
1Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreports

Highly parallel simulation and
optimization of photonic circuits in
time and frequency domain based
on the deep-learning framework
PyTorch
Floris Laporte   1, Joni Dambre2 & Peter Bienstman1

We propose a new method for performing photonic circuit simulations based on the scatter matrix
formalism. We leverage the popular deep-learning framework PyTorch to reimagine photonic circuits as
sparsely connected complex-valued neural networks. This allows for highly parallel simulation of large
photonic circuits on graphical processing units in time and frequency domain while all parameters of
each individual component can easily be optimized with well-established machine learning algorithms
such as backpropagation.

Although photonic circuit simulation software already exists, it definitely has not yet reached the same maturity as
electronic circuit simulation software. This is mostly due to the complication of having both amplitude and phase
modulation in each component, which makes it very difficult to predict the behaviour of large circuits with many
components due due to interference effects. Optimizing photonic circuits has thus long been a process of trial and
error, where several parameters are swept independently of each other.

As of 2019, there are a handful of simulators for designing photonic integrated circuits, such as Aspic1, Luceda
Caphe2, Lumerical Interconnect3 and VPI Photonics4. All are excellent circuit simulation tools for their particular
purpose. However, some of these photonic circuit simulation tools are not well suited for parallel simulations and
for many of them, optimizing a circuit means nothing more than just sweeping the parameters, which quickly
becomes unwieldy when the number of parameters or components in the circuit starts to grow.

To address this, we present Photontorch, a tool loosely based on the node-based approach of Caphe2, which
in itself is based on coupled-mode theory5,6, but reduces the number of parameters by eliminating memory-less
nodes that are independent on time before doing a simulation. Our tool is written in Python and uses PyTorch
tensors7 to describe the parameters and S-matrices of the components. PyTorch tensors are highly optimized
arrays, which, as opposed to the more commonly used Numpy ndarray8, can be placed on the Graphical
Processing Unit (GPU) of a computer, automatically enabling highly parallelizable simulation of photonic cir-
cuits simulations. Moreover, each operation done on these tensors also tracks the gradient of that operation on
the result, enabling backpropagation9, currently the default optimization method for deep neural networks with
thousands of parameters.

The similarities with photonic circuits and neural networks are not a coincidence. Just like in neural networks,
most of the actions of a photonic circuit can be described by linear matrix algebra. Sometimes however, an active
component changes the behaviour of the circuit in a non-linear way, which can be compared to applying a custom
activation function in the field of neural networks. It is this approach of treating a photonic circuit as essentially
a sparsely connected recurrent neural network that may be a key ingredient in future photonic circuit design.

The remainder of this paper is organized as follows. First, a Description of the framework is given: its core
components and the equations that govern them are described. Next, a short comparison with other photonic
simulators is given in terms of performance on the core application domain of Photontorch: parallel multi-modal
simulation of multiple input signals through large photonic circuits. Finally, the advantages of optimizing

1Photonics Research Group, UGent - imec, Technologiepark-Zwijnaarde 126, 9052, Ghent, Belgium. 2IDLab, UGent -
imec, Technologiepark-Zwijnaarde 126, 9052, Ghent, Belgium. Correspondence and requests for materials should be
addressed to F.L. (email: floris.laporte@ugent.be)

Received: 2 January 2019

Accepted: 27 March 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42408-2
http://orcid.org/0000-0002-4850-4641
mailto:floris.laporte@ugent.be

2Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

photonic circuits through backpropagation are showcased by providing three examples: one in the frequency
domain and two in the time domain.

Description of the framework
Components.  To design a circuit in Photontorch, one needs components as building blocks. Each compo-
nent consists of N ports and each of these ports can be related to any other port of the same component by a
scatter-matrix or S-matrix, for which each element Sij describes the instantaneous connection between port i and
port j.

Furthermore, each component keeps track of which of its ports act actively. Active - or more generally
memory-containing (MC) Caphe2 - ports are for example source ports, detector ports, ports introducing optical
delay or ports that are defined by a custom action fact, such as a Semiconductor Optical Amplifier (SOA), where
the current action depends on an internal state. In general, any input state xin at time t gets transformed to an
output state xout at time t as follows:

= ⋅ + − …x t S x t f t x t x t dt() () (, (), (),) (1)out in act

Networks.  Multiple components can be combined in a circuit or network by combining the individual com-
ponent S-matrices into a joined block-diagonal S-matrix. The connections between the components can be repre-
sented by a connection matrix or C-matrix with elements Cij ∈ {0, 1}, effectively mapping the output state xout back
onto an input state xin:

+ = ⋅x t dt C x t() () (2)in out

A Photontorch network is in itself also a Photontorch component, allowing for a very hierarchical structure while
defining a top-level network. A network is a top-level network when it is fully connected, i.e. when

∑ ∑= = ∀ .C C j1
(3)i

ij
i

ji

This network cannot be connected to other components, as it has no free ports left.

Reduced connection matrix.  For these kind of top-level networks, the number of ports can be reduced.
This is done by combining (1) and (2) into









 =











⋅

















 +











x
x

C C
C C

S
S

x
x f x

0
0

0
() ,

(4)

ml

mc

ml ml ml mc

mc ml mc mc

ml ml

mc mc

ml

mc mc
, ,

, ,

,

,
act

where the division was made between instantaneous memory-less (ML) ports and memory-containing (MC)
ports. The ML part of the equation is independent of time and can be inverted2 to define a reduced equation,
describing only the action on the MC ports:

+ = + ⋅ ⋅ − +−x t dt C C S C S C S x t f x() ((1)) () () (5)
mc mc mc mc ml ml ml ml ml ml ml ml mc mc mc mc mc, , , , , 1 , ,

act

= +CS x t f x() (), (6)
mc mc mc mc,

act

where C is the reduced C-matrix, which describes all the instantaneous connections. In the following, the super-
scripts will be dropped, assuming that the reduction is already performed and only the MC nodes are left.

Ports for which a custom action is defined will have access to the state x, as well as previous states through a
buffer. This allows for example the definition of a component action in the form of an ordinary differential equa-
tion (ODE).

Parallelized design.  An important novelty of the Photontorch framework compared to commercially avail-
able software1–4 is the fact that the state vector x is defined as a big monolithic multidimensional tensor. Its dimen-
sions describe, apart from the number of MC nodes, the different wavelengths (or modes) of the simulation
and the different parallel simulations (batch size). The S-matrix and C-matrix have an extra dimension for each
wavelength as well, which allows for very fast simultaneous simulation for multiple wavelengths at once on a
GPU. In the time domain, this parallelizable nature is even more clear, as one can parallelize both the number of
input wavelengths and the number of input wave forms. The parallelized version of the update equations (6) for a
network with N memory containing nodes can be written as:

∑∑= + …+ −x C S x f t x x(, , ,),
(7)

q mnb
i

N

j

N

mni mij qmjb qmnb q mnb(1) act (1)

where q represents the current time step such that x(q ⋅ dt) = xq, m represents the number of wavelengths (or
modes), n represents the number of MC nodes and b represents the number of parallel simulations performed at
once, i.e. the batch size.

Circuit optimization.  Photontorch is entirely written with a PyTorch7 backend. PyTorch is a popular
deep-learning framework designed to optimize large tensor networks with backpropagation. By writing the
Photontorch components in terms of optimizable PyTorch parameters, PyTorch will automatically keep track of

https://doi.org/10.1038/s41598-019-42408-2

3Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

the necessary gradients to perform backpropagation through the circuit. This enables a whole new way of opti-
mizing the parameters of the photonic circuit.

Performance metrics
Although performance was never the main objective for Photontorch, the parallel nature in which it was built up
allows for very efficient execution in certain cases, especially for passive circuits in the time domain.

As an example, the performance of Photontorch was bench-marked by simulating a Large Coupled Resonator
Optical Waveguide (CROW) both in the frequency domain and in the time domain. A CROW consists of a
number of ring resonators which are connected to each other in series, as can be seen in Fig. 1. Such A CROW
is a good circuit for bench-marking, as it allows to easily add extra rings to increase the difficulty of the simula-
tion. Other parameters that can be tweaked during a CROW circuit simulation are the number of wavelengths
simulated simultaneously and the number of parallel simulations performed at the same time, in a batched exe-
cution mode. All simulations were performed on a normal desktop computer with an Intel i7-4790K CPU with
8 GB RAM, while for the GPU simulations, an Nvidia GTX-1060 (6 GB) GPU was used. The performance of
Photontorch (both CPU and GPU) on simulating this passive circuit is compared with other simulators, such as
Lumerical Interconnect and Luceda Caphe.

First, the response of a CROW in frequency domain was calculated. For this task, Photontorch is outper-
formed by Caphe, but performs significantly better than Interconnect, as can be seen in Fig. 2(a). Caphe performs
better in this regard due to its more efficient solver for a large system of equations necessary to find the reduced
connection matrix of the CROW. This solver utilizes a factorization method for sparse systems2, which is cur-
rently not available in Photontorch’s PyTorch backend, but could conceivably be added.

Figure 1.  A CROW is an add-drop filter with extra rings. Each CROW with n rings has n + 1 couplings (blue)
and n phase shifts (orange).

Figure 2.  The performance for Photontorch simulating a CROW, both in the frequency domain and the time
domain, was compared to Interconnect and Caphe. (a) The time needed to find the frequency response for a
CROW of increasing number of rings: the performance of Photontorch lies somewhere in between the Caphe
and Interconnect. (b) The time needed to do a time domain domain simulation of 3000 time steps for an
increasing number of rings: the simulation time of Photontorch is practically zero up to about 100 rings. (c)
Performance for a multimode time-domain simulation for a CROW of 64 rings and an increasing number of
wavelengths. (d) Performance for a time-domain simulation of a CROW with 64 rings for a single wavelength
but for an increasing number of input waveforms (batch size).

https://doi.org/10.1038/s41598-019-42408-2

4Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

However, once the S-matrix is found, Photontorch vastly outperforms both Caphe and Interconnect in
time-domain simulations of the CROW, as can be seen in Fig. 2(b–d), where a CROW was simulated for 3000
time steps. Indeed, in Fig. 2(b), one sees that Photontorch outperforms both Caphe and Interconnect for a
time-domain simulation of a CROW with an increasing number of rings. Moreover, simulating additional wave-
lengths at once for a CROW with 64 rings is always faster than the sequential simulation required by Caphe and
Interconnect, as can be seen in Fig. 2(c). Similarly, simulating multiple input wave forms at once (batched execu-
tion) for a CROW with 64 rings at a single wavelength generates almost no overhead in Photontorch, especially
on a GPU Fig. 2(c).

Optimization results
Apart from its parallel nature, Photontorch can also be used to efficiently optimize large photonic circuits through
backpropagation. Backpropagation is a well-established optimization method which is traditionally used to
optimize the many parameters of deep neural networks10. Since the Photontorch framework exclusively uses
PyTorch’s autograd tensors and operators7, each operation for which a forward pass is defined will be differen-
tiable. This allows us to optimize complex photonic circuits as if they were recurrent neural networks. This way
of optimizing photonic circuits is a lot more efficient than sweeping the parameters of the circuit or optimizing
through genetic algorithms, as a much smaller portion of the parameter space has to be explored.

Photonic circuits are typically recurrent in nature, which will have an effect on how effective backpropagation
is, as exploding gradients and vanishing gradients are common problems for large recurrent neural networks11.
In deep learning these problems are often solved by using specialized recurrent modules such as the well-known
Long Short-Term Memory (LSTM) cell12 or the Gated Recurrent Unit (GRU)13. However, recent advances have
shown that recurrent deep learning with unitary matrices14,15 does not suffer from this problem. Loss-less pho-
tonic components are per definition unitary, which will allow us to still find a suitable optimum for many cir-
cuit optimization problems through backpropagation. In the case of lossy structures, the losses are typically low
enough to consider the photonic circuit quasi unitary.

Coupled Resonator Optical Waveguides.  First of all, the same CROW as used for the performance
measurements was optimized in the frequency domain to act like a band-pass filter around λ0 = 1545 nm. A
CROW of 4 rings was assumed, each with a radius of 5 μm. The only parameters being optimized are the cou-
plings between the rings. After a few training steps, an optimum is found through gradient descent, as can be
seen in Fig. 3(a). The resulting transmission at the drop port of the CROW approximates the target transmission
window of 1 nm width as can be seen in Fig. 3(b). The whole training procedure was finished in a few seconds.

Passive Photonic Reservoir Computer.  Furthermore, it is shown that such optimization through back-
propagation can also be applied in the time domain. To illustrate this, a large photonic reservoir16 was optimized.
Reservoir computing is an almost two-decade-old machine-learning concept17,18. It is defined by distributing
an input signal over a series of nodes which are recurrently connected, as shown in Fig. 4(a). The connections
between the recurrent nodes are not optimized and form the so-called reservoir. In fact, only the output connec-
tions that combine the states in the recurrent nodes into a useful output signal are optimized for the task at hand.
The reservoir is called passive if no non-linearities are present inside it. Such passive reservoirs rely solely on the
non-linear operation at the photodetector and can easily be implemented in photonic circuits with splitters and
combiners16.

In most on-chip reservoirs, the reservoir states are first detected before they are linearly combined into an
output signal (the so-called electrical readout). Although this first-detect-then-weight approach produces good
results, it is not very feasible for large reservoirs, as one would need as many detectors as there are reservoir
nodes. On top of that, using multiple detectors and analog-to-digital converters goes against the idea of having an
energy-efficient system. For an all-optical implementation, it is beneficial to move the detectors at the nodes of the
reservoir to one single detector at the output, after an optically implemented weighting procedure, implemented
e.g. by amplitude and phase modulators (a so-called optical readout). These complex-valued readout weights
should be trained to minimize the Mean Squared Error (MSE) between the detector output and the target signal.

The traditional approach to train reservoirs uses ridge regression19 to optimize a real-valued sum with
real-valued weights20. While it is possible to use a complex extension of this to optimize a complex-valued sum

Figure 3.  The parameters for a CROW-based band-pass filter can easily be obtained through backpropagation.
(a) The evolution of the Root Mean Squared Error (RMSE) between target function and transmission at the
drop port of the CROW over time. Each training step takes about 100 ms. (b) The transmission at the drop port
was trained to create a window of transmission of 1 nm around a center wavelength λ0 = 1545 nm.

https://doi.org/10.1038/s41598-019-42408-2

5Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

with complex-valued weights, this is not entirely what is needed in order to train the optical readout. Indeed,
one only cares about the amplitude of signal after the detector, whereas complex-valued ridge regression would
only be able to aim for a given complex summed signal before the detector. However, there are many different
complex-valued signals (each with a different phase) before the detector that give rise to the same intensity after
the detector. In order to be able to use ridge regression, the phase of the signal in front of the detector would need
to be arbitrarily fixed, effectively limiting the space of complex optical weights.

This is where Photontorch can be of invaluable help, as it enables to perform backpropagation through the
detector without having to make any assumption on the phase before the detector. This technique can also be used
in the case of the cascaded reservoir in Fig. 4(b), where using complex ridge regression would be completely out
of the question.

To see how Photontorch can be used in this case, a reservoir was trained to perform the XOR task: a Pseudo
Random Bit Sequence (PRBS) of 105 bits was sent through the reservoir, while the readout was trained to calculate
the XOR on two bits in the stream. Both a single reservoir of 36 nodes and a cascaded reservoir of two times 18
nodes were trained.

Throughout the simulations, a detector with load resistance RL = 1 kΩ, responsivity η = 0.5 A/W and frequency
cut-off fc = 50 Gbps, implemented by an order-4 Butterworth filter was assumed. The detector noise consists of
thermal noise and shot noise, respectively modelled by a Nyquist process and a Poisson process.

As a first task, the XOR on two subsequent bits in the bit stream was performed, shown in Fig. 5(a). The output
weights of both reservoirs and the intermediate weights Wint of the cascaded reservoir were trained to return a
signal that resembles the target signal as close as possible. For this, backpropagation through the detector (and
through the second reservoir in the case of the cascaded reservoir) was used to minimize the MSE between the
target signal and the output signal. In Fig. 5(b) one sees that the normal reservoir and the cascaded reservoir for
which the intermediate weights Wint are optimized perform equally well on this task, while the cascaded reservoir
without intermediate weights performs noticeably worse. However, if a few connection phases in the normal res-
ervoir were allowed to be tuned as well, the MSE can be decreased even further, even without needing to cascade
two reservoirs.

As a second task, the XOR on two bits with one bit in between is taken as a target. As can be seen in Fig. 5(c),
initially the cascaded reservoir for which the intermediate weights Wint are being trained performs worse than the
normal reservoir when only the readout weights are optimized. However, its performance can be improved if one
allows optimization of the intermediate weights Wint.

Unitary matrices.  Finally we show that Photontorch can also be used to optimize optically implemented uni-
tary matrices21–23. By training a network of cascaded optical mixing units to perform the permuted pixel-by-pixel
MNIST (Modified National Institute for Standards and Technology) digit recognition task15,24.

Implementing and tuning such large networks on chip is currently still in a very early stage25, however,
insights from these endeavours have already lead to new deep-learning architectures15, which outperform
more traditional Long Short-Term Memory (LSTM) cells12 on several benchmark tasks, as they do not suf-
fer from common problems in recurrent neural networks, such as exploding or vanishing gradients11. More
recently, more efforts have been made to streamline the initialization and optimization process of these large

Figure 4.  (a) A single-input reservoir computer. A single input is distributed over the nodes of a reservoir by a
fixed set of input weights Win. The reservoir has a complex recurrent interconnection topology characterized by
its intermediate weights Wint. The reservoir states are read out by a trainable set of readout weights Wout. (b) An
ensemble of reservoirs. Two reservoirs are cascaded by a trainable set of intermediate weights Wint.

https://doi.org/10.1038/s41598-019-42408-2

6Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

networks using backpropagation26. Having a tool like Photontorch might help significantly for prototyping those
photonics-inspired neural networks.

Implementing those unitary matrices in photonics is in theory quite trivial. Since lossless optical components
are per definition unitary, those unitary matrices can be constructed by cascading layers of mixing units together
as illustrated in Fig. 6(a). Such a mixing unit can be any 2 × 2 port for which the phase and the coupling can be
controlled, such as a directional coupler preceded by a phase shifter or a Mach-Zehnder interferometer (MZI)
with two variable phases, as illustrated in Fig. 6(b). In the following, layers consisting of MZIs were assumed.

The number of such MZI layers, often called the capacity of the network, is a free parameter of the system.
It turns out that one needs a full-capacity network to span the full unitary matrix space, i.e. the number of MZI
layers needs to be equal to the rank of the unitary matrix. However, networks with less capacity can also be used
with great results in the permuted pixel-by-pixel MNIST of recurrent neural networks15.

Such a unitary recurrent neural network (URNN) is easily formed by connecting the output of the unitary
matrix back onto itself, as illustrated in Fig. 6. It is such a URNN that was chosen to perform the permuted
pixel-by-pixel MNIST task, a common benchmark task for recurrent neural networks, where one tries to perform
digit recognition on an image that is sent pixel-by-pixel through the neural network in a fixed randomized order14,15.

The architecture of the URNN, illustrated in Fig. 6, is defined as follows. A single input (which will take the
image pixels one by one), gets transformed into a 256D state by an array of optimizable weights. This 256D state
gets then fed into the unitary matrix network of capacity 3, i.e. in three layers of each 128 MZIs (each MZI has two
inputs). The outputs of this EURNN get split: one part gets fed into the output layer and one part gets sent back
to the input of the unitary matrix. The output layer in itself is again an array of 10 × 256 weights, which makes a
linear combination for each of the possible digit responses. The output number with the largest resulting ampli-
tude is the answer of our network.

The input and the output layer can in principle be represented by a photonically implemented unitary matrix
as well, but we chose not to do this as to not make the model overly complex. The total number of parameters
represented by the cascade of MZIs, is 2 × 128 × 3 = 768, as each MZI contains two optimizable parameters: the
input phase difference φ and the phase difference between its arms θ. Optimizing this many parameters with a
conventional circuit simulator would be a nightmare.

To boost the performance of the network defined above, a non-linear layer has to be added to the recurrent
loop. This non-linear element was implemented in simulation by the modrelu15 function. However, Photontorch

Figure 5.  (a) Learning curve depicting the validation error between on the XOR task on two subsequent bits.
By allowing a few phases inside the reservoir to vary, the MSE can be improved. These optimized phases are
traditionally very difficult to find using conventional simulation techniques. (b) Learning curve depicting the
validation error on the XOR task on two bits with one bit in between. This is more easily performed by the
cascaded reservoir. However, better performance is only found with the cascaded reservoir by training the
intermediate weights Wint. (c) Sample output stream for the reservoir with 2 phases optimized for the XOR on
two subsequent bits. Good correspondence between the target stream and the reservoir output is observed.

https://doi.org/10.1038/s41598-019-42408-2

7Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

allows in principle to easily swap out this non-linearity for a more physically achievable non-linearity, for example
implemented by a Semiconductor Optical Amplifier (SOA).

The final accuracy on the MNIST digits for the permuted pixel-by-pixel MNIST task is 92%, as can be seen
in Fig. 7. This is on par with previously documented results for unitary matrices14,15. However, in this case, the
core of the network was defined solely using Photontorch components, which makes it a very modular approach.
This allows for example to change the network at certain locations by changing some of the MZIs by more com-
plex components. Moreover, the Photontorch framework allows to easily experiment with completely different
photonics-inspired neural network designs that are less easily implemented with conventional modelling tools.

Discussion
The presented framework adds a new approach to the not yet completely mature photonic circuit simulation
landscape in two major ways: it facilitates the simulation of large photonic circuits in a parallel way and more
importantly, it introduces a completely new way of optimizing photonic circuits.

We demonstrated by providing concrete examples that this deep-learning based photonic circuit simulator
can be of great value to optimize photonic circuits. The inherent parallelism and interference effects of photonics
makes optimizing circuits a lot harder than for example in electronics; it is thus completely normal to suspect that
other approaches are needed for optimizing large photonic circuits with a large number of parameters.

The proposed simulator Photontorch shows a lot of promise for such photonic circuit simulation and opti-
mization. It is an ideal choice when simulating a passive circuit for multiple wavelengths in the time domain.
Additionally, the inherent parallel nature also allows to simulate the batched response to different independent
input waveforms simultaneously at almost no overhead.

The main feature of Photontorch is its inherent relation to PyTorch autograd tensors, allowing it to leverage
backpropagation through each photonic component to optimize the parameters of large photonic circuits. We

Figure 6.  (a) Any unitary matrix can be represented by a cascade of mixing units. To span the full unitary
matrix space, the number of mixing unit layers needs to be equal to the rank of the matrix to represent. By
looping the unitary matrix onto itself, one gets a unitary recurrent neural network. The network represented
here contains an input layer, which transforms the 1D time dependent input data to a 256D. This state then gets
sent through the unitary matrix, which is connected onto itself. The output weights transforms the recurrent
layer back into a 10D state, one output for each digit to recognize. To boost the power of the recurrent neural
network, an activation or non-linear element has to be added into the recurrent loop. (b) The photonic mixing
unit used to build the unitary matrix needs to possess two independent variables. It can either be represented by
a phase shift followed by a directional coupler with variable coupling or by an MZI containing two phase shifts.

Figure 7.  Learning curve for the pixel-by-pixel MNIST task with a capacity-3 unitary neural network.

https://doi.org/10.1038/s41598-019-42408-2

8Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

expect this to be incredibly useful for prototyping photonic circuits, as well as for optimizing the parameters in
arbitrary photonic circuits containing both passive and active elements, such as - but definitely not excluded to -
the large MZI network discussed in this paper.

This feature might act as a double-edged sword, however, as having to describe each operation in terms of dif-
ferentiable PyTorch tensors inherently limits what kind of computations can be done efficiently, while in addition,
GPUs generally are more efficient for linear operations. This means that - although Photontorch is certainly capa-
ble of doing so - circuits with many active components will not be simulated as efficiently as the highly optimized
CPU-code found in some other simulators.

Finally, we also expect this framework to be useful for prototyping optically inspired neural networks for
machine learning. The way of defining a network as essentially linked components or modules through a con-
nection matrix can possibly unlock architectures that are presently hard to describe with more conventional
deep-learning methods.

Data Availability
The MNIST Dataset can freely be downloaded from: http://yann.lecun.com/exdb/mnist. The scripts used to ob-
tain the performance metrics and optimization results can be found on GitHub: http://github.com/flaport/pho-
tontorch_paper.

References
	 1.	 Melati, D. et al. Validation of the building-block-based approach for the design of photonic integrated circuits. Journal of Lightwave

Technology 30, 3610–3616 (2012).
	 2.	 Fiers, M. et al. Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-

based approach. JOSA B 29, 896–900 (2012).
	 3.	 Lumerical. A commercial-grade circuit simulator for the design, simulation and analysis of photonic integrated circuits. https://

www.lumerical.com/tcad-products/interconnect/ Accessed: 2018-12-10.
	 4.	 VPI. Photonics design automation. http://www.vpiphotonics.com Accessed: 2018-12-10.
	 5.	 Snyder, A. W. Coupled-mode theory for optical fibers. J. Opt. Soc. Am. 62, 1267–1277 (1972).
	 6.	 Yariv, A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics 9, 919–933 (1973).
	 7.	 Paszke, A. et al. Automatic differentiation in pytorch. Neural Information Processing Systems (2017).
	 8.	 Oliphant, T. E. A guide to NumPy, vol. 1 (Trelgol Publishing USA, 2006).
	 9.	 LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. In Advances in neural information processing

systems, 396–404 (1990).
	10.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86,

2278–2324 (1998).
	11.	 Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 6, 107–116 (1998).
	12.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997).
	13.	 Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078 (2014).
	14.	 Arjovsky, M., Shah, A. & Bengio, Y. Unitary evolution recurrent neural networks. In International Conference on Machine Learning,

1120–1128 (2016).
	15.	 Jing, L. et al. Tunable efficient unitary neural networks (eunn) and their application to rnns. arXiv preprint arXiv:1612.05231 (2016).
	16.	 Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nature communications 5

(2014).
	17.	 Jaeger, H. The ‘echo state’ approach to analyzing and training recurrent neural networks. Bonn, Germany: German National Research

Center for Information Technology GMD Technical Report 148, 34 (2001).
	18.	 Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: A new framework for neural computation

based on perturbations. Neural computation 14, 2531–2560 (2002).
	19.	 Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).
	20.	 Schrauwen, B., Verstraeten, D. & Van Campenhout, J. An overview of reservoir computing: theory, applications and

implementations. In Proceedings of the 15th European Symposium on Artificial Neural Networks p. 471–482 2007, 471–482 (2007).
	21.	 Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Physical review letters

73, 58 (1994).
	22.	 Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).
	23.	 Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport

interferometers. Optica 3, 1460–1465 (2016).
	24.	 Le, Q. V., Jaitly, N. & Hinton, G. E. A simple way to initialize recurrent networks of rectified linear units. CoRR (2015).
	25.	 Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nature Photonics 11, 441 (2017).
	26.	 Pai, S., Bartlett, B., Solgaard, O. & Miller, D. A. Matrix optimization on universal unitary photonic devices. arXiv preprint

arXiv:1808.00458 (2018).

Acknowledgements
EU Horizon 2020 PHRESCO Grant (688579); EU Horizon 2020 Fun-COMP Grant (780848); Research
Foundation Flanders (FWO) (G024715N).

Author Contributions
F.L. is the author of the Photontorch framework. F.L. prepared the manuscript. J.D. and P.B. guided the
interpretation of results. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1038/s41598-019-42408-2
http://yann.lecun.com/exdb/mnist
http://github.com/flaport/photontorch_paper
http://github.com/flaport/photontorch_paper
https://www.lumerical.com/tcad-products/interconnect/
https://www.lumerical.com/tcad-products/interconnect/
http://www.vpiphotonics.com

9Scientific Reports | (2019) 9:5918 | https://doi.org/10.1038/s41598-019-42408-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42408-2
http://creativecommons.org/licenses/by/4.0/

	Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning fr ...
	Description of the framework

	Components.
	Networks.
	Reduced connection matrix.
	Parallelized design.
	Circuit optimization.

	Performance metrics

	Optimization results

	Coupled Resonator Optical Waveguides.
	Passive Photonic Reservoir Computer.
	Unitary matrices.

	Discussion

	Acknowledgements

	Figure 1 A CROW is an add-drop filter with extra rings.
	Figure 2 The performance for Photontorch simulating a CROW, both in the frequency domain and the time domain, was compared to Interconnect and Caphe.
	Figure 3 The parameters for a CROW-based band-pass filter can easily be obtained through backpropagation.
	Figure 4 (a) A single-input reservoir computer.
	Figure 5 (a) Learning curve depicting the validation error between on the XOR task on two subsequent bits.
	Figure 6 (a) Any unitary matrix can be represented by a cascade of mixing units.
	Figure 7 Learning curve for the pixel-by-pixel MNIST task with a capacity-3 unitary neural network.

