2 =
1

e0exx
DyHz|ni,j+1/2 (21)

DtEy|ni+1/2,j = − 1

e0eyy
I tDxHz|ni+1/2,j (22)

DtHz|n+1/2
i,j = 1

m
DyEx|n+1/2

i,j − 1

m
DxEy|n+1/2

i,j . (23)

When setting exx = eyy = er and μ = μ0μr the dispersion relation corre-
sponding to (21)–(23) is readily found to be

ermr

(cDt)2
= 1

Dx2
sin2 kxDx/2

( )
tan2 vDt/2

( ) + 1

Dy2
sin2 kyDy/2

( )
sin2 vDt/2

( ) , (24)

which indeed shows unconditional stability along x. Based on all of the
above, it can in general be stated that the transformation

Da � I tDa (a = x or y), (25)

in either the E or H update equations, yields unconditional stability
along the spatial dimension α. For clarity, the losses have been neglected
up until now. These can, however, easily be incorporated. The update
equations for a lossy medium are

DtHz|ni,j =
1

m
DyEx|ni,j −

1

m
DxEy|ni,j (26)

Ex|n+1
i,j+1/2 = C1Ex|ni,j+1/2 + C2DyHz|n+1/2

i,j+1/2 (27)

Ey|n+1
i+1/2,j = C1Ey|ni+1/2,j − C2DxHz|n+1/2

i+1/2,j (28)

C1 = 2e− sDt

2e+ sDt
, C2 = 2Dt

2e+ sDt
. (29)

The substitution (25) remains applicable for lossy media.
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Fig. 2 Part of an interface between main grid and subgrid with asymmetric
refinement ratio of 3 × 2. Weights next to blue arrows are weight factors w
defined in (30)

Interface main grid and subgrid: Using the interface depicted in Fig. 2,
it is possible to obtain a provably stable asymmetric refinement of the
grid. The fields are denoted with uppercase letters in the main grid
and lowercase letters in the subgrid. If a field component from the
subgrid hz|i,j is used for the update of Ex|i,j+1/2 from the main grid, or
similarly in the reverse direction, then a weight factor w is defined as

Ex|n+1
i,j+1/2 = Ex|ni,j+1/2 +

Dt

e

Hz|n+1/2
i,j+1 − w

∑
m h(m)z |n+1/2

i,j

Dy j+1/2
. (30)

These weight factors depend on the refinement ratio, as illustrated in
Fig. 2.

Accuracy: The set of update equations remain second-order accurate in
time and space in the bulk of the subgrid, just as is the case for the
regular FDTD update equations.
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Transmission through a conductive slab: To illustrate the accuracy, we
investigate the transmission through a conductive slab (σ = 500 S/m)
with thickness d = 3 mm and height 2 m, illuminated by a broadband
z-oriented magnetic line source at x0 =−0.1 m, as shown on Fig. 3. At
the backside of the conductive slab, is a sensor at height h, which moni-
tors theHz field. In the main grid, Δx = Δy = 5 mm. The slab is embedded
at the centre of a birefringent subgrid with width 15 mm and height
1.98 m. The height is chosen such that edge diffraction effects at the
location of the sensor can be neglected. The refinement ratio in the
x-direction is 100, i.e. w = 0.01. The equations governing the subgrid
are (26)–(28) with Dx � I tDx in (28). The results are presented in
Fig. 4 for two values of h and, compared to an analytical solution,
demonstrate an excellent accuracy.
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Fig. 3 Setup to measure transmission through conductive slab illuminated by
dipole source
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Fig. 4 Ratio of field amplitudes with and without conductive slab. At 3 GHz
coarse grid sampling is λ/20

Conclusion: A novel implicit, unconditionally stable FDTD subgrid-
ding method was proposed and numerically validated. Although not dis-
cussed here, this method is provably stable for any integer refinement
ratio. Further, the proposed method allows for refinement along prefer-
ential directions to reduce the rank of the sparse matrix involved.
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