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Radio-frequency communication systems have long used bulk- and surface-acoustic-wave devices supporting ultra-
sonic mechanical waves to manipulate and sense signals. These devices have greatly improved our ability to process
microwaves by interfacing them to orders-of-magnitude slower and lower-loss mechanical fields. In parallel, long-
distance communications have been dominated by low-loss infrared optical photons. As electrical signal processing
and transmission approach physical limits imposed by energy dissipation, optical links are now being actively con-
sidered for mobile and cloud technologies. Thus there is a strong driver for wavelength-scale mechanical wave or
“phononic” circuitry fabricated by scalable semiconductor processes. With the advent of these circuits, new micro-
and nanostructures that combine electrical, optical, and mechanical elements have emerged. In these devices, such as
optomechanical waveguides and resonators, optical photons and gigahertz phonons are ideally matched to one an-
other, as both have wavelengths on the order of micrometers. The development of phononic circuits has thus emerged
as a vibrant field of research pursued for optical signal processing and sensing applications as well as emerging quan-
tum technologies. In this review, we discuss the key physics and figures of merit underpinning this field. We also
summarize the state of the art in nanoscale electro- and optomechanical systems with a focus on scalable platforms
such as silicon. Finally, we give perspectives on what these new systems may bring and what challenges they face in the
coming years. In particular, we believe hybrid electro- and optomechanical devices incorporating highly coherent and
compact mechanical elements on a chip have significant untapped potential for electro-optic modulation, quantum
microwave-to-optical photon conversion, sensing, and microwave signal processing. © 2019 Optical Society of America
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1. INTRODUCTION

Microwave-frequency acoustic or mechanical wave devices have
found numerous applications in radio-signal processing and sens-
ing. They already form mature technologies with large markets,
typically exploited for their high quality compared to electrical
devices [1]. The vast majority of these devices are made of piezo-
electric materials that are driven by electrical circuits [2–8]. A ma-
jor technical challenge in such systems is obtaining the suitable
matching conditions for efficient conversion between electrical
and mechanical energy. Typically, this entails reducing the effec-
tive electrical impedance of the electromechanical component by
increasing the capacitance of the driving element. This has gen-
erally led to devices with large capacitors that drive mechanical
modes with large mode volumes. Here, we describe a recent shift
in research toward structures that are only about a wavelength,
i.e., roughly 1 μm at gigahertz frequencies, across in two or more
dimensions.

Greater confinement of mechanical waves in a device has both
advantages and drawbacks, depending on the application at hand.
In the case of interactions with optical fields, higher confinement
increases the strength and speed of the interaction, allowing faster
switching and lower powers. A smaller system demands less
dissipated energy to achieve the same effects, simply because it
focuses all of the optical and mechanical energy into a smaller
volume. High confinement also enables scalable, less costly fab-
rication with more functionality packed into a smaller space.
Perhaps more importantly, in analogy to microwave and photonic
circuits that become significantly easier to engineer in the single-
and few-moded limits, obtaining control over the full mode struc-
ture of the devices vastly simplifies designing and scaling systems
to higher complexity. Confining mechanical energy is not without
its drawbacks; as we will see below, focusing the mechanical
energy into a small volume also means that deleterious nonlinear
effects manifest at lower powers, and matching directly to
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microwave circuits becomes significantly more difficult due to
vanishing capacitances. We can classify confinement in terms
of its dimensionality (Fig. 1). The dimensionality refers to the
number of dimensions where confinement is on the scale of the
wavelength of the excitation in bulk. For example, surface acous-
tic wave (SAW) resonators [2], much like thin-film bulk acoustic
wave (BAW) resonators [3], have wavelength-scale confinement
in only one dimension—perpendicular to the chip surface—
and are therefore 1D-confined. Until a few years ago, wavelength-
scale phononic confinement at gigahertz frequencies beyond 1D
remained out of reach.

Intriguingly, both near-infrared optical photons and gigahertz
phonons have a wavelength of about 1 μm. This results from the 5
orders of magnitude difference in the speed of light relative to the
speed of sound. The fortuitous matching of length scales was used
to demonstrate the first 2D- and 3D-confined systems, in which
both photons and phonons are confined to the same area or vol-
ume (Fig. 1). These measurements have been enabled by advances
in low-loss photonic circuits that couple light to material defor-
mations through boundary and photoelastic perturbations. Direct
capacitive or piezoelectric coupling to these types of resonances
has been harder, since the relatively low speed of sound in
solid-state materials means that gigahertz-frequency phonons
have very small volume, leading to minuscule electrically induced
forces at reasonable voltages, or, in other words, large motional
resistances that are difficult to match to standard microwave
circuits [1].

Here, we primarily consider recent advances in gigahertz-
frequency phononic devices. These devices have been demon-
strated mainly in the context of photonic circuits and share many
commonalities with integrated photonic structures in terms of
their design and physics. They also have the potential to realize
important new functionalities in photonic circuits. Despite recent
demonstrations of confined mechanical devices operating at giga-
hertz frequencies and coupled to optical fields, phononic circuits
are still in their infancy, and applications beyond those of interest
in integrated photonics remain largely unexplored. Several
attractive aspects of mechanical elements remain unrealized in
chip-scale systems, especially in those based on nonpiezoelectric
materials.

In this review, we first describe the basic physics underpinning
this field, with specific attention to the mechanical aspects of
optomechanical devices. We discuss common approaches used
to guide and confine mechanical waves in nanoscale structures
in Section 2. Next, we describe the key mechanisms behind inter-
actions between phonons and both optical and microwave pho-
tons in Section 3. These interactions allow us to efficiently
generate and readout mechanical waves on a chip. Section 4
briefly summarizes the state of the art in opto- and electro-
mechanical devices. It also describes a few commonly used
figures of merit in this field. Finally, we give our perspectives
on the field in Section 5. In analogy to integrated photonics
[10–16,18,19,22,24,25], the field may be termed “integrated
phononics.” While not limited to the material silicon, its goal is
to develop a platform whose fabrication is in principle scalable
to many densely integrated and coherent phononic devices.

2. GUIDING AND CONFINING PHONONS

Phonons obey broadly similar physics as photons so they can be
guided and confined by comparable mechanisms, as detailed in
the following subsections.

A. Total Internal Reflection

In a system with continuous translational symmetry, waves inci-
dent on a medium totally reflect when they are not phase-
matched to any excitations in that medium. This is called total
internal reflection. The waves can be confined inside a slow
medium sandwiched between two faster media by this mecha-
nism [Fig. 2(a)]. This ensures that at fixed frequencyΩ the guided
wave is not phase-matched to any leaky waves since its wave vec-
tor K �Ω� � Ω∕vϕ—with vϕ its phase velocity—exceeds the larg-
est wave vector among waves in the surrounding media at that
frequency. In other words, the confined waves must have maximal
slowness 1∕vϕ. This principle applies to both optical and
mechanical fields [26–28].

Still, there are important differences between the optical and
mechanical cases. For instance, a bulk material has only two trans-
verse optical polarizations while it sustains two transverse
mechanical polarizations with speed vt and a longitudinally po-
larized mechanical wave with speed vl. Unlike in the optical case,
these polarizations generally mix in a complex way at interfaces
[26]. In addition, a boundary between a material and air leads to
geometric softening (see next section), a situation in which inter-
faces reduce the speed of certain mechanical polarizations. This
generates slow SAW modes that are absent in the optical case.
So achieving mechanical confinement requires care in looking

Fig. 1. Confining photons and phonons to the wavelength-scale.
Photonic and phononic systems can be classified according to the num-
ber of dimensions in which they confine excitations to a wavelength.
Most previous systems contain several wavelengths in more than one di-
mension: they are 0D- or 1D-confined. New structures have emerged in
which both photons and phonons are confined to the wavelength scale in
two or three dimensions. Here we focus on such 2D- or 3D-confined
wavelength-scale systems at gigahertz frequencies. Related reviews on in-
tegrated opto- and electromechanical systems are [9,17,31,33,45,
113,183,205,206]. The table gives as examples of 2D- and 3D-confined
devices a sub-μm2 silicon photonic-phononic waveguide [34] and a sub-
μm3 silicon optomechanical crystal [114]. The depicted 0D- and 1D-
confined structures are a long Fabry–Perot cavity, a vertical-cavity sur-
face-emitting laser [20] for the optical case and a thick quartz [21]
and a thin aluminum nitride BAW resonator [177] for the mechanical
case. The study of heat flow [23,45] is beyond the scope of this review.
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for the slowest waves in the surrounding structures. These are
often surface instead of bulk excitations. Among the bulk excita-
tions, transversely polarized phonons are slower than longitudi-
nally polarized phonons (vt < vl).

Conflicting demands often arise when designing waveguides or
cavities to confine photons and phonons in the same region: pho-
tons can be confined easily in dense media with a high refractive
index and thus small speed of light, but phonons are naturally
trapped in soft and light materials with a small speed of sound.
In particular, the mechanical phase velocities scale as vϕ �ffiffiffiffiffiffiffiffiffi

E∕ρ
p

, with E the stiffness or Young’s modulus and ρ the mass
density. For instance, a waveguide core made of silicon (refractive
index nSi � 3.5) and embedded in silica (nSiO2

� 1.45) strongly
confines photons by total internal reflection but cannot easily trap
phonons (for exceptions see next sections). On the other hand, a
waveguide core made of silica (vt � 5500 m∕s) embedded in sil-
icon (vt � 5843 m∕s) can certainly trap mechanical [29] but not
optical fields. Still, some structures find a sweet spot in this
trade-off: the principle of total internal reflection is currently ex-
ploited to guide phonons in Ge-doped optical fibers [30] and
chalcogenide waveguides [31].

Since silicon is “slower” than silicon dioxide optically, but
“faster” acoustically, simple index guiding for co-confined optical

and mechanical fields is not an option in the canonical platform of
silicon photonics, silicon-on-insulator. Below we consider tech-
niques that circumvent this limitation and enable strongly co-
localized optomechanical waves and interactions.

B. Impedance Mismatch

The generally conflicting demands between photonic and pho-
nonic confinement (see above) can be reconciled through imped-
ance mismatch [Fig. 2(b)]. The characteristic acoustic impedance
of a medium is Zm � ρvϕ, with ρ the mass density [26].
Interfaces between media with widely different impedances
Zm, such as between solids and gases, strongly reflect phonons.
In addition, gases have an acoustic cutoff frequency—set by the
molecular mean-free path—above which they do not support
acoustic excitations [32]. At atmospheric pressure, this frequency
is roughlyΩc∕�2π� ≈ 0.5 GHz. Above this frequencyΩc acoustic
leakage and damping because of air are typically negligible. The
cutoff frequency Ωc can be drastically reduced with vacuum
chambers, an approach that has been pursued widely to confine
low-frequency phonons [33]. These ideas were harnessed in
silicon-on-insulator waveguides to confine both photons and
phonons to silicon waveguide cores [34–36] over milli- to centi-
meter propagation lengths. The acoustic impedances of silicon
and silica are quite similar, so in these systems the silica needs
to be removed to realize low phonon leakage from the silicon core.
In one approach [34], the silicon waveguide was partially under-
etched to leave a small silica pillar that supports the waveguide
[Fig. 2(b)]. In another, the silicon waveguide was fully suspended
while leaving periodic silica or silicon anchors [35,36].

C. Geometric Softening

The guided wave structures considered above utilize full or partial
underetching of the oxide layer to prevent leakage of acoustic en-
ergy from the silicon into the oxide. Geometric softening is a tech-
nique that allows us to achieve simultaneous guiding of light and
sound in a material system without underetching and regardless of
the bulk wave velocities. Although phonons and photons behave
similarly in bulk media, their interactions with boundaries are
markedly different. In particular, a solid-vacuum boundary
geometrically softens the structural response of the material
below and thus lowers the effective mechanical phase velocity
[Fig. 2(c)]. This is the principle underpinning the 1D confine-
ment of Rayleigh SAWs [26,37]. This mechanism was used in
the 1970s in the megahertz range [37–39] to achieve 2D confine-
ment and was recently rediscovered for gigahertz phonons, where
it was found that both light and motion can be guided in unre-
leased silicon-on-insulator structures [40]. More recently, fully
3D-confined acoustic waves have been demonstrated [41] with
this approach on silicon-on-insulator where a narrow silicon
fin, clamped to a silicon dioxide substrate, supports both localized
photons and phonons.

D. Phononic Bandgaps

Structures patterned periodically, such as a silicon slab with a grid
of holes, with a period a close to half the phonons’ wavelength
Λ � 2π∕K result in strong mechanical reflections, as in the op-
tical case. At this X -point—where K � π∕a—in the dispersion
diagram forward- and backward-traveling phonons are strongly
coupled, resulting in the formation of a phononic bandgap
[Fig. 2(d)] whose size scales with the strength of the periodic

(a) (b)

(c) (d)

Fig. 2. Mechanisms for phononic confinement in micro- and nano-
structures. We illustrate the main approaches with phononic dispersion
diagrams Ω�K � and mark the operating point in black. (a) A waveguide
core whose mechanical excitations propagate more slowly than the slow-
est waves in the surrounding materials supports acoustic total internal
reflection. Examples include chalcogenide rib waveguides on silica
[31], silica waveguides cladded by silicon [29], and Ge-doped fibers
[30]. (b) Even when phonons are phase-matched to surface or bulk ex-
citations, their leakage can be limited by impedance mismatch such as in
suspended silicon waveguides and disks [34–36,42,44] and silica microt-
oroids [115]. (c) In contrast to optical fields, mechanical waves can be
trapped by surface perturbations that soften the elastic response such as in
case of Rayleigh surface waves [2], silicon fins on silica [40,41], and all-
silicon surface perturbations [37–39,51]. (d) Finally, phonons can be
trapped to line or point defects in periodic structures with a phononic
bandgap such as in silicon optomechanical crystals [52,114], line defects
[57], and bulls-eye disks [54]. Many structures harness a combination of
these mechanisms.
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perturbation. The states just below and above the bandgap can be
tuned by locally and smoothly modifying geometric properties of
the lattice, resulting in the formation of line or point defects. This
technique is pervasive in photonic crystals [43] and was adapted
to the mechanical case in the last decade [45–50]. This led to the
demonstration of optomechanical crystals that 3D-confine both
photons and gigahertz phonons to wavelength-scale suspended
silicon nanobeams [52,53,55]. In these experiments, confinement
in one or two dimensions was obtained by periodic patterning of a
bandgap structure, while in the remaining dimension, confine-
ment is due to the material being removed to obtain a suspended
beam or film.

Conflicting demands similar to those discussed in Section 2.B
complicate the design of simultaneous photonic-phononic
bandgap structures [50]. For example, a hexagonal lattice of cir-
cular holes in a silicon slab, as is often used in photonic bandgap
cavities and waveguides, does not lead to a full phononic bandgap.
Conversely, a rectangular array of cross-shaped holes in a slab, as
has been used to demonstrate full phononic bandgaps in silicon
and other materials, does not support a photonic bandgap.
Nonetheless, both one-dimensional [55] and two-dimensional
crystals [52] with simultaneous photonic and phononic gaps have
been proposed and demonstrated in technologically relevant
material systems. In addition, full bandgaps are ideal [56] but
not strictly necessary for good confinement as long as there is
strong reflectivity within the momentum-distribution associated
with the confined excitations and the disorder [43].

Beyond enabling 3D-confined wavelength-scale phononic
cavities, phononic bandgaps also support waveguides or wires,
which are 2D-confined defect states. These have been realized
in silicon slabs with a pattern of cross-shaped holes supporting
a full phononic bandgap, with an incorporated line defect within
the bandgap material [57–60]. Robustness to scattering is particu-
larly important to consider in such nano-confined guided
wave structures, since as in photonics, intermodal scattering
due to fabrication imperfections increases with decreasing cross-
sectional area of the guided modes [61]. Single-mode phononic
wires are intrinsically more robust, as they remove all intermodal
scattering except backscattering. They have been demonstrated to
allow robust and low-loss phonon propagation over millimeter-
length scales [60]. Multi- and single-mode phononic waveguides
are currently considered as a means of generating connectivity and
functionality in chip-scale solid-state quantum emitter systems
using defects in diamond [62,63].

E. Other Confinement Mechanisms

The above mechanisms for confinement cover many, if not most,
current systems. However, there are alternative mechanisms for
photonic and phononic confinement, including but not limited
to: bound states in the continuum [64–66], Anderson localization
[67,68], and topological edge states [69,70]. We do not cover
these approaches here.

F. Phononic Dissipation

Phononic confinement, propagation losses, and lifetimes are
limited by various imperfections such as geometric disorder
[35,52,60,71–73], thermo-elastic and Akhiezer damping
[26,74,75], two-level systems [76–78], and clamping losses
[34,79,80]. Losses in 2D-confined waveguides are typically quan-
tified by a propagation length Lm � α−1m with αm the propagation

loss. In 3D-confined cavities, one usually quotes linewidths γ or
quality factors Qm � ωm∕γ. A cavity’s internal loss rate can be
computed from the decay length Lm through γ � vmαm in
high-finesse cavities with negligible bending losses [81] with
vm the mechanical group velocity. Mechanical propagation
lengths in bulk crystalline silicon are limited to Lm ≈ 1 cm at
room temperature and at a frequency of ωm∕�2π� � 1 GHz
by thermo-elastic and Akhiezer damping. Equivalently, taking
vm ≈ 5000 m∕s, one can expect material-limited minimum line-
widths of γ∕2π ≈ 0.1 MHz and maximum quality factors of
Qm ≈ 104 [26,74] at ωm∕�2π� � 1 GHz. Generally, crystalline
materials have better intrinsic loss limits than polycrystalline and
amorphous materials, while insulators have lower loss than semi-
conductors and metals [26].

These limits deteriorate rapidly at higher frequencies, typically
scaling as Lm ∝ ω−2

m and Qm ∝ ω−1
m [26,74,78] or worse. This

makes the f m · Qm product a natural figure of merit for mechani-
cal systems. For gigahertz-frequency resonators at room temper-
ature, the highest demonstrated values of f m · Qm are on the
order of 1013 in several materials [82]. Intriguingly, the maximum
length of time that a quantum state can persist inside a mechanical
resonator with quality factor Qm at temperature T is given by
tdecoherence � ℏQm

kT , and so requiring that the information survive
for more than a mechanical cycle is equivalent to the condition
tdecoherence > ω−1

m , or f m · Qm > 6 × 1012 Hz at room tempera-
ture [33]. This is usually seen as a necessary condition for
optomechanics in the quantum regime, although pulsed measure-
ments can relax this in some situations [83,84].

Recently, new loss-mitigation mechanisms called “dissipation
dilution,” “strain engineering,” and “soft clamping” have been in-
vented for megahertz mechanical resonators under tension that
enable mechanical quality factors and f m · Qm products beyond
108 and 1015 Hz, respectively, under high vacuum but without
refrigeration [85–87]. This unlocks exciting new possibilities for
quantum-coherent operations at room temperature. These ap-
proaches are challenging to extend to stiff gigahertz mechanical
modes as they require the elastic energy to be dominantly stored
in the tension [88]. Finally, many material loss processes, with the
possible exception of two-level systems [76,77,89], vanish rapidly
at low temperatures (Section 4).

Despite impressive progress, the ultimate limits to phononic
confinement are unknown and under active study (Section 4).
Sidewall roughness and disorder pose a major roadblock in explor-
ing these limits in the context of integrated phononics
(Section 5.E).

3. PHOTON-PHONON INTERACTIONS

In this section, we describe the key mechanisms underpinning the
coupling between photons and phonons. Photon-phonon inter-
actions occur via two main mechanisms:

• Parametric coupling [Fig. 3(a)]: two photons and one pho-
non interact with each other in a three-wave mixing process as in
Brillouin and Raman scattering and optomechanics, where the
latter includes capacitive electromechanics.

• Direct coupling [Fig. 3(b)]: one photon and one phonon
interact with each other directly as in piezoelectrics. This requires
photons with a small frequency, as in the case of interactions
between microwave photons and phonons.

The parametric three-wave mixing takes place via two routes:
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• Difference-frequency driving (DFD): two photons with
frequencies ω and ω 0 drive the mechanical system through a beat
note at frequency ω − ω 0 � Ω ≈ ωm in the forces.

• Sum-frequency driving (SFD): two photons with frequen-
cies ω and ω 0 drive the mechanical system through a beat note
at frequency ω� ω 0 � Ω ≈ ωm in the forces.

Three-wave DFD is the only possible mechanism when the
photons and phonons have a large energy gap, as in interactions
between phonons and optical photons. In contrast, microwave
photons can interact with phonons through any of the three-wave
and direct processes.

A. Interactions Between Phonons and Optical Photons

Parametric DFD in a cavity is generally described by an interac-
tion Hamiltonian of the form (see Supplement 1):

Hint � ℏ�∂xωo�a†ax, (1)

with ∂xωo the sensitivity of the optical cavity frequency ωo to
mechanical motion x and a the photonic annihilation operator.
The terminology “parametric” refers to the parameter ωo, essen-
tially the photonic energy, being modulated by the mechanical

motion [90–93], whereas the term “three-wave mixing” points
out that there are three operators in the Hamiltonian given by
Eq. (1). This does not restrict the interaction to only three waves,
as discussed further on. Describing the Hamiltonian Hint in this
manner is a concise way of capturing all the consequences of the
interaction between the electromagnetic field a and the mechani-
cal motion x. The detailed dynamics can be studied via the
Heisenberg equations of motion defined by _a � − i

ℏ �a,Hint�
when making use of the harmonic oscillator commutator
�a, a†� � 1 [33]. Since by definition x � xzp�δb� δb†� with
xzp the mechanical zero-point fluctuations and δb the phonon
annihilation operator, this is equivalent to

Hint � ℏg0a
†a�δb� δb†�, (2)

with

g0 � �∂xωo�xzp (3)

the zero-point optomechanical coupling rate, which quantifies the
shift in the optical cavity frequency ωo induced by the zero-point
fluctuations xzp of the mechanical oscillator. Here we neglect the
static mechanical motion [33,94,95]. Achieving large g0 thus gen-
erally requires small structures with large sensitivity ∂xωo and
zero-point motion xzp � �ℏ∕�2ωmmeff ��1∕2, where meff is the ef-
fective mass of the mechanical mode. This is brought about by
ensuring a good overlap between the phononic field and the pho-
tonic forces acting on the mechanical system [34,96,97] and
by focusing the photonic and phononic energy into a small
volume to reduce meff . There are typically separate bulk and
boundary contributions to the overlap integral. The bulk
contribution is associated with photoelasticity, while the boun-
dary contribution results from deformation of the interfaces
between materials [96–99]. Achieving strong interactions re-
quires careful engineering of a constructive interference between
these contributions [34,96–98,100]. Optimized nanoscale
silicon structures with mechanical modes at gigahertz frequencies
typically have xzp ≈ 1 fm and g0∕�2π� ≈ 1 MHz (Section 4).
The zero-point fluctuation amplitude increases with lower fre-
quency, leading to an increase in g0: megahertz-frequency
mechanical systems with g0∕�2π� ≈ 10 MHz have been demon-
strated [101].

The dynamics generated by the Hamiltonian of Eq. (2) can
lead to a feedback loop. The beat note between two photons with
slightly different frequencies ω and ω 0 generates a force that drives
phonons at frequency ω − ω 0 � Ω. Conversely, phonons modu-
late, at frequency Ω, the optical field, scattering photons into up-
and downconverted sidebands. This feedback loop can amplify
light or sound, lead to electromagnetically induced transparency,
or cooling of mechanical modes. In principle, this interaction can
cause nonlinear interactions at the few-photon or phonon limit if
g0∕κ > 1 [102], though current solid-state systems are more than
2 orders of magnitude away from this regime (see Fig. 5 and
Section 5.A).

Assuming g0∕κ ≪ 1, valid in nearly all systems, we linearize
the Hamiltonian of Eq. (2) by setting a � α� δa with α a
classical, coherent pump amplitude, yielding

Hint � ℏg�δa� δa†��δb� δb†�, (4)

with g � g0α the enhanced interaction rate—taking α real—and
δa and δb the annihilation operators representing photonic and
phononic signals, respectively. Often there are experimental
conditions that suppress a subset of interactions present in

(a)

(b)

Fig. 3. Generating and detecting phonons. (a) Interactions between
phonons and high-frequency photons occur through parametric three-
wave mixing: two high-frequency photons couple to one phonon via
third-order nonlinearities such as photoelasticity and the moving-
boundary effect [96,97]. Interactions between low-frequency photons
and a phonon can also occur through these mechanisms. Depending
on which of the three waves is pumped, the interaction results in either
down/upconversion (δaδb� h:c:) or state-swapping (δaδb† � h:c:)
events. The frequency difference between the two high-frequency pho-
tons ω − ω 0 must approximately equal the phononic frequency Ω for ef-
ficient parametric interactions to occur (left). In addition, in structures
with translational symmetry, the wave vector difference between the two
high-frequency photons β − β 0 must also approximately equal the pho-
nonic wave vector K for efficient coupling (right). Here we depict only
DFD; SFD proceeds analogously but with minus signs replaced by plus
signs. (b) Direct conversion via second-order nonlinearities such as piezo-
electricity is possible when the photonic energy is sufficiently low to
match the phononic energy. Stronger mechanical waves can typically
be generated by direct conversion than by indirect mixing of two optical
waves (Section 5.B). A microwave photon can be converted into a pho-
non and subsequently into an optical photon by cascading two of these
processes: either with one direct and one indirect process or with two
indirect processes.
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Hamiltonian (4). For instance, in sideband-resolved optomechan-
ical cavities (ωm > κ), a blue-detuned pump α sets up an entan-
gling interaction,

Hint � ℏg�δaδb� δa†δb†� (5)

that creates or annihilates photon-phonon pairs. Similarly, a red-
detuned pump α sets up a beam-splitter interaction:

Hint � ℏg�δaδb† � δa†δb� (6)

that converts photons into phonons or vice versa. This beam-split-
ter Hamiltonian can also be realized by pumping the phononic
instead of the photonic mode. In that case, α represents the pho-
nonic pump amplitude, whereas both δa and δb are then photonic
signals.

In multimode systems, such as in 3D-confined cavities with
several modes or in 2D-confined continuum systems, the inter-
action Hamiltonian is a summation or integration over each of the
possible interactions between the individual photonic and
phononic modes. For instance, linearized photon-phonon inter-
actions in a 2D-confined waveguide with continuous translational
symmetry are described by [103–105]:

Hint �
ℏffiffiffiffiffi
2π

p
ZZ

dβdK �gβ�K aβbK � gβ−K aβb
†
K � h:c:�: (7)

In this case, the three-wave mixing interaction rate gβ�K �
g0jβ�K α

⋆
β�K is proportional to the amplitude αβ�K of the mode

with wave vector β� K , which is usually considered to be
pumped strongly. In contrast to the single-mode cavity described
by Eq. (4), in the waveguide case, the symmetry between the
two-mode-squeezing δaδb and the beam-splitter δaδb† terms is
broken by momentum selection from the onset as generally
gβ�K ≠ gβ−K . The Hamiltonian of Eq. (7) assumes an infinitely
long waveguide where phase-matching is strictly enforced. In con-
trast, a finite-length waveguide allows for interactions between a
wider set of modes, although it suppresses those with a large phase
mismatch (see Supplement 1). In essence, shorter waveguides per-
mit larger violations of momentum conservation. The momen-
tum selectivity enables nonreciprocal transport of both
photons [106–109] and phonons [45,110]—in a continuum
version of interference-based synthetic magnetism schemes using
discrete optomechanical elements [59,111]. It also allows for side-
band resolution even when the optical linewidth far exceeds the
mechanical frequency [112].

Cavities can be realized by coiling up or terminating a 2D-
confined waveguide with mirrors. Then the cavity’s optomechan-
ical coupling rate g0 is connected to the waveguide’s coupling rate
g0jβ�K by

g0 �
g0jβ�Kffiffiffi

L
p , (8)

with L the roundtrip length of the cavity (see Supplement 1). The
parameters g0jβ�K and g0 are directly related to the so-called
Brillouin gain coefficient GB that is often used to quantify
photon-phonon interactions in waveguides [34,36,113]. In
particular [81],

GB �
4g20jβ�K

vpvs�ℏω�γ
, (9)

with vp and vs the group velocities of the interacting photons, ℏω
the photon energy, and γ the phononic decay rate. Equations (8)
and (9) enable comparison of the photon-phonon interaction

strengths of waveguides and cavities. Since this gain coefficient
depends on the mechanical quality factor Qm via γ � ωm∕Qm,
it is occasionally worth comparing waveguides in terms of the ra-
tio GB∕Qm. The g0∕�2π� ≈ 1 MHz measured in silicon optome-
chanical crystals [114] is via Eq. (9), in correspondence with the
GB∕Qm ≈ 10 W−1 m−1 measured in silicon nanowires at slightly
higher frequencies [34,35]. Both g0 and GB∕Qm have an impor-
tant dependence on mechanical frequency ωm: lower-frequency
structures are generally more flexible and thus generate larger in-
teraction rates.

The Hamiltonians given in Eqs. (5), (6), and (7) describe a
wide variety of effects. The detailed consequences of the three-
wave mixing depend on the damping, intensity, dispersion,
and momentum of the interacting fields. Next, we describe some
of the potential dynamics. We quantify the dissipation experi-
enced by the photons and phonons with decay rates κ and γ,
respectively. The following regimes appear:

• Weak coupling: g ≪ κ � γ. The phonons and photons can
be seen as independent entities that interact weakly. A common
figure of merit for the interaction is the cooperativity
C � 4g2∕�κγ�, which quantifies the strength of the feedback loop
discussed above. In particular, for C ≫ 1, the optomechanical
back action dominates the dynamics. The pair-generation
Hamiltonian (5) generates amplification, whereas the beam-
splitter interaction (6) generates cooling and loss. Whether the
phonons or the photons dominantly experience this amplification
and loss depends on the ratio κ∕γ of their decay rates. The line-
width of the phonons is effectively �1� C�γ when κ ≪ γ, where
the minus-sign in � holds for the amplification case
(Hamiltonian 5). In contrast, the linewidth of the photons is
effectively �1� C�κ when γ ≪ κ. A lasing threshold is reached
for the phonons or the photons when C � 1. In waveguide sys-
tems described by Eq. (7), C � 1 is equivalent to the transparency
point GBPp∕α � 1, with Pp the pump power and α the wave-
guide propagation loss per meter. In fact, interactions between
photons and phonons in a waveguide can also be captured in
terms of a cooperativity that is identical to C under only weakly
restrictive conditions [81].

• Strong coupling: g ≫ κ � γ. The phonons and photons in-
teract so strongly that they can no longer be considered indepen-
dent entities. Instead, they form a photon-phonon polariton with
an effective decay rate �κ � γ�∕2. The beam-splitter interaction
(6) sets up Rabi oscillations between photons and phonons with a
period of 2π∕g [33,115,116]. This is a necessary requirement for
broadband intracavity state swapping, but is not strictly required
for narrowband itinerant state conversion [117,118]. Strong cou-
pling has been demonstrated in several systems [115,116,
119–121], but not yet in the single-photon regime (Section 5.A).

Neglecting dynamics and when the detuning from the
mechanical resonance is large (ΔΩ ≫ γ), the phonon ladder op-
erator is δb � �g0∕ΔΩ�a†a such that Hamiltonian (2) generates
an effective dispersive Kerr nonlinearity described by

HKerr � ℏ
g20
ΔΩ

a†aa†a: (10)

This effective Kerr nonlinearity [122–126] is often much stronger
than the intrinsic material nonlinearities. Thus, a single optome-
chanical system can mediate efficient and tunable interactions be-
tween up to four photons in a four-wave mixing process that
annihilates and creates two photons. The mechanics enhances
the intrinsic optical material nonlinearities for applications such
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as wavelength conversion [34,127,128]. Generally, such enhance-
ments come at the cost of reduced bandwidth compared to in-
trinsic material nonlinearities. However, multimode effects can
enable bandwidths far exceeding the intrinsic mechanical line-
width. For instance, a 2D-confined structure has a near-
continuum set of mechanical modes. In a properly engineered
structure, each of these modes might provide strong photon-
phonon interactions.

Additional dynamical effects exist in the multimode case. For
instance, in a waveguide described by Eq. (7), there is a spatial
variation of the photonic and phononic fields that is absent in
the optomechanical systems described by Eq. (4). This includes:

• The steady-state spatial Brillouin amplification of an optical
sideband. This has been the topic of recent research in chip-scale
photonic platforms. One can show that an optical Stokes side-
band experiences a modified propagation loss �1 − C�α, with C �
GBPp∕α the waveguide’s cooperativity [81]. This Brillouin gain or
loss is accompanied by slow or fast light [129,130]. Here we
assumed an optical decay length exceeding the mechanical decay
length, which is valid in nearly all systems. In the reverse case,
the mechanical wave experiences a modified propagation loss
�1 − C�αm, and there is slow and fast sound [81,131,132].

• Traveling photonic pulses can be converted into traveling
phononic pulses in a bandwidth surpassing the mechanical line-
width. This is often called Brillouin light storage [133–136]. The
traveling optical pump and signal pulses may counterpropagate or
occupy different optical modes.

Several of these and other multimode effects have received lit-
tle attention so far. This may change with the advent of new nano-
scale systems realizing multimode and continuum Hamiltonians
such as given in Eq. (7) with strong coupling rates
[34,36,103,104,137].

B. Interactions Between Phonons and Microwave
Photons

The above Section 3.A on parametric three-wave DFD also ap-
plies to interactions between phonons and microwave photons.
However, microwave photons may interact with phonons via
two additional routes: (1) three-wave SFD and (2) direct cou-
pling. In three-wave SFD, two microwave photons with a fre-
quency below the phonon frequency ωm excite mechanical
motion at the sum-frequency ω� ω 0 � Ω ≈ ωm [4]. Such inter-
actions can be realized in capacitive electromechanics, where the
capacitance of an electrical circuit depends on mechanical motion.
In particular, the capacitive coupling sets up an interaction,

Hint � −
�∂xC�V 2x

2
, (11)

with ∂xC the sensitivity of the capacitance C�x� to the mechanical
motion x and V the voltage across the capacitor. In terms of lad-
der operators, we have V � V zp�a� a†� and x � xzp�δb� δb†�
such that

Hint � ℏg0

�
a†a� aa� a†a†

2
� 1

2

�
�δb� δb†�: (12)

Here the zero-point voltage is V zp � ��ℏωμ�∕�2C��1∕2, with ωμ

the microwave frequency and C the total capacitance. This inter-
action contains three-wave DFD (Hamiltonian 2) as a subset via
the a†a term with an interaction rate g0 given by

ℏg0 � −�∂xC�V 2
zpxzp: (13)

In addition to three-wave DFD, it also contains three-wave SFD
via the aa and a†a† terms. These little-explored terms enable
electromechanical interactions beyond the canonical three-wave
DFD optomechanical and Brillouin interactions. Similar reason-
ings can be developed for inductively coupled mechanical reso-
nators [138].

Further, by applying a strong bias voltage V b, the capacitive
interaction gets linearized: using V � V b � δV and keeping
only the 2V bδV term in V 2 yields

Hint � −�∂xC�V bδV x: (14)

With δV � V zp�δa� δa†�, this generates an interaction,

Hint � ℏg�δa� δa†��δb� δb†�, (15)

which is identical to the linearized optomechanics Hamiltonian in
expression (4) with an interaction rate set by

ℏg � −�∂xC�V bV zpxzp (16)

that is enhanced with respect to g0 by g � g0α and α � V b∕V zp

the enhancement factor. The linearized Hamiltonian (15) realizes
a tunable, effective piezoelectric interaction that can directly con-
vert microwave photons into phonons and vice versa.
Piezoelectric structures are described by Eq. (15) as well with
an intrinsically fixed bias V b determined by material properties.

The electromechanical coupling rate can be written as

g0 � −
∂xC
2C

ωμxzp, (17)

or, alternatively, as g0 � �∂xωμ�xzp—precisely as in Section 3.A
but with the optical frequency ωo replaced by the microwave
frequency ωμ with ωμ � 1∕

ffiffiffiffiffiffiffiffiffiffi
LinC

p
and Lin the circuit’s induct-

ance. Typically the capacitance C � Cm�x� � Cp consists of a
part that responds to mechanical motion Cm�x� and a part Cp

that is fixed and usually considered parasitic. This leads to

g0 � −
∂xCm

2Cm

ηpωμxzp, (18)

with ηp � Cm∕C the participation ratio that measures the frac-
tion of the capacitance responding to mechanical motion. For the
canonical parallel-plate capacitor with electrode separation s, we
have ∂xCm � Cm∕s such that g0 � −ηpxzpωμ∕�2s�. This often
drives research towards small structures with large zero-point mo-
tion xzp and small electrode separation s. Contrary to the optical
case, however, increasing the participation ratio ηp motivates in-
creasing the size and thus the motional capacitance Cm of the
structures until ηp ≈ 1.

Finally, 3D-confined gigahertz mechanical modes have small
mode volumes and motional capacitances Cm. They are difficult
to match to common microwave circuits. This can be addressed
by developing circuits with a small parasitic capacitance Cp and a
large inductance Lin [119,139–142]. In gigahertz-range micro-
wave circuits with unity participation and electrode separations
on the order of s ≈ 100 nm, we have g0∕�2π� ≈ −10 Hz, about
a factor ωo∕ωμ ≈ 105 smaller than the optomechanical
g0∕�2π� ≈ 1 MHz (Section 3.A). Despite the much smaller
g0, it is still possible to achieve large cooperativity C �
4g2∕�κγ� in electromechanics, as the typical microwave line-
widths are much smaller and the enhancement factors α can
be larger than in the optical case [139,141,142].
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4. STATE OF THE ART

Here we give a concise overview of the current state of the art in
opto- and electromechanical systems by summarizing the param-
eters obtained in about 50 opto- and electromechanical cavities
and waveguides. The figures are not exhaustive. They are meant
to give a feel for the variety of systems in the field. First, we plot
the mechanical quality factors as a function of mechanical fre-
quency (Fig. 4), including room temperature (red) and cold (blue)
systems. As discussed in Section 2.F, cold systems usually reach
much higher quality factors. The current record is held by a
5 GHz silicon optomechanical crystal with Qm > 1010, yielding
a lifetime longer than a second [143] at millikelvin temperatures.
Measuring these quality factors requires careful optically pulsed
readout techniques, as the intrinsic dissipation of continuous-
wave optical photons easily heats up the mechanics, thus destroy-
ing its coherence [144]. Comparably high quality factors are
measured electrically in quartz and sapphire at lower frequencies
[145,148]. It is an open question whether these extreme lifetimes
have reached intrinsic material limits. The long lifetimes make
mechanical systems attractive for delay lines and qubit storage
[150] (Section 5). Figure 4 displays a rather weak link between
mechanical frequency and quality factor. It also shows that 2D-
confined systems have relatively low mechanical coherence so far,
likely related to inhomogeneous effects [71].

Next, we look at the coupling strengths in these systems
(Fig. 5). As discussed in Section 3, a few different figures of merit
are commonly used, depending on the type of system. We believe

the dimensionless ratios g0∕κ and the cooperativity C are two of
the most powerful figures of merit (Section 5). The ratio g0∕κ
determines the single-photon nonlinearity, the energy-per-bit
in optical modulators, as well as the energy-per-qubit in micro-
wave-to-optical photon converters. The cooperativity C must be
unity for efficient state conversion as well as for phonon and
photon lasing. In the context of waveguides, it measures the maxi-
mum Brillouin gain as C � GBPp∕α [81].

Thus we compute g0∕κ for about 50 opto- and electro-
mechanical cavities and waveguides [Fig. 5(a)]. We convert the
waveguide Brillouin coefficients GB to g0 via expressions (8)
and (9) by estimating the minimum roundtrip length L a cavity
made from the waveguide would have. In addition, we convert the
waveguide propagation loss α to the intrinsic loss rate κin � αvg
with vg the group velocity. This brings a diverse set of systems
together in a single figure. No systems exceed g0∕κ ≈ 0.01, with
the highest values obtained in silicon optomechanical crystals
[55,114], Brillouin-active waveguides [34,35,158], and Raman
cavities [164]. There is no strong relation between g0∕κ and
C: systems with low interactions rates g0 often have low decay
rates κ and γ as well, since they do not have quite as stringent
fabrication requirements on the surface quality.

The absolute zero-point coupling rates g0 illustrate the power
of moving to the nanoscale. We plot them as a function of the
maximum quantum cooperativity Cq � C∕n̄th with n̄th the ther-
mal phonon occupation [Fig. 5(b)]. When Cq > 1, the state
transfer between photons and phonons takes place more rapidly
than the mechanical thermal decoherence [33]. This is a require-
ment for hybrid quantum systems such as efficient microwave-to-
optical photon converters (Section 5). There are several chip-scale
electro- and optomechanical systems with Cq > 1, with promising
values demonstrated in silicon photonic crystals. An important
impediment to large quantum cooperativities in optomechanics
is the heating of the mechanics caused by optical absorp-
tion [144].

Further, we give an overview of the Brillouin coefficients GB

found in 2D-confined waveguides [Fig. 5(c)]. The current record
GB � 104 W−1 m−1 in the gigahertz range was measured in a sus-
pended series of silicon nanowires [35]. However, larger Brillouin
amplification was obtained with silicon and chalcogenide rib
waveguides, which have disproportionately lower optical propa-
gation losses α and can handle larger optical pump powers Pp

[158,165]. We stress that the maximum Brillouin gain is identical
to the cooperativity [81]. They are both limited by the maximum
power and electromagnetic energy density the system in question
can withstand. At room temperature in silicon, the upper limit is
usually set by two-photon and free-carrier absorption [34,36,99].
Moving beyond the two-photon bandgap of 2200 nm in silicon
or switching to materials such as silicon nitride, lithium niobate,
or chalcogenides can drastically improve the power handling
[99,166,167,171,172]. In cold systems, it is instead set by the
cooling power of the refrigerator and the heating of the mechani-
cal system [144]. Another challenge for 2D-confined waveguides
is the inhomogeneous broadening of the mechanical resonance.
This arises from atomic-scale fluctuations in the waveguide geom-
etry along its length, effectively smearing out the mechanical re-
sponse [34–36,71]. In 2D-confined systems consisting of a series
mechanically active sections [34,36], one must ensure that
each section is sufficiently long to let the mechanical mode build
up [174].

Fig. 4. Mechanical quality factors. The systems include opto- and
electromechanical cavities and waveguides at room temperature (red),
at a few kelvin (blue) and at millikelvin temperatures (blue). The highest
quality factors are demonstrated in millikelvin cavities. The data points
correspond to Refs. [30,34–36,41,42,52,55,72,86,87,97,101,114–116,
119,139–141,143–147,149,151–164,166,168–170,173,175,180,232,
251,270,298,299,311,313].
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Finally, compared to gigahertz systems, flexible megahertz
mechanical systems give much higher efficiencies of GB ≈
106 W−1 m−1 as measured in dual-nanoweb [176] fibers and of
GB ≈ 109 W−1 m−1, as predicted in silicon double-slot wave-
guides [112]. In contrast to photonics, phononic systems have
operating frequencies varying over many orders of magnitude:
from kilohertz to gigahertz with acoustic phonons, and even tera-
hertz with optical phonons. This is accompanied by great diver-
sity in the mechanical structures. The choice of mechanical
operating frequency can be influenced by many factors, including
but not limited to the ability to passively freeze out thermal
motion [177], to achieve spectral sideband resolution [178],
large f m · Qm products [85,179], large zero-point motion xzp
[101,181,182], fast response [123], or better sensitivity [183].
The balance between the various trade-offs must be found case
by case. Tightly confined gigahertz modes have attractive proper-
ties for low-energy communications, as discussed further on.

5. PERSPECTIVES

A. Single-Photon Nonlinear Optics

The three-wave mixing interactions discussed in Section 3 in
principle enable single-photon nonlinear optics in opto- and
electromechanical systems [102,184,185]. For instance, in the
photon blockade effect, a single incoming photon excites the
motion of a mechanical system in a cavity, which then shifts
the cavity resonance and thus blocks the entrance of another
photon. Realizing such quantum nonlinearities sets stringent
requirements on the interaction strengths and decay rates.

For instance, in an optomechanical cavity, the force exerted
by a single photon is hF i � −h∂xHinti � −ℏ�g0∕xzp�ha†ai �
−ℏ�g0∕xzp�. To greatly affect the optical response seen by another
photon impinging on the cavity, this force must drive a mechani-
cal displacement that shifts the optical resonance by about a line-
width κ or xπ � κ∕�∂xωo� � �κ∕g0�xzp. In other words, we
require F∕�meffω

2
m� � xπ , which leads to ϑcav ≡ 4g20∕�κωm� ≈ π,

where ϑcav is the mechanically mediated cross-phase shift experi-
enced by the other photon, assuming critical coupling to the cav-
ity. This extremely challenging condition is relaxed when two
photonic modes with a frequency difference Δω roughly resonant
with the mechanical frequency are used. In this case, the mechani-
cal frequency can be replaced by the detuning from the mechani-
cal resonance in the above expressions: ωm → 2ΔΩ with the
detuning ΔΩ � Δω − ωm. This enhances the shift per photon
so that quantum nonlinearities are realized at [185,186]

ϑcav �
2g20
κΔΩ

≈ π, (19)

with ΔΩ ≪ ωm. The photon blockade effect also requires side-
band resolution (ΔΩ > κ) so

g0
κ
> 1 (20)

is generally a necessary condition for single-photon nonlinear op-
tics with opto- and electromechanical cavities [33,187]. In the
case of 2D-confined waveguides, it can similarly be shown [137]
that a single photon drives a mechanically mediated cross-Kerr
phase shift,
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Fig. 5. Interaction rates in 3D-confined cavities and 2D-confined waveguides. (a) Dimensionless nonlinearity g0∕κ versus the maximum cooperativity
C. The largest interaction rates are achieved in nanoscale cavities and waveguides. Cooperativities are typically highest in cold systems (blue) and can be as
high in less tightly confined systems, since they often have lower photonic and phononic decay rates than the smallest systems. Cavities so far achieve
higher cooperativities than waveguides. This may change if the 2D-confined waveguide systems can be studied at low temperatures and if they can
overcome inhomogeneous broadening. (b) Zero-point coupling rate g0 versus the maximum quantum cooperativity Cq � C∕n̄th with n̄th the thermal
phonon occupation for a selection of cold 3D-confined systems. It is significantly harder to reach Cq > 1 than C > 1. In particular, optical absorption
easily heats up mechanical systems—effectively increasing n̄th [144]. (c) Brillouin gain coefficient GB versus maximum net Brillouin gain �GBPp∕α − 1� for
a selection of 2D-confined waveguides. Up to extrinsic cavity losses, C − 1 � �GBPp∕α − 1�. Achieving this maximum Brillouin gain requires the wave-
guide to have a length L � 1∕α, with α the optical propagation loss per meter. However, this is challenging as longer waveguides can—but do not
always—suffer from inhomogeneous broadening of the mechanical resonance due to atomic-scale disorder in the waveguide geometry. Inhomogeneous
effects are typically weaker in less confined systems. The data points correspond to Refs. [30,34–36,41,42,52,55,72,86,87,97,101,114–116,119,
139–141,143–147,149,151–164,166,168–170,173,175,180,232,251,270,298,299,311,313]. There was no requirement for sideband resolution in
these figures.
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ϑwg �
g20jβ�K

vgΔΩ
, (21)

on another photon with vg the optical group velocity (see
Supplement 1). The cross-Kerr phase shift ϑwg can be enhanced
drastically by reducing the group velocity vg via Brillouin slow
light [130,137,188]. If sufficiently large, the phase shifts ϑcav
and ϑwg can be used to realize controlled-phase gates between
photonic qubits—an elementary building block for quantum in-
formation processors [137,189–191]. Using Eq. (8), we have

ϑcav �
F
π
ϑwg, (22)

with F � 2π∕�κT rt� the cavity finesse and T rt the cavity round-
trip time. Therefore, cavities generally yield larger single-photon
cross-Kerr phase shifts than their corresponding optomechanical
waveguides.

Currently state-of-the-art solid-state and sideband-resolved
(ωm > κ) opto- and electromechanical systems yield at best g0∕κ ≈
0.01 in any material (Fig. 5). Significant advances in g0 may be
made in, e.g., nanoscale-slotted structures [101,192,193], but it re-
mains an open challenge to not only increase g0 but also g0∕κ by a
few orders of magnitude [194]. Beyond exploring novel structures,
other potential approaches include effectively boosting g0∕κ by
parametrically amplifying the mechanical motion [195], by employ-
ing delayed quantum feedback [196], or via collectively enhanced
interactions in optomechanical arrays [197,198]. Although single-
photon nonlinear optics may be out of reach for now, many-photon
nonlinear optics can be enhanced very effectively with mechanics.
Specifically, mechanics realizes Kerr nonlinearities orders of magni-
tude beyond those of typical intrinsic material effects. This is espe-
cially so for highly flexible, low-frequency mechanical systems
[122,123,199,200], but has been shown in gigahertz silicon opto-
mechanical cavities and waveguides as well [34,127].

B. Efficient Optical Modulation

Phonons provide a natural means for the spatiotemporal modu-
lation of optical photons via electro- and optomechanical inter-
actions. Hybrid circuits that marry photonic and phononic
excitations give us access to novel opto-electromechanical systems.
Two aspects of the physics make phononic circuits very attractive
for the modulation of optical fields.

First, there is excellent spatial matching between light and
sound. As touched upon above, the wavelengths of microwave
phonons and telecom photons are both about a micron in tech-
nologically relevant materials such as silicon. The matching fol-
lows from the 4 to 5 orders of magnitude difference between the
speed of sound and the speed of light. Momentum conservation,
i.e., phase-matching, between phonons and optical photons (as
discussed in Section 3) is key for nonreciprocal nonlinear
processes and modulation schemes with traveling phonons
[59,106,108,201].

Second, the optomechanical nonlinearity is strong and essen-
tially lossless. Small deformations can induce major changes on
the optical response of a system. For instance, in an optomechan-
ical cavity [Eq. (1)], the mechanical motion required to encode
a bit onto a light field has an amplitude of approximately
xπ � �κ∕g0�xzp. Generating this motion requires energy, and this
corresponds to an energy-per-bit Ebit � meffω

2
mx2π∕2, which we

rewrite as

Ebit �
ℏωm

4

�
κ

g0

�
2

: (23)

Thus the energy-per-bit also depends on the dimensionless quan-
tity g0∕κ: a single phonon can switch a photon when this quantity
reaches unity, in agreement with Section 5.A. For silicon opto-
mechanical crystals with g0∕κ ≈ 10−3, this yields Ebit ≈ 1aJ∕bit:
orders of magnitude more efficient than commonly deployed
electro-optic technologies [11].

The similarity between the fundamental interactions in opto-
mechanics [33] and electro-optics [202,203] allows one to com-
pare the two types of modulation head-to-head. In particular, in
an optical cavity made of an electro-optic material the voltage
drop across the electrodes required to encode a bit is V π �
κ∕�∂V ωo� � �κ∕g0�V zp, with g0 � �∂V ωo�V zp the electro-optic
interaction rate [202,203], which is defined analogously to the
optomechanical interaction rate. It is the parameter appearing
in the interaction Hamiltonian Hint � ℏg0a

†a�b� b†�, with
b� b† now proportional to the voltage across the capacitor of
a microwave cavity [202,203]. The required V π corresponds
to an energy-per-bit Ebit � CV 2

π∕2, which again can be rewritten
as expression (23). Electro-optic materials such as lithium niobate
[204] may yield up to g0∕�2π� ≈ 10 kHz, corresponding to an
energy-per-bit Ebit ≈ 10 fJ∕bit, keeping the optical linewidth κ
constant—on the order of today’s world records [11].

Although full system demonstrations using mechanics for
electro-optic modulation are lacking, based on estimates like these
we believe that mechanics will unlock highly efficient electro-
optic systems. The expected much lower energy-per-bit implies
that future electro-optomechanical modulators could achieve
much higher bit rates at fixed power, or alternatively, much lower
dissipated power at fixed bit rate than current direct electro-optic
modulators. Although the mechanical linewidth does not enter
expression (23), bandwidths of a single device are usually limited
by the phononic quality factor or transit time across the device.
Interestingly, the mechanical displacement corresponding to the
estimated 1 aJ∕bit is only xπ ≈ 10 pm.

Here we highlighted the potential for optical modulation based
on mechanical motion at gigahertz frequencies. However, similar
arguments can be made for optical switching networks based on
lower frequency mechanical structures. In particular, voltage-driven
capacitive or piezoelectric optical phase-shifters exploiting mechani-
cal motion do not draw static power and can generate large optical
phase shifts in small devices [205–212]. These photonic micro-
electromechanical systems (MEMS) are thus an attractive
elementary building block in reconfigurable and densely inte-
grated photonic networks used for high-dimensional classical
[11, 213–216] and quantum [217–220] photonic information
processors. They may meet the challenging power and space con-
straints involved in running a complex programmable network.

Demonstrating fully integrated acousto-optic systems requires
that we properly confine, excite, and route phonons on a chip.
Among the currently proposed and demonstrated systems are
acousto-optic modulators [108], as well as optomechanical
beam-steering systems [73,221]. Besides showing the power of
sound to process light with minuscule amounts of energy, these
phononic systems have features that are absent in competing ap-
proaches. For instance, gigahertz traveling mechanical waves
with large momentum naturally enable nonreciprocal features
in both modulators [108] and beam-steering systems [73].
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This is essential for isolators and circulators based on indirect
photonic transitions [107,222–227].

In order to realize these and other acousto-optic systems, it is
crucial to efficiently excite mechanical excitations on the surface
of a chip. In this context, electrical excitation is especially prom-
ising, as it allows for stronger mechanical waves than optical ex-
citation. With optical excitation of mechanical waves, the flux of
phonons is upper-bounded by the flux of optical photons injected
into the structure. The ratio of photon to phonon energy limits
the mechanical power to less than a microwatt, corresponding to
10–100 mW of optical power. Nevertheless, proof-of-concept
demonstrations [107,109,228] have successfully generated non-
reciprocity on a chip using optically generated phonons. In con-
trast, microwave photons have a factor 105 larger fluxes than
optical photons for the same power. Therefore, microwave pho-
tons can drive milliwatt-level mechanical waves in nanoscale
cavities and waveguides. Such mechanical waves can have dis-
placements up to a nanometer and strains of a few percent—close
to material yield strengths.

Electrical generation of gigahertz phonons in nanoscale struc-
tures has received little attention so far, especially in nonpiezoelec-
tric materials such as silicon and silicon nitride. As discussed in
Section 3.B, this can be realized either via capacitive or via piezo-
electric electromechanics. Capacitive approaches work in any
material [229–231] and have recently been demonstrated in a sil-
icon photonic waveguide [232]. They require small capacitor gaps
and large bias voltages to generate effects of magnitude compa-
rable to piezoelectric approaches. More commonly, piezoelectrics
such as gallium arsenide [58,233], lithium niobate, aluminum
nitride [234,235], and lead-zirconate titanate can be used as
the photonic platform, or be integrated with existing photonic
platforms such as silicon and silicon nitride in order to combine
the best of both worlds [73,236–239]. Such hybrid integration
typically comes with challenging incompatibilities in material
properties [240], especially when more than one material needs
to be integrated on a single chip. Efficient electrically driven
acoustic waves in photonic structures have the potential to enable
isolation and circulation with an optical bandwidth beyond 1
THz—limited only by optical walk-off [106,227,241–244].

C. Hybrid Quantum Systems

Strain and displacement alter the properties of many different sys-
tems and therefore provide excellent opportunities for connecting
dissimilar degrees of freedom. In addition, mechanical systems
can possess very long coherence times and can be used to store
quantum information. In the field of hybrid quantum systems,
researchers find ways to couple different degrees of freedom over
which quantum control is possible to scale up and extend the
power of quantum systems. Realizing hybrid systems by combin-
ing mechanical elements with other excitations is a widely pur-
sued research goal. Studies on both static tuning of quantum
systems using nanomechanical forces [245–248] as well as on
quantum dynamics mediated by mechanical resonances and
waveguides [62,177,246,249,250] are being pursued.

Among the emerging hybrid quantum systems, microwave-to-
optical photon converters utilizing mechanical degrees of freedom
have attracted particular interest recently [249,251–255]. In particu-
lar, one of the leading platforms to realize scalable, error-corrected
quantum processors [256,257] is superconducting microwave cir-
cuits in which qubits are realized using Josephson junctions

[258,259] in a platform compatible with silicon photonics [260].
To suppress decoherence, these microwave circuits are operated at
millikelvin temperatures inside dilution refrigerators. Heat genera-
tion must be restricted in these cold environments [261]. The most
advanced prototypes currently consist of on the order of 50 qubits on
which gates with at best 0.1% error rates can be applied [261,262].
Scaling up these systems to millions of qubits, as required for a fully
error-corrected quantum computer, is a formidable unresolved chal-
lenge [257]. Also, the flow of microwave quantum information is
hindered outside of the dilution refrigerators by the microwave ther-
mal noise present at room temperature [263,264]. Optical photons
travel for kilometers at room temperature along today’s optical fiber
networks. Thus quantum interfaces that convert microwave to op-
tical photons with high efficiency and low noise should help address
the scaling and communication barriers hindering microwave quan-
tum processors. They may pave the way for distributed and modular
quantum computing systems or a “quantum Internet” [265,266].
Besides, such interfaces would give optical systems access to the large
nonlinearities generated by Josephson junctions, which enables a
new approach for nonlinear optics.

The envisioned microwave-to-optical photon converters are in
essence electro-optic modulators that operate on single photons
and preserve entanglement [202]. They exploit the beam-splitter
Hamiltonian discussed in Section 3 to swap quantum states from
the microwave to the optical domain and vice versa. To realize a
microwave-to-optical photon converter, one can start from a
classical electro-optic modulator and modify it to protect quantum
coherence. Several proposals aim to achieve this by coupling a
superconducting microwave cavity to an optical cavity made of an
electro-optic material. For instance, the beam-splitter Hamiltonian
can be engineered by injecting a strong optical pump red-detuned
from the cavity resonance in an electro-optic cavity. In order to sup-
press undesired Stokes scattering events, the frequency of the micro-
wave cavity needs to exceed the optical cavity linewidth, i.e.,
sideband resolution is necessary. In this scenario, continuous-wave
state conversion with high fidelity requires an electro-optic cooper-
ativity Ceo close to unity:

Ceo �
4g20jαj2
κγμ

� 1, (24)

with g0 the electro-optic interaction rate as defined in the previous
section, jαj2 the number of optical pump photons in the cavity, and
γμ the microwave cavity linewidth. The quantum conversion is ac-
companied by an optical power dissipation Pdiss � ℏωojαj2κin,
with κin the intrinsic decay rate of the optical cavity. Operating
the converter in a bandwidth of γμ and inserting condition (24),
this leads to an energy-per-qubit of

Eqbit �
ℏωo

4

�
κκin
g20

�
, (25)

which is the quantum version of the energy-per-bit (23). This yields
an interesting relation between the efficiency of classical and quan-
tum modulators:

Eqbit

Ebit

≈
ωo

ωm

: (26)

We stress that Eqbit is the optical dissipated energy in a quantum
converter, whereas Ebit is the microwave or mechanical energy nec-
essary to switch an optical field in a classical modulator [267]. The
quantum electro-optic modulator dissipates roughly 5 orders of

Review Article Vol. 6, No. 2 / February 2019 / Optica 223



magnitude more energy per converted qubit, as it requires an
optical pump field to drive the conversion process. Strategies
developed to minimize Ebit, as pursued for decades by academic
groups and the optical communications industry, also tend to min-
imize Eqbit. Recently, a coupling rate of g0∕�2π� � 310 Hz was
demonstrated in an integrated aluminum nitride electro-optic
resonator [268]. Switching to lithium niobate and harnessing
improvements in the electro-optic modal overlap may increase
this to g0∕�2π� ≈ 10 kHz, corresponding to Eqbit ≈ 1 nJ∕qbit.
Electro-optic polymers [269] may yield higher interaction rates
g0 but bring along challenges in optical and microwave losses κ
and γμ. Cooling powers of roughly 10 μW at the low-temperature
stage of current dilution refrigerators [261] imply that conversion
rates with common electro-optic materials will likely not exceed
about 10 kqbits∕s.

Considering that the g0∕κ demonstrated optomechanical de-
vices are much larger than those found in electro-optic systems,
and following a reasoning similar to that presented in Section 5.B
for classical modulators, it is likely that microwave-to-optical pho-
ton converters based on mechanical elements as intermediaries
will be able to achieve large efficiencies. It has been theoretically
shown that electro-optomechanical cavities with dynamics de-
scribed in Section 3 allow for efficient state transduction between
microwave and optical fields when

Cem ≈ Com ≫ 1, (27)

with Cem and Com the electro- and optomechanical cooperativities.
Noiseless conversion additionally requires negligible thermal mi-
crowave and mechanical occupations [117,118,252]. Since the
dominant dissipation still arises from the optical pump, the
energy-per-qubit can still be expressed as in Eq. (25) for a
electro-optomechanical cavity. Given the large nonlinearity
g0∕κ enabled by nanoscale mechanical systems (Fig. 5), we expect
conversion rates up to 100 Mqbits∕s are feasible by operating
multiple electro-optomechanical photon converters in parallel in-
side the refrigerator. State-of-the-art integrated electro- and opto-
mechanical cavities have achieved Cem > 1 and Com > 1 in
separate systems (Fig. 5). It is an open challenge to achieve con-
dition (27) in a single integrated electro-optomechanical device.

Finally, the long lifetimes and compact nature of mechanical sys-
tems also makes them attractive for the storage of classical and
quantum information [140,150,183,250,270–275]. Mechanical
memories are currently pursued both with purely electromechanical
[140,177,270] and purely optomechanical [133,134] systems.
Interfaces between mechanical systems and superconducting qubits
may lead to the generation of nonclassical states of mesoscopic
mechanical systems [33,271,276–281], probing the boundary
between quantum and classical behavior.

D. Microwave Signal Processing

In particular, in the context of wireless communications, compact
and cost-effective solutions for radio-frequency (RF) signal pro-
cessing are rapidly gaining importance. Compared to purely elec-
tronic and MEMS-based approaches, RF processing in the
photonics domain—microwave photonics—promises compact-
ness and light weight, rapid tunability, and integration density
[282–284]. Currently demonstrated optical solutions, however,
still suffer from high RF-insertion loss and an unfavorable
trade-off between achieving sufficiently narrow bandwidth, high
rejection ratio, and linearity. Solutions mediated by phonons

might overcome this limit, as they offer a narrow linewidth with-
out suffering from the power limits experienced in high-quality
optical cavities [165,285].

Given the high power requirements, 2D-confined waveguides
lend themselves more naturally to many RF applications. As such,
stimulated Brillouin scattering (SBS) has been extensively exploited.
Original work focused on phonon-photon interactions in optical fi-
bers, which allows for high SBS gain and high optical power but
lacks compactness and integrability. Following the demonstration
of SBS gain in integrated waveguide platforms [34,36,166], several
groups now also demonstrated RF signal processing using integrated
photonics chips. In the most straightforward approach, the RF signal
is modulated on a sideband of an optical carrier which is then over-
laid with the narrowband SBS loss spectrum generated by a strong
pump [286,287]. Tuning the carrier frequency allows rapid and
straightforward tuning of the notch filter over several gigahertz
and a bandwidth below 130 MHz was demonstrated. The suppres-
sion was only 20 dB, however, limited by the SBS gain achievable in
the waveguide platform used, in this case a chalcogenide waveguide.
This issue is further exacerbated in more complementary metal–
oxide–semiconductor (CMOS)-compatible platforms, where the
SBS gain is typically limited to a few decibels. This can be overcome
by using interferometric approaches, which enable over 45 dB sup-
pression with only 1 dB of SBS gain [288,289].

While this approach outperforms existing photonic and non-
photonic approaches on almost all specifications (see Table 1 in
[288]), a remaining issue is the high RF insertion loss of about
30 dB. Integration might be key in bringing the latter to a com-
petitive level, as excessive fiber-to-chip losses and high modulator
drive voltages associated with the discrete photonic devices cur-
rently being used are the main origin of the low system efficiency.
Also, the photonic-phononic emit-receive scheme proposed in
[227,290] results in a lower RF insertion loss. Although it gives
up tunability, additional advantages of this approach are its en-
gineerable filter response [290,291] and its cascadability [227].
Exploiting the phase response of the SBS resonance also phase
control of RF signals has been demonstrated [285]. Phase control
of RF signals via the phase response of the SBS resonance has also
been demonstrated. Again, interferometric approaches allow one
to amplify the intrinsic phase delay of the system, which is limited
by the available SBS gain. In the examples above, the filter is
driven by a single-frequency pump, resulting in a Lorentzian filter
response. More complex filter responses can be obtained by com-
bining multiple pumps [130]. However, this comes at the cost of
the overall system response, since the total power handling capac-
ity of the system is typically limited. As such, there is still a need
for waveguide platforms that can handle large optical powers and
at the same time provide high SBS gain.

Further, low-noise oscillators are also a key building block in
RF systems. In [292], an SBS-based narrowband tunable filter is
integrated in the fiber loop of a hybrid opto-electronic oscillator
(OEO), allowing single-mode operation and wide frequency tun-
ability. Also, oscillators fully relying on optomechanical inter-
actions have been demonstrated. Two approaches, equivalent
with the two dissipation hierarchies (γ ≫ κ and γ ≪ κ) identified
in Section 3, have been studied. In the first case, if the photon
lifetime exceeds the phonon lifetime (γ ≫ κ), optical line narrow-
ing and eventually self-oscillation is obtained at the transparency
condition C � 1—resulting in substantial narrowing of the
Stokes wave and thus a purified laser beam [293–295].
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Cascading this process leads to higher-order Stokes waves with
increasingly narrowed linewidths. Photomixing a pair of cascaded
Brillouin lines gives an RF carrier with phase noise determined by
the lowest-order Stokes wave. Using this approach in a very low-
loss silica disk resonator, a phase noise suppression of 110 dBc at
100 kHz offset from a 21.7 GHz carrier was demonstrated [296].
In the alternate case, with the phonon lifetime exceeding the pho-
ton lifetime (γ ≪ κ), the Stokes wave is a frequency-shifted copy
of the pump wave apart from the phase noise added by the
mechanical oscillator. At the transparency condition C � 1,
the phonon noise goes down, eventually reaching the mechanical
Schawlow–Townes limit [297]. Several such “phonon lasers” have
been demonstrated already, relying on very different integration
platforms [298–302]. Further work is needed to determine if
these devices can deliver the performance required to compete
with existing microwave oscillators.

In the examples above, the mechanical mode is excited all-
optically via a strong pump beam. Both in terms of efficiency
and in terms of preventing the pump beam from propagating further
through the optical circuit, this may be not the most appropriate
method. Recently, several authors have demonstrated electrical
actuation of optomechanical circuits [58,108,232,251,303–305].
While this provides a more direct way to drive the acousto-optic
circuit, considerable efforts are still needed to improve the overall
efficiency of these systems and to develop a platform where all rel-
evant building blocks including, e.g., actuators and detectors, opto-
mechanical oscillators, and acoustic delay lines can be co-integrated
without loss in performance.

E. General Challenges

Each of the perspectives discussed above potentially benefits enor-
mously from miniaturizing photonic and phononic systems in
order to maximize interaction rates and pack more functionality
into a constrained space. Current nanoscale electro- and optome-
chanical devices indeed demonstrate some of the highest interac-
tion rates (Section 4). However, the fabrication of high-quality
nanoscale systems requires exquisite process control. Even
atomic-scale disorder in the geometric properties can hamper de-
vice performance, especially when extended structures or many
elements are required [35,306,307]. This can be considered
the curse of moving to the nanoscale. It manifests itself as pho-
tonic and phononic propagation loss [61,72], backscattering [61],
intermodal scattering, as well as inhomogeneous broadening [71],
dephasing [73], and resonance splitting [35,52].

To give a feel for the sensitivity of these systems, a 10 GHz
mechanical breathing mode undergoes a frequency shift of about
10 MHz per added monolayer of silicon atoms [34]. Therefore,
nanometer-level disorder is easily resolvable in current devices
with room-temperature quality factors on the order of 103.
Developing better process control and local tuning [308] methods
is thus a major task for decades to come. In addition, shrinking
systems to the nanoscale leads to large surface-to-volume ratios
that imply generally ill-understood surface physics determines
key device properties, even with heavily studied materials such
as silicon [97,309,310]. This is a particular impediment for
emerging material platforms such as thin-film aluminum nitride
[311], lithium niobate [312], and diamond [313–315]. The flip
side of these large sensitivities is that opto- and electromechanical
systems may generate exquisite sensors of various perturbations.
Among others, current sensor research takes aim at inertial and

mass sensing [179,316–318], as well as local temperature [319]
and geometry mapping [320–323].

Finally, tight confinement restricts the number of photons that
can be loaded into the system. This influences not merely the
maximum cooperativity, but also the thermal phonon occupation.
A key target of high confinement systems is increasing the unitless
nonlinearity g0∕κ and the cooperativity C, enhancing the inter-
action rates faster than various parasitic effects. Continued invest-
ments in nanotechnology give hope for further progress on
this front.

6. CONCLUSION

New hybrid electro- and optomechanical nanoscale systems have
emerged in the last decade. These systems confine both photons
and phonons in structures about one wavelength across to set up
large interaction rates in a compact space. Similar to integrated
photonics more than a decade ago, nanoscale phononic circuitry
is in its infancy and severe challenges such as geometric disorder
hinder its development. Still, we expect much to come in the years
ahead. We believe mechanical systems are particularly interesting
as low-energy electro-optic interfaces with potential use in coher-
ent classical and quantum information processors and sensors.
Phonons are a gateway for photons to a world with 5 orders
of magnitude slower time scales. Linking the two excitations
has the potential for major impact on our information infrastruc-
ture in ways we have yet to fully explore.
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