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generally adopted as a reliable approach to study computa-
tional intensive problems. Surrogate models approximate 
the input–output behavior of complex physical systems 
and, once built with sufficient accuracy, can be evaluated 
very efficiently. Thus, they can be easily employed to per-
form any routine tasks in optimization, sensitivity analysis 
(SA), and uncertainty quantification (UQ) [2–5].

The application of these surrogate models in UQ is 
becoming increasingly popular [4, 6]. Physical systems 
are often affected by uncertainties present in many physi-
cal parameters. To simulate the behavior of a physical sys-
tem, exact values of these input parameters are required. 
For instance, to simulate the behavior of a cantilever beam 
which is acted upon by various loads requires exact knowl-
edge of the beam material, geometrical properties, and act-
ing loads. These parameters may vary due to the manufac-
turing tolerances, measurement errors, or due to the natural 
variability and, hence, are random in nature. These uncer-
tainties which are present due to the variability in the inputs 
parameters (or models) are characterized as aleatory uncer-
tainty, which are irreducible in nature. Therefore, to simu-
late the behavior of a physical system, it becomes necessary 
to take these uncertainties into account. These uncertainties 
need to be identified, included, and propagated through the 
model for a reliable realization of the response quantities.

Aleatory uncertainties can be quantified by a probabilis-
tic framework, where uncertain input parameters are repre-
sented as random variables, and, therefore, characterized by 
their joint probability distribution. Thereafter, a surrogate 
model can be used to propagate uncertainty from inputs to 
outputs. Various surrogate models are surveyed in [3, 7]. 
Here, we particularly focus on non-intrusive techniques for 
constructing surrogate models for UQ purposes. Such tech-
niques do not require modification of the existing deter-
ministic solvers to provide relevant statistical information 
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1  Introduction

The development of Computer Aided Design and Engi-
neering (CAD  /  CAE) software in the past decades has 
made it possible to analyze and achieve efficient designs for 
complex engineering problems. However, accurate phys-
ics-based simulation programs can be computational very 
expensive, which is a limiting factor for the application to 
complex engineering applications. Surrogate models [1] are 
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about the problem under study. Thus, a surrogate model 
is built on an input vector and the corresponding output 
response(s).

Various surrogate models exists in the literature with 
interesting statistical properties: for example Kriging (Kr) 
[8, 9], Polynomial Chaos (PC) [10, 11], Stochastic Col-
location (SC) [12, 13], Polynomial Chaos-Based Kriging 
(PCK) [14], and Support Vector Regression (SVR) [15].

Kr is a surrogate model based on Gaussian process 
regression. Its capability to predict multi-dimensional and 
non-linear responses from scattered data gives it growing 
popularity. For example, in [16, 17], efficient and robust Kr 
schemes suitable to various realistic engineering problems 
have been presented.

The PC expansion instead approximates a stochastic 
process as a series of orthogonal polynomials with respect 
to the distributions of the input random variables [10, 11]. 
Several PC-based techniques have been developed in the 
recent years. The multi-element generalized PC method 
(ME-gPC) was introduced to address discontinuities in the 
random space by decomposing the random inputs space 
into disjoint random elements [18, 19]. Recently, a multi-
element method was proposed in [20, 21], which discre-
tizes the random space using a simplex tessellation of sam-
pling points. Multi-resolution schemes have been proposed 
in [22, 23], representing the random variables in terms of 
polynomial multi-wavelets. Recently, the PC expansion 
has also been combined with Model Order Reduction tech-
niques [24, 25], to study system described by a large set of 
equations. In [26], a sparse PC expansion was introduced 
to efficiently detect significant coefficients of PC expan-
sion based on the least angle regression algorithm, while 
a weighted �1-minimization approach was proposed in [27] 
to obtain sparse PC expansions suitable to solve differential 
equations with high-dimensional random inputs.

SC methods [28] are stochastic expansion techniques 
based on interpolations built over a pre-determined set of 
nodes in a stochastic space. The multi-dimensional inter-
polation is constructed through either full tensor product 
of one-dimensional (1D) interpolation rule or by more 
efficient schemes, like sparse grid interpolation method [6, 
12, 29], dimension adaptive [6, 30, 31], and hierarchical 
approaches. In [32, 33], an adaptive piecewise linear hierar-
chical sparse grid approximation was used [34, 35].

In this paper, we focus on Kr and SC approaches and 
their application in UQ. While the application of Kr 
approaches and SC methods in UQ has been investigated 
in the past and discussed in various contributions, e.g., [4, 
6, 9, 36], the modeling technique proposed in this paper is 
a unique combination of SC and Kr methods. It is a non-
intrusive technique and can be used in all domains where 
SC and Kr approaches have applications. It is based on the 
first building an SC model to capture the global behavior of 

the quantity under study (system response) using minimum 
number of samples possible. We do not aim to completely 
describe the system response over the stochastic space, 
but only to capture its trend (global trend of the response). 
Next, a Kr model is built to capture the variations between 
the trend (output of the SC model) and the system response 
(i.e., local neighborhood features such as extreme values). 
Hence, the proposed modeling approach is based on two 
different phases: first, the global behavior and then the local 
variations are modeled by means of SC and Kr techniques, 
respectively. The proposed ensemble of SC and Kr takes 
advantage of the unique features of the two modeling tech-
niques employed and allows to overcome their limitations, 
as described in the following sections.

This paper is structured as follows. First, an over-
view of the properties of SC and Kr methods is given in 
Sects. 2 and 3, respectively. The new modeling technique 
is described in Sect.  4, while validation is performed in 
Sect. 5 by means of suitable numerical examples. The con-
clusions are summed up in Sect. 6.

2 � Stochastic Collocation

SC methods are based on interpolation schemes to compute 
stochastic quantities. The interpolation is constructed by 
repeatedly solving (sampling) the problem at a pre-deter-
mined set of nodes in the stochastic space (also referred 
as collocation points) [12]. Various types of interpolation 
schemes can be adopted such as piecewise linear, Lagrange 
[6, 11, 31, 37]. However, the key issue of this approach is 
the selection of nodes, such that with a minimal number of 
nodes, a good approximation can be obtained. In case of 
one random variable, a stochastic process � is expressed as 
a function of the interpolation basis:

where � is a random variable, N is the number of unique 
collocation points, �(�i) is a system response matrix, and {
Li(�), i = 1,… ,N

}
 are the interpolation basis functions. 

Please note that the explicit dependency of � from the time 
(or frequency) is omitted in Eq. (1) and in the rest of the 
paper, for ease of notation. In this contribution, we adopt 
Lagrange interpolating basis functions which for the uni-
variate case, which can be written as follows:

By construction, the value of the jth Lagrange basis is 
equal to 1 for � = �j and equal to 0 for � = �i in Eq. (1): the 
SC model is equal to the function values at the collocation 

(1)�(�) =

N∑
i=1

�(�i)Li(�)

(2)Lj(�) =

N∏
i=1,i≠j

� − �i

�j − �i
.
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points. Moreover, SC heavily relies on the choice of col-
location points which minimizes the maximum interpola-
tion error [31], such as Chebyshev and Gauss points. In a 
multi-dimensional problem, these one-dimensional nodes 
are extended to a multi-dimensional grid by means of the 
tensor product. Therefore, in a d-dimensional space, the 
interpolation function can be expressed as follows:

where �k1 represents the interpolation scheme in the form 
(1) with respect to the random variable �j and �k

i
 is the ith 

node in the kth direction. A full tensor product has Nk1
×⋯×

Nkd
 nodes. Clearly, the data requirements increase rapidly 

with respect to the number of stochastic parameters. Alter-
natively, the adoption of sparse grids based on the Smolyak 
algorithm [6, 12, 29] is an efficient approach to reduce the 
required number of nodes while preserving the interpola-
tion properties: the desired interpolant is built as a linear 
combination of tensor products. More details about Smol-
yak sparse grid are given in Appendix 1.

Hence, to build an SC model, it is crucial to choose the 
interpolation scheme and the nodes selection strategy. As 
remarked above, in this contribution, we will adopt the 
Lagrange interpolation and a Smolyak grid based on the 
Clenshaw Curtis and Gauss Legendre rules to choose the 
collocation points. Clenshaw Curtis choice is particularly 
efficient, since the resulting sparse grid is nested: if addi-
tional nodes are required to accurately model the system 
response, the nodes already computed are used in the new 
sparse grid. Once an SC model has been built, stochastic 
moments can be computed very efficiently, for example, via 
numerical integration or MC analysis of the obtained SC 
model. A more detailed discussion on SC methods is given 
in [11, 12, 37].

3 � Kriging

Kr is a popular surrogate modeling technique also known 
as Gaussian process modeling and has proven to be useful 
in various engineering applications such as design and opti-
mization [2, 8]. This section discusses the basic theory of 
Kr required for the formulation of the proposed method.

We consider a sample size of N with {
X = �i, i = 1,… ,N

}
 as observations in a d-dimen-

sional space and the corresponding output response as {
y = yi, i = 1,… ,N

}
. A Kr model assumes a deterministic 

(3)

�(�) = �k1 ⊗⋯⊗ �kd

=
∑Nk1

i1=1
⋯

∑Nkd

id=1
�(𝜉

k1
i1
,… , 𝜉

kd
id
)(L

k1
i1
⊗⋯⊗ L

kd
id
)

response as a realization of a Gaussian process �(�) and is 
expressed with a regression part � (�) and a stochastic pro-
cess �(�) through the residuals:

In practice, based on the choice of the regression func-
tion used in Eq. (4), Kr can be classified by differ-
ent terms, for example with � (�) = 0 and � (�) = �0, the 
modeling process is referred to as simple or ordinary 
Kr, respectively. In general, the Kr regression function 
can be of any form, such as a combination of polynomi-
als or basis functions. Kr with such a trend function, i.e., 
� (�) = ���(�), is classified as universal Kr. It captures the 
major trend or the largest variations in the data. In particu-
lar, 

{
�1,… , �p

}
 are the regression coefficients for the basis 

functions 
{
b(�) = bi(�), i = 1,… , p

}
 and �(�) is a station-

ary Gaussian process with the properties �(�(�)) = 0,

Var(�(�)) = �2,Cov(�(�i),�(�j)) = �2�(�i, �j). The symbol 
�2 is the process variance and �(�i, �j) is a correlation func-
tion between two sampled points which is parameterized 
by a hyperparameter vector �. Note that, at any unknown 
point x in the design space, a Kr model estimates a predic-
tive Gaussian distribution with mean (output response) and 
variance (uncertainty) [38]. Now, building a reasonably 
accurate model requires an appropriate choice of the corre-
lation function and its hyperparameters. Various correlation 
functions can be found in the literature [8], such as expo-
nential, Matérn, and Gaussian correlation functions. In this 
paper, examples from different domains have been used to 
study the performance of the proposed technique. Since it 
would be difficult to choose the best covariance function for 
each specific case, to maintain coherency, we have used the 
most popular and well−known Gaussian function in all the 
numerical examples shown in the paper, which is formu-
lated as:

where �i and �j are two sampled points in the input space 
X. The hyperparameters are obtained by Maximum-Likeli-
hood Estimation (MLE) [38].

Finally, to build accurate Kr models, it is also important to 
choose the training samples well preferably by space filling 
criteria [39]. A Latin Hypercube Design (LHD) is often used 
to build Kr models. Moreover, various systematic sampling 
schemes exist to improve the Kr approximation, such as based 
on maximizing the variance [40], expected improvement 
which is purely used for optimization [41]. For a detailed der-
ivation of the Kr method, readers may refer to [38].

(4)�(�) = �(�) + �(�).

(5)R(�i, �j) = exp

(
−

d∑
k=1

�k|�ki − �k
j
|2
)
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4 � Stochastic Collocation and Kriging ensemble

4.1 � Introduction

Even if the two methods described in Sects. 2 and 3 are 
both interpolation-based, they have quite different char-
acteristics. Let us consider SC models in the form of Eq. 
(3), which are based on a tensor product of the one-dimen-
sional interpolation functions for each dimension. Now, the 
value of such a SC model in a specific point of the stochas-
tic space depends on the value of the interpolant built for 
each dimension. Hence, the nodes selection strategy for the 
interpolation in each dimension is chosen from a node dis-
tribution which guarantees a good quality of the interpola-
tion (such as the extrema of the Chebyshev polynomials) 
[6]. As a result, the value of the stochastic process under 
study in each node contributes to the value of the SC model 
in each point of the stochastic space. Now, SC models 
which take advantage of the Smolyak sparse grid construc-
tion are based on the same principle. However, only a sub-
set of the total nodes resulting from a full tensor product 
of each one-dimensional interpolant functions is used, see 
Appendix 1. These sub-sets are based on a constraint on the 
maximum order of the (overall) interpolating polynomial 
function.

Instead, Kr-based modeling approaches interpolate 
based on the underlying covariance structure. Once the 
covariance function is estimated, a Kr model can predict 
the values of the system response at new points in the sam-
ple space. To estimate the covariance function, it is well 
known that space filling sampling is an advantage [42, 43].

Hence, SC and Kr-based methods have different prop-
erties: SC modeling approaches are simple to implement, 
stable, and in general can conveniently handle non-linear 
or complex problems. However, they are based on a pre-
determined set of nodes which depends on the maximum 
degree chosen for the (overall) interpolating polynomial 
function, see Eq. (17). For instance, the node require-
ments for SC models based on a specific sampling strategy 
(Smolyak sparse grid based on the Clenshaw–Curtis rule) 
for different number of random parameters are shown in 
Table 1. It can be seen that the number of nodes required to 
build a sparse grid increases drastically with respect to the 
number of parameters considered. Whereas, Kr can accept 

irregularly filled data and interpolates based on the correla-
tion between known data for unknown values in the sample 
space: it can easily capture the local characteristics of the 
underlying function.

In this contribution, we propose a combined SC and Kr 
framework (SCK), which overcomes the limitations of both 
approaches. The core of the proposed method is building an 
SC model based on a low-degree polynomial interpolant. 
Such an SC model will not be accurate enough to describe 
the variations of the stochastic process under study over the 
entire design space, but is able to capture the global trends 
in such process. Furthermore, since the degree of the inter-
polant is directly related to the node requirements, the total 
number of collocation points used to build such SC model 
is relatively limited. Note that SC methods are particularly 
suitable to fill this role, since the value of the SC model in 
each point of the stochastic space depends on the value of 
the interpolant built for each dimension.

Next, a Kr model is built to capture the deviations of 
the stochastic process from its global trend: Kr is used to 
describe the local variations of the stochastic process under 
study. Note that the Kr model can be built on the samples 
generated from any experimental design: a pre-determined 
set of samples is not required. Furthermore, various system-
atic sampling schemes can be adopted (Sect. 3) to improve 
Kr approximation. Hence, the proposed method combines 
the accuracy of SC methods in describing stochastic quan-
tities with the flexibility and modeling power of Kr.

In the PCK approach (which is a particular case of uni-
versal Kr), the mean function of Kr is replaced by a set of 
an orthogonal polynomials. Note that these polynomials 
are obtained through PC using the same set of data which 
is used to construct Kriging model, whereas it is different 
in SCK where SC nodes are not used to construct Kriging 
model (as the residuals there would be zero). However, as a 
result, the Kr model in the PCK formulation can be compu-
tationally complex. In particular, when number of dimen-
sions increases, the corresponding number of PC basis 
function increases as well, which may lead to an expensive 
model evaluation, as shown in the numerical examples, 
Sect. 5.3.

Now, using SC basis functions (Lagrange) as a mean 
function for Kr will have the same drawback as the 
PCK approach. The proposed approach overcomes such 

Table 1   Number of nodes 
required for construction of 
the Smolyak grid based on 
Clenshaw–Curtis rule

Two dimensions
 Level 1 2 3 4 5 6 7 8
 No. of nodes 5 13 29 65 145 321 705 1537

Eight dimensions
 Level 1 2 3 4 5 6 7 8
 No. of nodes 17 145 849 3937 15713 56737 190881 609025
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problems using a different approach with respect to univer-
sal Kr: the SC is used to model the global behavior (trend) 
of the system response, while Kr models the variations 
between the trend and the system response and modeled 
separately.

Not only the proposed modeling approach takes full 
advantage of capability of SC of adopting collocation 
points able to minimize the interpolation error, but the 
proposed technique is particularly suited for UQ analysis 
where multiple model evaluations are required to estimate 
complex stochastic quantities like the probability distribu-
tion function (PDF) and cumulative distribution function 
(CDF), since the SC and Kr part of the SCK model can 
be evaluated separately and in parallel. Furthermore, sim-
ple stochastic moments can be efficiently computed, see 
Sect. 4.3, even analytically.

4.2 � Conceptual formulation

We use the same notations as described for the SC and Kr 
formulation in this section as well. We denote ���(�) and 
��rig(�) as the SC and Kr computational model responses, 
respectively.

The whole process is conceived in two steps. In the first 
step, a sufficiently reliable SC model ���(�) (Eq. 1) is built 
on pre-defined nodes of size N 

{
�SC = �i, i = 1,… ,N

}
 in 

an input space Ω using a sparse grid construction. A bet-
ter accuracy could be achieved by increasing the level of 
the sparse grid which significantly increases the number of 
nodes as well, but this is not the objective here.

In the second step, M samples 
{
�K = �j, j = 1,… ,M

}
 

are generated using space filling methods. Subsequently, 
the response of the SC model over these samples is 
obtained 

{
���(��), i = 1,… ,M

}
.

Next, we compute the SC model error over the M sam-
ples �K as Δ� = �Exact(�K) − �SC(�K), where �Exact(�K) 
is the output response on the samples �K. Taking �K as the 
input data and Δ� as the corresponding response, a Kr 

model ��rig(�) is then built over the sample space. Finally, 
the response on any new sampled point � in the input space 
is computed as sum of the SC and Kr models explicitly 
expressed as follows:

It is important to note that the �K samples must be dif-
ferent from the �SC samples, since, by construction, the SC 
model is equal to the system response on the nodes, leading to 
Δ� = 0. The sampling strategy and the flowchart of the pro-
posed SCK method are shown in Figs. 1 and 2, respectively.

4.3 � SCK‑based uncertainty quantification

SC and Kr are popular approaches to approximate stochas-
tic behaviors in UQ problems (see Sects. 2 and 3). A typical 
UQ problem involves determination of statistical moments 
of the output quantities of interest with respect to the joint 
input distribution. To compute these moments, integrals have 
to be solved such as for the mean, i.e., Eq. (8) and variance 
(�2), i.e., Eq. (9). The standard approach for UQ is the Monte 
Carlo (MC) method, which is accurate and robust, but not 
computationally efficient, due to the high number of required 
simulations. In case of SC, statistical moments can be com-
puted as described in Sect.  2, namely via analytical formu-
las (when possible) or numerical integration techniques [11]. 
Note that Kr mean and variance can be computed analytically 
too via MC analysis based on the computed Kr model:

(6)�SCK(�) = �SC(�) + �Krig(�)

(7)=

N∑
i=1

�(�)Li(�) + ���(�) + �(�).

(8)� = ∫Ω

�(�)W(�)d�

(9)�2 = ∫Ω

(�(�) − �)2W(�)d�.

(a) SC nodes (b) Kr (LHD) (c) SCK

Fig. 1   Two-dimensional case, a SC nodes (13 nodes) based on Clenshaw Curtis, b LHD of 10 samples for Kr, and c final combined 23 samples 
for SCK
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Now, the mean of any stochastic process � described via an 
SCK model can be computed as follows:

where �SC and �Krig are the mean of SC and Kr models. 
Hence, the mean of the stochastic process under study is 
the sum of the means of the SC and Kr models: both �SC 
and �Krig can be computed via the specific techniques avail-
able for standard SC and Kr modeling approaches (such as 
analytical, numerical integration or MC-based calculation).

The variance computation via SCK model is more com-
plex. Indeed, Eq. (9) can be written as:

(10)

�SCK = ∫Ω

����(�)W(�)d�

= ∫Ω

(���(�) + ��rig(�))W(�)d�

= ∫Ω

���(�)W(�)d� + ∫Ω

��rig(�)W(�)d�

= �SC + �Krig

(11)

�2
SCK

= ∫Ω

(�(�) − �)2W(�)d�

= ∫Ω

(���(�) + ��rig(�) − �)2W(�)d�

= ∫Ω

(���(�)
2
− 2����(�) + ��rig(�)

2
− 2���rig(�)

+ �2 + 2���(�)��rig(�))W(�)d�.

Using Eq. (10) and expanding, Eq. (11) is further simpli-
fied as:

where

Hence, the variance of the stochastic process under study 
can be expressed via Eq. (12) and (13) as the sum of:

–– a term �2
SC

 describing the variation of the global trend, 
which is exactly the variance of the SC model and it can 
be computed via any method available for standard SC 
modeling techniques.

–– a term �2
Krig

 describing the variation of the local trend, 

which is exactly the variance of the Kr model and can 
be estimated accordingly.

–– a term 2�SC�Krig which is the product of the means of 
the SC and Kr models.

–– a term �SCKrig depending on the interaction of the SC 
and Kr model, which must be computed via numerical 
methods.

Note that if Eq. (13) is computed via numerical integra-
tion and the integrand is evaluated over the nodes chosen to 
build the SC model, then �SCKrig = 0: indeed, the Kr model 
is equal to zero in such nodes by construction (Sect. 4.2). 
For example, if the stochastic process depends on the Nor-
mal random variables and the Gauss points are used to 
compute the SC model, computing �SCKrig via numerical 
integration will give a non zero result only if the number 
of points used to estimate integral (13) is higher than the 
number of nodes used to compute the SC model.

It is evident from Eq. (10) that the proposed SCK 
approach preserves properties of SC and Kr in mean com-
putation. Moreover, variance computation via Eq. (12) 
depends on the moments of SC and Kr models and an 
interaction integral which can be computed via numerical 
methods.

5 � Numerical examples

5.1 � Problem setup

Here, we demonstrate the performance of the proposed 
SCK approach for systems under the influence of uncer-
tainty. The effectiveness of the new proposed ensemble 
technique (SCK) is compared with the state-of-art tech-
niques Kr [8], SC [28], PC expansion [10], and PCK 
[14] on various problems. We consider two analytical 

(12)�2
SCK

= �2
SC

+ �2
Krig

− 2�SC�Krig + �SCKrig

(13)�SCKrig = 2∫Ω

(���(�)��rig(�))W(�)d�.

Fig. 2   Description of the proposed ensemble modeling strategy 
(SCK)
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benchmark problems, while in the first case, we dem-
onstrate the modeling capability of SCK and the sec-
ond case shows the effectiveness in comparison to other 
approaches. Moreover, two practical engineering prob-
lems: a photonic directional coupler and a mechanical 
truss structure are considered in uncertainty analysis. In 
the following, we describe the specific settings adopted to 
build such models.

The SC technique for the numerical example considered 
is constructed over a Smolyak sparse grid based on the 
Clenshaw–Curtis and Gauss Legendre nodes [29], respec-
tively. The Kr models have been computed via the open 
source ooDACE toolbox [44, 45]. The Gaussian correla-
tion function given in Eq. (5) is used in all cases. The sam-
ples used to build the Kr models are generated via LHD 
sampling. Note that the proposed SCK method is based 
on the same setting adopted for the SC and Kr modeling 
techniques.

The PC expansion considered in the contribution is 
based on the least angle regression (LAR) algorithm and 
UQlab, a MATLAB UQ framework [46]. A more recently 
proposed Polynomial Chaos-Based Kriging (PCK) [14] 
modeling technique is used to compare the performance of 
the new proposed SCK method. It is a particular case of 
universal Kr, where a set of optimal orthogonal polynomi-
als which are determined from LAR are used in the trend 
function of universal Kr. A complete discussion about the 
properties of PC and PCK is outside the scope of this con-
tribution, but the interested reader can refer to [10, 11, 14, 
37].

In the following section, various problems of dimen-
sionality from two to ten and with different distributions 
of random variables are considered. The modeling power 
of all considered approaches is assessed by means of root-
relative-squared-error measure (RRSE):

where � is the surrogate model response over N sample 
points and E[⋅] is the expectation of the output values �Exact, 
while the corresponding UQ is performed via MC analysis 
based on the selected surrogate modeling techniques.

5.2 � Analytical benchmark functions

We considered two widely used analytical benchmark 
functions (Ackley [47, 48], and Sobol [49, 50]) of differ-
ent dimensionality to describe in detail the calculation of 
an SCK model and to illustrate its modeling capabilities. In 
both the examples, the chosen random variables are consid-
ered independent and uniformly distributed.

(14)RRSE =

∑N

i=1

�
�Exact

i
− �i

�2
∑N

i=1

�
�Exact

i
− E

�
�Exact

��2

5.2.1 � Ackley function (2D)

The Ackley function is characterized by a global opti-
mum and several local minimums. In a two-dimensional 
space, the random inputs are defined by their respective 
distributions 

{
X1,X2

}
 ∼ U[−2, 2]. It is expressed in terms 

of the random inputs as:

where a = 20, b = 0.2, and c = 2�, and K = exp(1) are 
taken from [51]. For illustration purposes, a step by step 
landscape plots of building the SCK model is plotted. In 
Fig. 3a and b, the Ackley function and the SC model built 
on a sparse grid of level 4 are compared. It is important 
to note that the SC model captures the global trend easily; 
however, it fails to model the local variations (peaks and 
downs here) precisely with a low interpolation level. In 
Fig.  3c, such local variations (ΔY) are indicated by black 
dots and are easily captured by the Kr model built on the 
same set of data on which the residual error is computed 
(Fig.  3c). The final SCK plot is shown in Fig.  3d, which 
clearly resembles the Ackley function. Finally, in Fig.  4a 
and 4b, the performances of all five modeling approaches 
are compared on a RRSE scale: SCK offers a better accu-
racy than SC and PC and shows comparable RRSE with 
respect to Kr and PCK approaches.

5.2.2 � Sobol function (8D)

In eight dimensions, the Sobol function is defined as 
follows:

where the random variables are 
{
X1,… ,X8

}
∼ U[0, 1], and 

c is considered [ 1, 2, 5, 10, 20, 50, 100, 500] from [50]. 
Since the number of parameters are relatively high, the 
problem is affected by the curse of dimensionality. For SC-
based approaches, the efficient sparse grid construction 
in high dimensions also results in a rapid increase in the 
number of collocation points with respect to the increase in 
interpolation level, see Table 1. Fig. 5a, b shows the RRSE 
of the five different modeling approaches with respect 
to the number of samples used to build the correspond-
ing model. Note that SCK outperforms both SC and Kr in 
terms of RRSE and sample size, as described in Fig.  5a, 
and shows comparable performance with respect to PC and 
PCK.

(15)

f (�) = −a exp

⎛⎜⎜⎝
−b

����1

2

2�
i=1

xi
2

⎞⎟⎟⎠
− exp

�
1

2

2�
i=1

cos
�
c xi

��
+ a + K

(16)f (�) =

8∏
i=1

|4 xi − 2| + ci

1 + ci



	 Engineering with Computers

1 3

2

x
1

0

-2-2

0

x
2

8

0

2

4

6

2

f(
x)

(a) Ackley function

2

x
1

0

-2-2

0

x
2

2

4

8

6

0
2

Y
S
C

(b) SC

2

x
1

0

-2-2

0

x
2

1

-3

-2

-1

0

2

Y
K
r

(c) Kriging

2

x
1

0

-2-2

0

x
2

6

8

2

0

4

2

Y
S
C
K

(d) SCK

Fig. 3   a Ackley function, b SC model (level 4, 65 points), c Kr model built on 435 samples and residual error (ΔY) shown by dots, and d SCK 
model built on 500 samples
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5.3 � Engineering applications

In this section, complex UQ problems of different engineer-
ing domains are studied. In the first example, we consider 
a 2D photonics problem (directional coupler) described in 
[13]. While, in the second case, a 10D mechanical truss 
structure [52] is studied for horizontal displacement at the 
free end.

5.3.1 � Directional coupler (2D)

The proposed SCK modeling approach is applied to the UQ 
of a directional coupler (DC) in a silicon photonics plat-
form [13] and shown in Fig. 6.

Precisely, the variance of the DC coupling coefficient � 
is estimated with respect to the variability of the two geo-
metrical parameters: the width w and thickness t of the DC 
are considered as the two correlated random variables fol-
lowing the Gaussian distribution. The nominal value of 

the width and thickness is considered as 450 and 220 nm, 
respectively, with normalized standard deviation of 2% with 
respect to their nominal value. It is assumed a correlation 
coefficient of 0.9 for the two random variables.

The proposed problem was studied in [13] only by 
means of the SC method, while here it is used to compare 
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Fig. 5   RRSE plot for SC, Kr, PC, PCK, and SCK for the Sobol function

Fig. 6   Left plot perspective view of a symmetric DC [13], where the 
Red arrows indicates the flow of light. Right plot Amplified cross sec-
tion. The mean width and thickness of the DC are w

o
 and t

o
, respec-

tively. The width w and thickness t of the fabricated DC are indicated 
as dashed boxes

Table 2   Performance summary of Kr, SC (levels 2 and 3), PC, PCK, 
and SCK

Note that the mean obtained by Fimmwave-based MC analysis is 
equal to 65159

Algorithm Number of 
samples

Mean Percentage 
error (mean)

RRSE

Kr 25 65189 0.046 4.67× 10−2

SC (level 2) 13 65334 0.268 1.30× 10−2

SC (level 3) 29 65211 0.079 8.08× 10−3

PC 25 65121 0.058 1.48× 10−2

PCK 25 65165 0.009 2.96× 10−3

SCK 25 65149 0.015 9.85× 10−4
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performance of all five different techniques considered, 
namely Kr, SC, SCK, PC, and PCK. Note that the two 
random variables (w, t) are first de-correlated via a vari-
able transformation using the Karhunen-Loéve expansion 
[53], then all the different modeling techniques consid-
ered are based on the independent Gaussian random 
variables obtained via such variable transformation. A 

sample budget of 25 samples generated by LHS is used 
for all the selected approaches, with the exception of SC. 
Indeed, SC models are built over a pre-determined set of 
nodes chosen by means of the Smolyak algorithm (see 
Sect. 2 and Appendix 1): to describe the SC performance, 
two different sample sets consisting of 13 and 29 nodes 
are considered (corresponding to a Smolyak grid of level 
2 and 3, respectively). A validation set of 10000 samples 
is used to compute the RRSE of all the approaches and to 
estimate statistical quantities via the MC analysis. Fim-
mwave, a commercially available software, is used to cal-
culate the corresponding value of � on a given geometry. 
The Fimmwave simulations have been performed on an 
Intel Core i5 2500 quad-core clocked at 3.3 GHz and 8 
GB of memory.

The RRSE of all the modeling approaches is shown in 
Table  2. The proposed SCK method shows better mod-
eling accuracy compared to Kr, SC, PC, and PCK. More-
over, the mean obtained by the five surrogate models 
for the coupling coefficient is reported in Table  2. Note 
that for the SC, SCK, PCK, and Kr model, the mean is 
obtained by MC simulation (10000 samples) on the con-
structed model, whereas in the case of the PC model, it is 
obtained analytically. From the results shown in Table 2, 
the mean value obtained by SCK is in excellent agree-
ment with respect to the corresponding value obtained by 
the MC method, leading to a relative error of less than 
0.01%.

Next, Fig. 7a presents the standard deviation (STDEV) 
of the coupling coefficient obtained via all five approaches. 
The percentage error is computed with respect to the ref-
erence MC value (STDEV = 2616.9). SCK gives best 
STDEV estimation when compared to other surrogate mod-
els. Note that the percentage error of the SC model built 
with 29 samples is shown in Fig. 7a. In addition, the PDF 
and CDF of � obtained by SCK and MC are in good agree-
ment, as shown in Fig.  7. Note that SCK offers the most 
accurate estimation of PDF and CDF when compared with 
the other surrogate models, see Fig. 7. The PDF and CDF 
of the SC method are not shown here, since the correspond-
ing model was build on a different number of samples with 
respect to the other methods considered.

Furthermore, in Table  3, the computational cost of all 
selected approaches is compared. The total computational 
time is the sum of time required to build a model and MC 
simulations of the constructed model to estimate statisti-
cal moments (mean and standard deviation). Note that for 
the PC model, the statistical moments are computed ana-
lytically from the PC coefficients. The total computational 
time for SCK is 201.9s, which represents a speed-up of a 
factor 390× with respect to MC simulation which requires 
21 h 53 min and 14 s to perform Fimmwave simulations on 
10000 samples. Overall, computational cost of SCK is less 

Table 3   Total computational time (seconds) required to build and 
evaluate (10000 samples) each surrogate model

Note that SC model is built with a level 3 sparse grid

Algorithm PC Kr SCK SC PCK

Number of samples (N) 25 25 25 29 25
Fimmwave solver (N) (s) 196.9 196.9 196.9 228.4 196.9
Model building (s) 3.55 3.61 2.49 0.09 4.25
Evaluation (s) 0.01 0.05 2.58 10.71 10.41
Total time (s) 200.4 200.5 201.9 239.2 211.5

Fig. 8   Truss structure with 23 members

Table 4   Distribution parameters for input random variables

Variable Distribution Mean STDEV

E1,E2 (Pa) Lognormal 2.10 × 1011 2.10 × 1010

A1 (m2) Lognormal 2.0 × 10−3 2.0 × 10−3

A2 (m2) Lognormal 1.0 × 10−3 1.0 × 10−4

P1 − P6 (N) Gumbel 5.0 × 104 10.0 × 103

Table 5   Performance summary of Kr, SC (levels 1 and 2), PC, PCK, 
and SCK

Note that mean obtained by MC analysis is equal to 18.459

Algorithm Number of 
samples

Mean RRSE

Kr 150 18.437 5.90 × 10−3

SC (level 1) 21 18.456 1.20 × 10−2

SC (level 2) 261 18.459 6.19 × 10−5

PC 150 18.458 2.57 × 10−3

SCK 150 18.458 2.45 × 10−4

PCK 150 18.454 2.37 × 10−4
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than SC and PCK, while it has a similar performance with 
respect to Kr and PC approaches.

5.3.2 � Truss structure (10D)

In this example, we study a 2D truss structure as described 
in [52] for the displacement (H1) of roller end in the hori-
zontal direction. It is comprised of 23 horizontal and 
inclined members, as shown in Fig. 8. The truss structure is 
subjected to various point loads which are acting vertically 
on the nodes of the top frame.

Ten random variables are considered in the analysis, 
namely, the elastic modulus (E1, E2), the area of cross sec-
tion (A1,A2) of the horizontal and diagonal truss elements, 
respectively, and the vertical point loads acting upon the 
top frame (P1,… ,P6). Such variables are assumed as 
independent following the distributions in Table  4. The 
complete structure is analyzed by a finite-element model 
comprised of 23 bar elements for the horizontal displace-
ment at the free end by a finite-element program (FE) writ-
ten in MATLAB. These simulations have been performed 

on an Intel Core i5 4570 clocked at 3.2 GHz and 8 GB of 
memory.

A sample budget of N = 150 is used to construct sur-
rogate models based on Kr, PC, PCK, and SCK. As for 
the previous example, two different SC models based on a 
level 1 (N = 21) and a level 2 (N = 261) Smolyak sparse 
grid are built. Table 5 describes the performance of the dif-
ferent modeling techniques. Note that the PCK and SCK 
models show the lowest RRSE error for the same sample 
size, while a level 2 SC model offers higher accuracy, but 
requires 74% more samples. Furthermore, all the modeling 
techniques are able to accurately estimate the mean value 
of the displacement at the free end, giving errors smaller 
than 0.1% with respect to the MC method (mean= 18.459). 
Moreover, as shown in Fig.  9a, STDEV computed by 
means of the SCK model is very accurate, with a relative 
percentage error of 0.33%, which is a significant improve-
ment over SC (level 1) and the Kr models. Note that PCK 
and SCK show a percentage error of STDEV < 0.39% for 
the same sample budget. It is important to mention that the 
percentage error of the SC model built with 261 samples is 
shown in Fig. 9a. Finally, Fig. 9b shows the PDF and CDF 
of the displacement at the free end obtained by SCK and 
MC method, which are in excellent agreement.

The high modeling accuracy of PCK comes at the 
expense of relatively high computational cost, see Table 6. 
This is to be expected, since PCK is a particular case of uni-
versal Kr which relies on high order polynomial terms as a 
trend function: the model complexity increases with respect 
to the Kr approach considered. Note that with the increase 
in number of dimension, the number of polynomial terms 
increases rapidly in the trend function in PCK. Based on 
computational efficiency, SCK clearly outperforms PCK. 
In particular, Table 6 shows the total time required to built 
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Fig. 9   a presents the percentage error in estimating STDEV of the deflection at the free end by means of all five surrogate models. In b, the 
PDF and CDF of the deflection (in centimeter) at the free end are plotted

Table 6   Total computational time (seconds) required to build and 
evaluate (50000 samples) each surrogate model

Note that SC model is built with a level 2 sparse grid

Algorithm PC Kr SCK SC PCK

Number of samples (N) 150 150 150 261 150
FE solver (N) (s) 0.41 0.41 0.41 0.71 0.41
Model building (s) 2.9 2.5 8.0 0.1 11.1
Evaluation (s) 1.0 132.0 404.0 1477.5 1938.2
Total time (s) 4.31 134.9 412.4 1478.3 1949.7
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each model and evaluate statistical moments. Note that the 
analysis of the truss structure under study is extremely fast 
to solve for displacement using a FE solver. As a result, 
MC simulations are very fast, and therefore, it is meaning-
less to compare the computational cost of selected methods 
with MC.

6 � Conclusion

In modern engineering design, surrogate models are a valu-
able tool to carry out fast analysis of computation intensive 
processes. However, this leverage comes at the expense of 
a loss of accuracy. In this paper, a new modeling scheme 
is proposed based on SC and Kr. The proposed SCK algo-
rithm is evaluated and compared over various benchmark 
and realistic problems with four different state-of-art tech-
niques for surrogate modeling and uncertainty quantifica-
tion, namely, SC, Kr, PC, and PCK. The proposed method 
clearly outperforms SC and Kr techniques and shows com-
parable performance with respect to the PC and recently 
proposed PCK modeling approach, especially when a high 
level of accuracy is required.

Appendix: Smolyak algorithm

The sparse interpolant �L,d given by the Smolyak algorithm 
is [54]

(17)

�L,d(�) =
∑

L−d+1≤|�|≤L
(−1)L−|�|

(
d − 1

L − |�|
)(

Uk1 ⊗⋯⊗ Ukd
)

where AL,d is the weighted sum of d dimensional product 
rule, the vector � is formed by the interpolation level or 
order used for each variable, here |�| = k1 +⋯ + kd, and L 
is the maximum level assumed for the sparse grid. In the 
above expression, the desired interpolant AL,d is formed by 
combination of the one-dimensional rules Uki of order ki 
which sum or total order |�| never exceeds the maximum 
level L.

To form an interpolant �L,d in Eq. (17), the total num-
ber of points ( �L,d) used by the interpolant is given by the 
following:

where Θ denotes the set of points used in the one-dimen-
sional function interpolation. Moreover, by choosing a suit-
able one-dimensional node scheme, e.g., Chebchev points, 
the set of collocation points Θk obtained are nested.

To illustrate the grid construction based on the tensor 
product and sparse grid, a two-dimensional example is used 
here. In particular, the Clenshaw–Curtis rule is adopted to 
choose the node for the interpolation in each dimension: the 
resulting collocation point is the extrema of the Chebyshev 
polynomials. The total number of points (�4,2) using a level 
4 sparse grid is obtained by Eq. (18). As result, a maximum 
of 17 nodes are chosen for each dimension and a total of 
65 collocation points (Fig.  10b) are required to build the 
desired SC model. The corresponding tensor product grid 
is obtained by the product of the 17 nodes chosen in each 
dimension by the Clenshaw–Curtis rule. As a result, 289 
(17 × 17) points (Fig. 10a) are required to build the desired 
SC model by a tensor product, which is approximately 4.5 
times the total number of points required by the corre-
sponding sparse grid.

(18)�L,d =
⋃

L−d+1≤|�|≤L
Θ

k1
1
×⋯ × Θ

kd
d

(a) Full tensor product (b) Sparse grids on Clenshaw Curtis

Fig. 10   Two-dimensional tensor product based on 17 samples for each variable and corresponding Smolyak sparse grid �4,2 based on the Clen-
shaw Curtis rule
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