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Abstract—This paper presents a novel approach for accurate
and efficient time-domain simulations of general linear and
passive photonic systems. Starting from the scattering parameters
of the device or component under study, an equivalent baseband
model in state-space form can be derived, which splits the optical
carrier frequency and operates at baseband, thereby significantly
reducing the modeling and simulation complexity without losing
accuracy. The novel proposed method is validated via a suitable
application example.

Index Terms—Modeling and simulation, photonic integrated
circuits, state-space representation, time-domain analysis.

I. INTRODUCTION

Silicon photonics had a remarkable development in com-
plexity and functionality in recent years, thanks to the progress
in the manufacturing technology. Time-domain simulation is
an essential part of the design flow of photonic integrated
circuits, since it gives the most intuitive assessment of systems
performance. Several time-domain simulation methods exist:
finite-difference time-domain (FDTD), time-domain traveling
wave (TDTW), split-step method (SSM), coupled mode the-
ory (CMT), and convolution-based methods. However, for
component- or circuit-level simulations, a trade off between
accuracy and efficiency must be adopted when performing
time-domain simulations via these techniques.

In this contribution, a novel approach for the analysis of
general linear and passive photonic systems (such as waveg-
uides, directional couplers, ring resonators) is proposed, which
is based on the concept of lowpass equivalent signal and
system representation defined in communication theory [1].
In particular, a suitable baseband model in state-space form is
built for the lowpass equivalent representation of the system
under study, which splits the optical carrier frequency and
allows one to perform time-domain simulations at baseband
efficiently. It is important to remark that the outputs of the
photonic system under study can be analytically recovered
from the outputs of the corresponding baseband model. The
properties of the proposed methodology are discussed in
details in the rest of the contribution.

II. MODELING AND SIMULATION OF LINEAR AND PASSIVE
PHOTONIC SYSTEMS
A. Equivalent Baseband Models Definition

The excitation signal of photonic systems is often an am-
plitude and/or phase modulated signal with optical carrier and
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electronic modulating signals, which can be described as
a(t) = A(t)cos(2m fot + (1)) (1)

where A(t) and ¢(t) are the time-varying amplitude and phase,
respectively. An analytic complex-valued representation a,, ()
of this real-valued modulated signal (1), called analytic signal,
is introduced here as [1]

aq(t) = a(t) + jH(a(t)) = A(t)ej(27rfct+d>(t)) @)

where H(a(t)) is the Hilbert transform of a(t). Now, the
corresponding lowpass equivalent of the analytic signal can
be defined as [1]

ai(t) = aq(t)e 2™ = A(t)e??®. 3)

The relations between a(t), H(a(t)) and a;(t) are
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Re(a;(t)el?™ /ety 4)
H(a(t)) = Im(ay(t)e’> ). (5)
Note that a;(t) is the complex envelope of a(t) [1].

Let us assume that the linear and passive photonic system
under study is described by a state-space model in the form

dfét) —  Ax(t) + Bal(l) (6)
b(t) = Cuz(t) + Dal(t)

where A € CEXK B e REXN Ce CV*K D e RVXN K
is the number of states in the state-vector x(¢); N is the num-
ber of ports of the system under study and a(t) and b(t) are the
vectors of the incident and reflected waves, respectively. The
methodology to build this state-space model will be described
in Section II-C. Now, the time-domain behavior of the system
under study can be studied by solving the system of first-order
ordinary differential equations (ODE) (6) for the given input
signals a(t). However, a photonic system typically operates at
frequencies around hundreds of terahertz, such as [187; 200]
THz, corresponding to a wavelength of [1.5; 1.6] pum: a time-
step of the order of femtoseconds is required to solve (6), given
that such time-step must be smaller than the period of the
highest frequency component of the signals considered. Hence,
time-domain simulations based on (6) can be computationally
expensive and memory consuming. In order to address this
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Fig. 1. Relation between the frequency response of the physical state-space
model (6) (top) and of the new derived baseband state-space model (8)
(bottom).

issue, an equivalent baseband model in state-space form is
derived in the following.
By applying the Hilbert transform to (6) and by expressing
a(t), b(t) and x(t) in the forms (4) and (5), leads to
d (z;(t)es2mfet . ,
( l( ()ﬁ ) — Axl(t)e]%rfct +Bal(t)e]2wfct
b (t)eﬂﬂfct = Cua (t)ejzﬂf“t + Dal(t)eﬂﬂfct.
(N
After simple mathematical manipulations, (7) can be written
as

d-’fcdlt(t) = (A—jorf.)z(t) + Bay(t) ®)
bu(t) = Cx(t) + Day(t)

where I is the identity matrix. We define (8) as the equivalent
baseband (state-space) model of the photonic system repre-
sented by (6). In frequency domain, it can be proven that the
frequency response S;(f) of the model (8) is equivalent to the
frequency response S(f) of the model (6) shifted by f. [2],
as illustrated in Fig. 1.

Now, the time-domain simulation of the photonic system
considered can be performed in baseband by solving (8) with
respect to the lowpass input signal (3): given that the frequency
spectrum of the lowpass signals is of the order of the gigahertz,
since it depends only on the electronic modulating signal
as described by (1) and (3), a relatively large time-step can
be used. Finally, the output of the photonic system can be
analytically recovered from the lowpass equivalent output,
see (4). The relations among photonic signals and systems
and their equivalent counterparts are shown in Fig. 2.

B. Passivity of Equivalent Baseband Models

It is of paramount importance for time-domain simulations
that relevant physical properties of the system under study,
namely stability and passivity, are guaranteed [3]. In the

[ Input H Photonic System H Output ]
Lowpass Equivalent Lowpass
Equivalent Input Baseband Model Equivalent Output

Fig. 2. Time-domain simulation of equivalent baseband models.

following, it will be investigated if the proposed equivalent
baseband models still preserve such properties.

According to [4], [5], an n-port electronic system is passive
if, for any 7 > —oc and v(t) € Lo, (La, denotes the space
of all vectors whose n components are functions of a real
variable ¢ and square integrable over —co < t < o0), it holds

Re/

where v(t), i(t) are the voltage and current at the system
ports. It is important to note that this definition is given not
only for real signals but also for complex ones. By expressing
(9) in terms of the forward a(t) and backward b(t) waves, the
passivity definition becomes [4], [6]

/.
which is more convenient to describe photonic systems. Note
that the superscript ¥ stands for the transpose conjugate
operator.

Following the same proof process in [4], particularly The-
orem 2 and Theorem 3, the following passivity constraints on
the scattering parameters S;(s) of the equivalent baseband
models can be derived from (10) [2]:

1) Si(s) is analytic in Re(s) > 0;

v (t)i(t)dt >0 )

a (t)a(t) — b (t)b(t)dt > 0 (10)

2) I — S1(s5)8;(s) is a nonnegative-definite matrix for all
s such that Re(s) > 0.

The first condition is related to causality and stability; while
the second one basically ensures that S;(s) is bounded. Alter-
natively, the same conclusions can be reached via the approach
in Chapter II of [6], which gives a simpler formal proofs by
using the theory of distributions. The interested reader may
consult [4] and [6] for a detailed and comprehensive proof.
Note that the passivity constraints on the scattering parameters
of physical systems are identical, but one additional condition
must be satisfied: S(s*) = S™(s). This constraint ensures
that the system impulse response is real [7], so that a real
input results in a real output, and makes the system physically
realizable [4], [6]: this is not necessary for the equivalent
baseband models presented in this contribution, since they are
defined as a mathematical representation of the system under
study with complex-valued input and output signals.

Hence, the passivity of baseband models in the form (8)
can be assessed by the same methods applicable to state-space
models in the form (6). For example, the Hamiltonian matrix
M, for the equivalent baseband models can be derived by
following the same process in [8], leading to

A, — BL'DfC —-BL'BY

Ml: |: CHQ—IC _AIPI+CHDL—1BH (11)

where
A =A—jonfd
L=D"D-1
Q=DD" —T.
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Fig. 3. Flow chart of the proposed modeling strategy.

C. Proposed Modeling Framework

Starting with the scattering parameters of the system under
study evaluated for a set of frequency samples around the
carrier frequency, the Vector Fitting (VF) algorithm [9]-[12]
can be adopted to compute a stable and passive pole-residue
model in the form

Q
S(s)=>Y_ R,

g=1° " Pa

+ D

12)

where the poles p, and residue matrices R, € CN*V
are either real or complex conjugate pairs, the matrix term
D € RY*N s the same as in (6), Q is the total number of
the poles p, and residue matrices R,. A pole-flipping scheme
is used to enforce stability [9], while passivity assessment and
enforcement can be accomplished using the robust standard
techniques [8], [11], [12]. Then, such pole-residue model can
be readily converted into a stable and passive state-space
representation (6) [8]: the matrix A can be expressed as a
diagonal matrix containing all the poles p,, while C'is formed
by all the residues R, and B contains only elements equal
to zero or one. Hence, the desired equivalent baseband model
(8) can be obtained by shifting all the diagonal elements in
A by j2nf. and its passivity can be checked by means of
the Hamiltonian matrix (11). The flow chart of the proposed
modeling strategy is shown in Fig. 3.

In [17, [13] a similar poles-shifting approach for microwave
systems is directly carried out only on the pole-residue model
in the Laplace domain. Then, the time-domain simulation in
both [1] and [13] is performed via convolution. In this paper,
equivalent baseband models are defined as a linear, time-
invariant, continuous systems whose time-domain simulation
is conducted by directly solving the ODE in (8). Furthermore,
the passivity conditions on both the equivalent baseband
models and corresponding scattering parameters are derived.

III. NUMERICAL EXAMPLE

The cascaded-rings bandpass filter in [14] is studied in this
section and its structure is shown in Fig. 4. Five rings with
radius of 477 pum are cascaded to form a periodic bandpass

P1

[
P.

P3

2

4

Fig. 4. Cascaded-ring-resonators bandpass filter.
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Fig. 5. The amplitude modulated optical signal (blue line) and the corre-
sponding lowpass equivalent signal (red line).

filter having a bandwidth of 20 GHz and a free spectral
range of 100 GHz, which is designed for wavelength division
multiplexing systems.

Assuming an electronic pulse signal (width of 0.4 ns) with
a sinusoidal noise of frequency 30 GHz as modulating signal,
the filter is used to eliminate the noise. First, this pulse signal is
modulated over an optical carrier with frequency 190.57 THz.
According to equation (3), the corresponding lowpass equiva-
lent signal is the pulse itself, since only amplitude modulation
is considered. These two signals are illustrated in Fig. 5. Then,
starting from the scattering parameters of the filter simulated in
the frequency range of 50 GHz around the carrier frequency
in the optical circuit simulator Caphe‘, a suitable stable and
passive state-space model (6) is built via the VF algorithm by
using 14 poles, with maximum absolute error of less than -60
dB. The corresponding equivalent baseband state-space model
can be directly derived according to (8). Figure 6 shows the
frequency-domain accuracy of the computed baseband model.

Assuming that port P1 is excited with the input signal, the
time-domain simulations of these two models with their input
signals are conducted in Matlab’> with time-step 0.22 fs and
3.3 ps, respectively. The output signals of these two models
are shown in Fig. 7. As expected, the 30 GHz sinusoidal noise
is removed from the input signal, and the absolute value of
the complex output from the equivalent baseband model (8) is

IPart of the IPKISS design suite: http://www.lucedaphotonics.com
2The Mathworks Inc., Natick, MA, USA
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Fig. 6. Comparison of the magnitude (top) and phase (bottom) of the

filter scattering parameters extracted via Caphe (full blue line) and the
built baseband model (red dashed line), where the green dots represent the
corresponding absolute error.
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Fig. 7. The output at port P2 of the filter, the red line and green X are the
absolute value of the complex output of the baseband model (8) simulated
in Matlab and Caphe, respectively, while the blue line is the output obtained
with the state-space model (6) simulated in Matlab.

exactly the envelope of the output of the state-space model (6).
The time-domain simulations of model (6) and (8) in Matlab
require 42 s and 0.01 s, respectively, which demonstrate
the efficiency of the proposed technique. Furthermore, the
baseband model (8) can also be readily implemented and
simulated in the commercial tool Caphe, giving consistent
results as shown in Fig. 7.

IV. CONCLUSION

A novel time-domain modeling and simulation method for
the accurate and efficient analysis of general linear and passive
photonic systems is described in this paper. The proposed
technique is applicable to a large range of photonic devices and
components (such as waveguides, directional couplers, ring
resonators, etc.), since it is based on the scattering parameters
representation. In particular, an equivalent baseband model in
state-space form of the system under study is derived, which

allows one to efficiently perform time-domain simulations
at baseband. The desired model is obtained via the robust
VF algorithm, which ensures the preservation of fundamental
properties for time-domain simulations, such as stability and
passivity.
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