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Inspired by holographic data storage, we simulate small photorefractive crystals contain-
ing a random index variation placed in a cavity through which a pulsed bit sequence is
sent. The light scatters and interferes with subsequent bits. By using the reservoir com-
puting paradigm, the light leaking out of the cavity is interpreted by a linear readout
neural network layer. Using this setup, simple bit recognition tasks are performed. In
particular, XOR tasks between two bits with a separation of up to 5 bits, between two
neighboring bits with a delay of 4 bits and header recognition up to a header length of 5
bits can be achieved with a bit error rate smaller than 1073,

Introduction

The photorefractive effect is a well-studied subject in optics. After its discovery in
1966 [1], one quickly realized that this light-induced charge transport in electro-optical
crystals could be used in the context of holography and holographic data storage [2].
At the end of the century those photorefractive crystals were even used for creating all-
optical neural networks [3]. Although the research in holographic data storage and other
applications which rely on high optical bandwidth are still a hot topic today, those crystals
were until now never used in the context of time dependent optical signal processing of
time dependent signals.

In this paper, we propose a way to use these photorefractive crystals in the context of
reservoir computing, a brain-inspired computing paradigm used for time dependent in-
formation processing. The idea of reservoir computing was independently proposed in
the early 2000s by Jaeger [4] and Maass [5] as a way to train neural networks with inter-
nal feedback, with an as simple as possible training algorithm. This feedback creates a
neural network where signals remain for a limited time: the neural network has a memory.
Applying a time varying signal to some of the nodes in the reservoir ultimately results in
nonlinear mixing of the signal. This complex signal is subsequently read out by a linear
readout layer, trained on the dynamics of the reservoir, as is shown in Fig. 1.

One of the benefits of the reservoir computing approach, is that the reservoir itself can
actually be used as a black box that transforms a low dimensional input data to a higher
dimensional output space, in which classification of the signal becomes easier [6]. We use
a photorefractive crystal as our dynamical system under the presumption that any system
that exhibits those aforementioned properties can be used as a reservoir.
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Figure 1: Typical reservoir operation scheme. A time dependent and possibly multi-
dimensional input is fed into a complex neural network, for which the internal dynamics
are unknown. The input signal mixes with itself in a nonlinear way, while the and the
resulting reservoir state is read out at fixed time intervals. The reservoir state is in turn
interpreted by a readout layer, which makes linear combinations of the reservoir nodes.

Simulation

The simulation of the photorefractive crystals is done using a self-written python module
which couples the light propagation through the crystal with with the resulting excitation
and transport of the charge carriers in the crystal. For this, Finite Difference Time Domain
method got extended with the equations of Kukhtarev and Vinentskii (K-V model) [7].
The simulation generally consists out of two parts, a random hologram generation stage
and a reservoir operation stage, as is shown in Fig. 2.

During the generation stage, a random index variation is written inside a small photore-
fractive crystal (5 um X 10 um) until a maximal index variation of 5% around the mean
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Figure 2: (a) Hologram generation stage. A random hologram is written inside the crystal
and is kept fixed; (b) Reservoir operation phase. A random hologram is acting as a
random scatterer. A cavity, consisting out of two mirrors, generates enough reservoir
memory to perform simple bit tasks on the input stream.
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(n = 2.2) is reached.

During the reservoir operation stage, the crystal is put inside a cavity of two semi-
transparent mirrors. Optical bits enter the cavity as light pulses for which the intensity is
kept low such that they do not influence the internal index variation of the crystal. The
light scatters through the crystal and interferes with itself, while the light leaking out of
the cavity is recorded by a camera. As shown before [8], the readout process of a complex
valued electromagnetic field ensures enough nonlinearity to perform simple processing on
the time dependent input data.

During the simulation, the mirrors are put very close to the crystal, which ensures a round
trip time of a bit pulse of T = 2nL/c = 0.15ps. We match the bitrate of the bits to this
roundtrip time. 10000 bits are then send through the reservoir cavity while the readout
data is stored. Half of the readout data is subsequently used to train different readout
layers, each with a different binary processing task, such as XOR between subsequent bits
and header recognition. The other half of the bits is then used to test the performance of
the reservoir on these tasks.

Results

Delay As a measure for the ‘memory’ of the reservoir, a bit delay problem is proposed:
the ability to reproduce an input bit with a certain number of bit lengths delay is measured.
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Figure 3: (a) Bit delay Error. (b) Maximal delay for which the input can be reproduced
without error in function of the mirror reflectivity. (c) XOR of two neighboring bits with
in function of the bit delay. (d) XOR of two bits with separation k. (e) Header recognition
performance in function of the header length.
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As can be seen in Fig. 3(a), a memory of up to 5 bits can be achieved. One would expect
that the more reflective the mirrors are, the higher the memory of the reservoir will be,
however, there seems to be an optimal reflectivity around 80%.

Boolean logic Because of the relative difficulty of performing the nonlinear XOR oper-
ation, the ability of performing an XOR counts as a good measure for the performance of
the reservoir. Firstly, the performance of an XOR on two neighboring bits was assessed,
while increasing the delay. This XOR-specific memory is a good measure of the duration
the reservoir remembers the XOR results (Fig. 3(c)), although the performance is clearly
worse than the delay memory, the XOR can still be reproduced up to a delay of 4 bits.
Secondly, the XOR between two bits with variable distance k (Fig. 3(d)) was performed.
We find errorless performance up to a distance of 5 bits.

Header recognition The reservoir also seems to perform reasonably well for header
recognition tasks, with a minimal header length of 4 bits for the worst performing headers,
while the best performing headers even reach 5 bits.

Conclusion

This proof-of-concept simulation shows that we can perform very high speed (~ GHz)
calculations with full size photorefractive crystals (~ 1cm). Additionally, as the crystal
size increases, the photorefractive effect will only increase, which will have a beneficial
effect on the performance of the reservoir.
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