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Abstract—As the performance increase of traditional Von-
Neumann computing attenuates, new approaches to computing
need to be found. A promising approach for low-power computing
at high bitrates is integrated photonic reservoir computing. In the
past though, the feasible reservoir size and computational power
of integrated photonic reservoirs have been limited by hardware
constraints. An alternative solution to building larger reservoirs
is the combination of several small reservoirs to match or exceed
the performance of a single bigger one. This paper summarizes our
efforts to increase the available computational power by combining
multiple reservoirs into a single computing architecture. We inves-
tigate several possible combination techniques and evaluate their
performance using the classic XOR and header recognition tasks as
well as the well-known Santa Fe chaotic laser prediction task. Our
findings suggest that a new paradigm of feeding a reservoir’s output
into the readout structure of the next one shows consistently good
results for various tasks as well as for both electrical and optical
readouts and coupling schemes.

Index Terms—Integrated photonic reservoir computing, deep
reservoir computing, scalable reservoir computing, unconventional
computing, neuro-inspired computing, neuromorphic computing.

I. INTRODUCTION

A S THE performance increase of traditional Von-Neumann
computing attenuates with the apparent end of Moore’s

Law [1], new, unconventional computing approaches have been
recently proposed. One of them, reservoir computing [2]–[4],
originally proposed as an effective training method for recurrent
neural networks, appears to be especially promising as it is
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well-fit to exploit the natural dynamics of physical systems
[5]–[7]. In recent years many optical computing approaches
have applied reservoir computing [8]–[16]. Among those, inte-
grated passive photonic reservoir computing or silicon reservoir
computing [17] is an interesting candidate for low-power com-
putation at very high baudrates (>10 Gbdps). Nevertheless, the
underlying technology is still plagued by a number of limita-
tions. In the past, the feasible reservoir size and computational
power of passive photonic reservoirs have been limited by a
number of factors. Among these are high optical losses, a limited
choice of suitable optical nonlinearities, and high hardware
and wiring effort. Recently though, several constraints could
be relaxed [18], [19]. Nevertheless, whereas new architectures
and hardware enable the construction of larger reservoirs, an
alternative route to explore is the combination of several small
reservoirs to match or exceed the performance of a single bigger
one. Moreover, it is well known from neural network literature
[20] that performing subsequent nonlinear transformations on
the input data by stacking a large number of non-linear neural
network layers is highly beneficial in terms of performance on a
wide variety of tasks. These insights have led to the paradigm of
deep learning. In this context, the cascading of passive photonic
reservoirs seems worth exploring, since it holds the promise
of immense computational power under the assumption that
combining several reservoirs yields similar improvements in
performance as have been experienced when implementing neu-
ral networks in software. In this work we summarize our recent
efforts to increase the available computational power by com-
bining multiple reservoirs into a single computing device. As a
first step, we discuss our approach and introduce the different
investigated architectures in Section II. Thereafter, we describe
our methodology and experimental setup in Section III. The
following sections discuss our conducted experiments, where we
group all investigated architectures by their mode of coupling. In
Section IV, we investigate architectures making use of an elec-
trical readout such that training as well as coupling of individual
reservoirs is conducted in the electrical domain. Thereafter, in
Section V, we proceed to fully optically trained and coupled
reservoirs. Finally, we sum up our findings and conclusions and
allude towards future directions of research in Section VI.
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Fig. 1. Examples of an ensemble of photonic reservoirs connected to a single readout for electrical and optical coupling in Fig. 1a and 1b respectively. The weights
of all reservoirs are trained jointly, i.e. as a single weight vector. PD: photodiode, ADC: analog-digital converter, LC: linear classifier, OM: optical modulator, OC:
optical combiner.

II. INVESTIGATED RESERVOIR ARCHITECTURES

In the context of feasibility for mass production in combina-
tion with inter-chip fabrication variabilities, using fast, closed-
form solution algorithms for training is mandatory. The strongest
available candidate for such an algorithm to date is complex-
valued ridge regression [21]. Therefore, an essential criterion for
any cascaded setup of reservoirs is that the individual reservoirs
still need to be trainable using ridge regression, rather than more
powerful but slower iterative training algorithms. For this reason,
our efforts to date are limited to setups which can be instantly
trained using ridge regression. The methods investigated will
be introduced in this section. Specifically, we investigated the
applicability of the classical combination techniques ensembling
and boosting [22] to photonic reservoir computing. Furthermore,
we have also evaluated the paradigm of stacking, which has
already been applied in the context of reservoir computing [23],
[24]. Furthermore, we introduce a new combination technique
inspired by stacking approaches as well as [25], which we refer
to as chaining.

A. Ensembling

In ensembling [22], several classifiers are trained for the same
task and combined by taking a combination of the individual
classifier predictions. In the simplest case, classifier predictions
are averaged which is commonly referred to as bagging. More
advanced approaches train a classifier to take a weighted sum
of the predictions of all former classifiers in an attempt to
combine the strengths of all previously trained classifiers and
average out their weaknesses. An ensemble of passive pho-
tonic reservoirs is straightforward to implement by adding an
additional weighting layer on top of several photonic reservoirs
working in parallel. A second, even simpler method would be
to simply connect the nodes of several reservoirs to a single
readout (see Fig. 1). This is the approach we followed within this
work, since bagging consistently exhibited poor performance

in preliminary experiments. While ensembles can deliver great
improvements at moderate implementation effort, in order to
work well, the models in an ensemble must be different, i.e. the
mistakes they make must be as uncorrelated as possible. Any two
passive photonic reservoirs are different by construction due to
the silicon photonics manufacturing process, which affects the
effective indices of their waveguides. This translates to strong
phase variations in the reservoir connections affecting the indi-
vidual signals of their corresponding reservoir states and makes
them ideal candidates for reservoir ensembling approaches in
hardware.

B. Boosting

Boosting [22], [26], [27] is a technique used successfully
in the past to combine several weak classifiers into a stronger
classifier. While there are several different forms of boosting,
gradient boosting is the most attractive to our purposes since
it can be implemented in a straightforward way in hardware
as seen in Fig. 2. In order to combine several reservoirs into a
gradient boosting approach, only the first reservoir is trained on
the desired output. Its resulting prediction is subtracted from the
original desired signal to form the desired signal that is used
for training the second reservoir. That way, the second reservoir
is actively trained to correct the first reservoirs errors when the
two output predictions are subsequently added in hardware. This
procedure can be repeated as often as necessary, adding more
reservoirs in the process to correct the remaining error.

C. Stacking

When stacking classifiers [22]–[24], one presents the predic-
tion signal of a given classifier as input signal to a subsequent
classifier. The underlying idea is that later classifiers will be
able to correct the errors of previous classifier stages. Despite
receiving different input signals, all classifiers are trained using
the same desired output signal. Fig. 3 illustrates two classifiers
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Fig. 2. Example of gradient boosting with two photonic reservoirs using electrical and optical coupling in Fig. 2a and 2b respectively. Added reservoirs are
trained on the difference between the desired signal d[n] and the actual summed output of all previous reservoirs y[n]. That way each added reservoir attempts to
add a prediction signal complementary to the current sum of prediction signals such that the sum of all signals predicts the desired signal as well as possible. PD:
photodiode, ADC: analog-digital converter, LC: linear classifier, OM: optical modulator, OC: optical combiner.

Fig. 3. Example of two photonic reservoirs with integrated optical readout stacked upon each other using electrical and optical coupling in Fig. 3a and 3b
respectively. Subsequent reservoirs receive the predicted output of previous stages as an input and attempt to improve upon it. All readouts are trained on the same
desired signal. PD: photodiode, ADC: analog-digital converter, DAC: digital-analog converter, LC: linear classifier, OM: optical modulator, OC: optical combiner.

stacked as described above, where training and coupling be-
tween reservoirs can be realized in the electrical or the optical
domain.

D. Chaining

Chaining is a connection scheme inspired by similar tech-
niques [23]–[25], in which the predicted output of a given
reservoir is fed as an extra weighted input to the readout of
a subsequent reservoir (see Fig. 4 for illustration). That way,
an additional reservoir is trained directly to improve an already
trained prediction signal. Again, this connection step can be re-
peated a number of times adding more reservoirs in the process.
Just like in the previous techniques, each additional reservoir
should be as different as possible from the previous one(s).

Note that the chaining and stacking approaches are similar to
the recent approach followed in [25], but not identical. In this
work, each reservoir module is driven with all the states of its
predecessor (with untrained weights). The readout is trained
on the aggregated states of all reservoirs in the ensemble. We
expect the architecture in [25] could perform better than the one
studied here because, as the information flows from reservoir
to reservoir, each subsequent reservoir in [25] has memory that
reaches further into the past. Translated to integrated photonics
technology, it would have to be simplified, e.g., by projecting a
random combination of each reservoirs states back into the next
reservoir and training the readout on all states in the electrical
domain. As our simulation studies have been conducted in par-
allel with the development of an actual chip prototype, and shall
be compared to the performance of the actual prototypes in the
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Fig. 4. Example of chaining with two photonic reservoirs using electrical and optical coupling in Fig. 4a and 4b respectively. The classifier stage of a subsequent
reservoir obtains the prediction of the previous reservoir as an input. The aim is to improve upon the previous prediction using the reservoir states of the subsequent
reservoir as an input. PD: photodiode, ADC: analog-digital converter, LC: linear classifier, OM: optical modulator, OC: optical combiner.

Fig. 5. Illustration of the modified swirl architecture of the simulated reservoir
as proposed by Sackesyn et al. [19]. In addition to the inner delay lines of the
nodes, delay lines are added outside of the swirl node grid. Input is injected
through the marked nodes.

future, we have constrained ourselves to designs that fit within
the implementation constraints of this prototype. Nevertheless
developing integrated photonic reservoir designs closer to the
DeepESN architecture appears to be an appealing direction for
future research.

III. METHODOLOGY

In our simulation studies, we use an updated version of
the classical swirl architecture [17]: in addition to the inner
delay lines of the nodes, delay lines are added outside of
the swirl node grid, as illustrated in Fig. 5. A simulated
1550 nm passive photonic reservoir utilizing this updated 4 ˆ 8
version of the swirl architecture as proposed by Sackesyn
et al. [19] is used as the essential building block in our
simulations. This reservoir is modeled as an optical circuit

comprising multimode interferometers as nodes connected by
shallow-etched waveguides as delay lines between nodes. These
delay lines are modeled to exhibit an average loss of 1 dB/cm
and are 2.14 mm long, to match the timescales of the reservoir
to 32 Gbits. However, for some node pairs that need to be
connected, the euclidean distance would be larger than 2.14 mm.
Therefore, we choose the delay lines between these nodes to be
twice the length of the other delay lines, namely 4.28 mm long.
Note that an integer multiple of the original delay is chosen here,
since preliminary experiments have shown that for a passive
photonic reservoir with delay lines of mixed lengths, all lengths
should be integer multiples of the shortest delay line length.

As a baseline reservoir to compare our cascaded architectures,
we use a single simulated reservoir of identical architecture and
technology, but with 4 times the number of nodes.

A. Simulation Setup

We simulate the response of our optical integrated circuit to
the upsampled, intensity-modulated input signal using Caphe
[28], [29] as described in Appendix A. We obtain a sampled
complex output signal of each reservoir node as result, denoting
amplitude and phase of the optical signal at that node at a
certain instant in time. Now we proceed differently for each
of the coupling states used for the investigated architecture.
For electrical coupling, we convert the complex-valued optical
signal at each of the 32 nodes of the reservoir from the optical
into the electrical domain using a photodetector model which is
described at length in Appendix B. The resulting samples of 32
simulated electrical signals are then arranged into a time series
of real-valued reservoir state vectors from which a weighted
linear combination (the classifier) is taken to obtain an output
signal solving the problem at hand. The obtained output signal
can be treated as the final answer of the system, or reconverted
into the optical domain to be passed on to a following optical
stage which is simulated in an identical way.

Authorized licensed use limited to: University of Gent. Downloaded on February 14,2020 at 14:34:49 UTC from IEEE Xplore.  Restrictions apply. 



FREIBERGER et al.: IMPROVING RECOGNITION WITH NETWORKS OF PHOTONIC RESERVOIRS 7700611

For optically cascaded reservoirs, which make use of an
integrated optical readout we follow the modeling and training
process of an integrated optical readout as described in [21]. The
complex-valued optical response signal is obtained as described
for the electrical approach. However, instead of converting this
signal to the electrical domain, the sampled complex optical
signals at each reservoir node are arranged into a time series
of complex state-node vectors X P C. The integrated optical
readout is simulated by computing an inner product between
each of these vectors and a complex weight vector w, which
represents the complex optical weights. The resulting complex-
valued signal is either fed into the next stage of a given reservoir
architecture, which can be simulated in an identical way, or
passed to the photodetector model to obtain the final electrical
output signal. In both the electrical and optical cases, the final
electrical output signal is downsampled in the middle of the bit
period. After downsampling, the signal is thresholded for binary
tasks, such as the XOR and the header recognition tasks, in order
to obtain a clean binary output bit sequence.

To gain conclusive results on the performance of our cascaded
reservoir systems, we sweep the symbol rate between 20 and
40 Gbdps (with the exception of the 3 bit XOR task where
the bit rate is swept between 30 and 50 Gbps since Vandoorne
et al. [17] have shown that for higher delay XOR tasks, larger
delays between nodes are necessary). For a reservoir with fixed
delay line lengths, changing the symbol rate changes the number
of symbols transmitted between nodes in a given time interval
and thus the amount of time steps (symbols) of the previous
signal that still affect the internal state of the reservoir. Therefore
performing a sweep over the bitrate enables us to investigate
our architecture’s performance when varying the reservoir’s
memory while still relating to a single optical circuit. Therefore
the symbol rate has a significant influence on the performance
of our investigated systems. While one could simply keep the
symbol rate fixed and perform sweeps over the delay line length
of the reservoir instead, this approach is favored in order to be
able to compare our obtained simulation results with the results
on future actual implementations of the simulated circuits.

As we sweep the symbol rate, we always sample 5 times
during every symbol period of the signal, which results in a
sampling rate of 160 GHz at a symbol rate of 32 Gbps, with
higher or lower sampling rates, respectively, for other bitrates.
The number of samples per symbol period is kept fixed for
varying bitrates in order to supply our machine learning al-
gorithms with always the same amount of training data. This
prevents degrading or improving performance due to large or
small amounts of training data. All obtained results are averaged
over 10 different architecture instances, in which the reservoirs
have been initialized with different random phases for their input
and connection waveguides, in order to account for the high
manufacturing variability of integrated photonic reservoirs and
combinations thereof.

B. Tasks

As tasks to evaluate the performance of our reservoirs we use
the delayed XOR task with 3 bits delay, the 1 sample ahead

prediction Santa Fe task [30], and the 5 bit header recognition
task. For this last task, the pattern 10101 needs to be found in
the input bit stream. We chose this pattern since we have found
it to be among the more difficult bit patterns to detect compared
to easy patterns such as 11111. As we perform the detection of a
5 bit header, this implies that we need sufficient training data to
train our classifiers. Since the probability of a single 5 bit header
occurring in a 10000 bit uniform randomly drawn sequence is
rather low, this implies a heavy class-imbalance in our train-
ing data with only very little positive samples. Using longer
sequences of bits would yield in significantly longer-running
simulations and does not solve this problem since this imbalance
of data is independent of sequence length. Therefore we choose
a different path and generate our bit sequences in the following
way. We generate a random bit sequence, where we randomly
draw bits from a uniform distribution, but insert additional in-
stances of the desired header pattern based on a Poisson random
variable. The detailed process used to generate the random input
bit sequences is described at length in Appendix C.

We train all our readouts using ridge regression, where we
perform 5-fold cross-validation to find the optimal regularization
parameter for each reservoir at each bitrate. We validate our
algorithms on a separate test set. For the XOR and header
recognition tasks, the training set and test set both consist of
10000 randomly generated bits. As an error measure for these
tasks, we use the bit error rate (BER), which is defined as

ebit “ 1

N

Nÿ

n“1

vyT rns ‰ drnsw, (1)

where yT rns is the subsampled, thresholded output signal of the
reservoir and drns is the desired signal. Given that we generate
10000 bits of test data, the minimal bit error rate, which can be
estimated with a confidence level of « 90%, is 10´3 [31]. For
the Santa Fe Laser prediction task, we use the original training
set of 1000 samples as well as all remaining available data for
testing which results in a test set of 9093 samples. For the Santa
Fe task, as an error measure, we use the normalized mean square
error (NMSE) defined as

eNMSE “ 1

N

Nÿ

n“1

pyrns ´ drnsq2
σ2
d

. (2)

yrns is the subsampled output signal of the reservoir and σ2
d is

the variance of the desired signal drns.

C. Pre- and Postprocessing

We preprocess all input signals to the reservoir by upsampling
them to 5 samples per symbol/bit, applying a low-pass filter
and power-encoding them such that the overall maximum input
power to the reservoir is 0.1 W, where we set a fixed bias of
0.02 W. This leaves 0.08 W for the signal amplitude. Note that
this power is distributed over all input nodes, which yields
a maximum input power of 0.1{10 “ 0.01W for each one of
the 10 input nodes. A detailed description of the input node
configuration can be found in Appendix D.
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Fig. 6. Bit error rate of simulated 1550 nm prototype on 3 bit XOR as a function of bitrate for 1, 2, and 4 reservoirs combined using ensembling, boosting,
stacking and chaining in the electrical domain. Comparison with 8 ˆ 16 node baseline. The minimum detectable error rate is 10´3.

We postprocess all reservoir prediction signals by down-
sampling them to 1 sample per symbol/bit, where the signals
are sampled in the middle of each bit/symbol period. For our
digital tasks, in addition to the sampling, we threshold the
signal in postprocessing, where the threshold is determined on
the training prediction of the reservoir. We found here that for
header recognition using half the difference between minimum
and maximum value works best, while the XOR task performs
slightly better when using half the difference between the 80th
and 20th percentile instead.

IV. COMBINING RESERVOIRS WITH ELECTRICAL READOUTS

As a first step, we evaluate the cascading strategies introduced
in Section II when performing both training and coupling in the
electrical domain. More specifically, we detect the power on
all nodes equipped with an electrical readout. Thereafter, we

normalize all node channels to be zero-mean with unit variance
and train real-valued weight vectors based on these normalized
reservoir states using ridge regression. As already mentioned, the
coupling between reservoirs happens in the electrical domain
as well, meaning that intermediate results and target signals
are evaluated in the electrical domain after which they are
transferred back into the optical domain for further processing
in the next stages using amplitude encoding. To evaluate the
performance of our cascaded architectures, we have used the
delayed XOR tasks with 3 bit delay, as well as the Santa Fe time
series prediction task where we aim to predict the next sample in
a recorded time-series generated by a laser operating in a chaotic
regime.

Fig. 6 shows the results for the 3 bit delayed XOR task: the
ensemble performs best and shows significant improvement on
a wide range of bit rates as more reservoirs are added to the
ensemble. It is notable that even 2 smaller reservoirs trained
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Fig. 7. Bit error rate of simulated 1550 nm prototype on the Santa Fe time series prediction task as a function of bitrate for 1, 2, and 4 reservoirs combined using
ensembling, boosting, stacking and chaining in the electrical domain. Comparison with 8 ˆ 16 node baseline. The minimum detectable error rate is 10´3.

as an ensemble at times manage to outperform the 128 node
baseline reservoir which contains twice the number of nodes. A
possible explanation for this effect is that several small reservoirs
introduce more richness and variation in the resulting combined
reservoir states than would be possible for a single larger reser-
voir. A further observation we made in preliminary experiments,
i.e. that cascaded reservoirs need to vary between themselves in
order to improve the error rate, also supports this conclusion.
The gradient boosting approach is outperformed by the baseline,
ensembling and chaining but still seems to show moderate im-
provement as more reservoirs are added to correct classification
errors. The approach of stacking reservoirs on the other hand
seems to be unsuitable for our current setup: results for stacked
reservoirs turn out worse than the original single prototype for
high bitrates. Finally, our chaining approach outperforms the
baseline on a few bitrates, but is slightly outperformed on most
bitrates.

In order to also measure performance on an analog task in
addition to the bit pattern task above, we used the Santa Fe
chaotic laser prediction task as a benchmark for our systems. In
this task we predict the next sampling value for a time series
recorded from a far IR laser driven in a chaotic regime. Fig. 7
shows the results of our systems on this task.

As we can see, the results are mostly consistent with our
observations on the XOR task: ensembling outperforms the
baseline. Stacking seems to be better suited for analog tasks
and performs comparably to boosting in the low and interme-
diate regions of the observed range of bitrates. Both boosting
and stacking are nevertheless significantly outperformed by the
baseline. For higher bitrates the performance of stacking gets
significantly worse. Finally, the chaining approach is on par
with the baseline. In order to compare our result with delayed
feedback approaches, we refer to the work of Soriano et al. [11]
who report an NMSE of 0.025 (using a train set of 3000 samples
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Fig. 8. Bit error rate of simulated 1550 nm prototype on 5 bit header recognition (pattern 10101) as a function of bitrate for 1, 2, and 4 reservoirs combined using
ensembling, boosting, stacking and chaining in the optical domain. Comparison with 8 ˆ 16 node baseline. The minimum detectable error rate is 10´3.

and a test set of 1000 samples) on the Santa Fe dataset for a
delayed feedback reservoir computer. This was however for a
500-node system, much larger than the 4 reservoirs with a total
number of 128 nodes (32 nodes per reservoir), which have been
used here.

V. COMBINING RESERVOIRS IN THE OPTICAL DOMAIN

As a second family of architectures, we discuss architectures
with full optical coupling. Also, all intermediate signals are
summed and processed in the optical domain. As we do not
assume any optical nonlinearity in the system, the choice of ap-
plicable tasks is more limited for this setup than in the electrical
case. We use the 5 bit header recognition task here to assess
and compare the performance of cascaded systems to a larger
baseline. Fig. 8 shows the results for our simulated all-optical
architectures.

On the header recognition task we can spot several differences
when comparing to the obtained results in the electrical domain.
Both the previously best performing ensembling approach as
well as the baseline now perform significantly worse than the
chaining approach. A possible explanation here might be that
the 5 bit HREC task requires significantly more memory than
previous tasks, which can only be provided by approaches
in which the signal is actually processed in several stages,
receiving additional information about the input signal from
previous reservoirs. This is the case for chaining, boosting and
stacking, which show moderate improvement as more reservoirs
are added. It seems noteworthy that, contrary to the electrical
coupling case, the stacking approach seems to yield moderate
improvements over the baseline at certain bitrates. The chaining
approach seems to outperform the remaining approaches, but
nevertheless manages to minimize the error rate only for a bitrate
of 30 Gbps. We would like to emphasise that chaining reservoirs
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TABLE I
RESULTS FOR ELECTRICAL TRAINING/COUPLING AT 30 Gbps

TABLE II
RESULTS FOR OPTICAL TRAINING/COUPLING AT 30 Gbps

does not increase the memory of the reservoirs themselves,
contrary to approaches such as [25]. Instead, chaining appears to
improve the memory capacity of a reservoir setup by enabling
the training algorithm to utilize the memory of the individual
reservoirs more efficiently. We suspect this effect to be related
with the application of ridge regression in the complex domain
which will be subject to future research.

VI. CONCLUSION

Tables I and II summarize the error rates obtained for all
performed tasks at 30 Gbps in the electrical and optical domain
respectively. Error rates printed in bold face indicate the best
performing approach per task, error rates in italic the second
best. From the tables above as well as Figs. 6, 7, and 8 one can see
that our proposed chaining approach performs consistently well
regardless of coupling type or task, and is only outperformed by
ensembling on more nonlinear tasks which require low memory
in the electrical domain. This stems from the fact that chaining is
a simple architecture which can be trained in a straightforward
way but nevertheless introduces additional richness to the setup
when compared to single-reservoir architectures with the same
total number of nodes. Ensembling on the other hand has shown
excellent results on high nonlinearity/low-memory tasks. This is
likely due to the ensemble of reservoirs exhibiting a richer reser-
voir state matrix in comparison to the state matrix of a baseline
reservoir with an identical number of nodes (i.e. 4 times the
number of nodes of a single reservoir in an ensemble of 4 reser-
voirs). Therefore ensembling is a simple robust method which
outperforms chaining, stacking and boosting on short-memory
tasks. Boosting and stacking have shown only small improve-
ments on the nonlinear tasks, but still both manage to outperform
the baseline on memory-intensive tasks. Nevertheless we con-
sider boosting more valuable than stacking since it manages to
deliver consistent improvements over all tasks/coupling modes,
while stacking has shown to perform at times worse as more
reservoirs are added. Based on these observations, for future
hardware implementations, we recommend the application of
a chaining architecture in order to leverage the performance of
fully optical passive photonic reservoir computing systems. For
reservoir systems trained in the electrical domain, ensembling
is a very efficient, cheap alternative. As a concluding remark we
would like to emphasise that while outperforming single large

reservoirs by efficiently combining a number of smaller ones
is desirable, merely matching the performance of those larger
reservoirs is of value as well: in the technologies we are currently
investigating [32] a combination of smaller reservoirs is easier to
construct than a single larger reservoir. For future work we will
focus on transferring the computational power and insights of
deep neural networks into the optical hardware domain in order
to fully exploit the potential of cascaded photonics reservoir
computing on chip.

APPENDIX A
OPTICAL CIRCUIT SIMULATION

We simulate the coherent optical circuit of the reservoir as a
graph in the complex domain where waveguide and combiner
losses are modelled along the graph’s edges and the multimode
interferometers constitute the nodes of the graph. In order to take
the strong variability of passive photonic reservoir circuits into
account, we model the phase modulation of each waveguide
connection to be random following a uniform distribution in
r0, 2πs. This graph is represented as a complex-valued adjacency
matrix. While the equivalence of the graph adjacency matrix to
the reservoir connection matrix is obvious, all reservoir state
signals are evaluated in continuous time. This is done by trans-
ferring the graph into a set of ordinary differential equations
as described at length in [29]. This set of ordinary differential
equations is then solved using numerical methods in order to
obtain all signals occurring at the reservoir nodes in the modelled
circuit.

APPENDIX B
DETAILS ON PHOTODETECTOR MODEL

To simulate an integrated photodetector for the electrical and
optical readouts, we apply the photodetector model proposed in
[18]: we compute the electric current of a sampled complex-
valued signal x as

ipxq “ R|x|2, (3)

where R is the photodetector’s responsitivity. Thereafter a zero-
mean Gaussian noise vector n with a variance σ2

n is added to
ipxq. The variance σ2

n is computed as

σ2
n “ 2qBpxIy ` xIdyq ` 4kBTB{RL (4)

where q is the elementary particle charge, B is the bandwidth of
the photodetector, xIy “ 1

N

řN
n irns is the photocurrent, xIdy

is the dark current, kB is the Boltzmann constant, T is the tem-
perature and RL is the load impedance of the photodetector. We
set R “ 0.5 A

W , B “ 70 GHz, xIdy “ 0.1 nA, T “ 300 K and
RL “ 1 MΩ in all our simulations. Finally, to model the limited
bandwidth B of the integrated optical detector, a fourth-order
Butterworth low-pass filter is applied to the resulting output
signal.
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APPENDIX C
GENERATION ON RANDOM BIT SEQUENCES FOR HEADER

RECOGNITION

As we perform the detection of a 5 bit header, this implies
that we need sufficient data to train our classifiers. Since the
probability of a single 5 bit header occurring in a 10000 bit long
sample is rather low, this implies a heavy class-imbalance in
our training data with only very little positive samples. Using
longer sequences of bits improves this problem only by a small
degree since the data are still equally unbalanced. Therefore
we choose a different path and generate our bit sequences in
the following way: we generate a random bit sequence, where
we randomly draw bits from a uniform distribution, but insert
additional instances of the desired header pattern hdesired (for
instance: 10101) based on a Poisson random variable. Every time
before we generate a random bit, we note the number Mactual

of occurrences of the desired header pattern hdesired in the bit
sequence generated so far. Further, we compute Mdesired, the
number of desired header patterns assuming that 5% of all bits
end in such a desired pattern and that they are evenly distributed
over the sequence as

Mdesired “ Ncurrent ¨ 0.05 (5)

where Ncurrent is the current length of the already generated bit
sequence. Based on Mactual and Mdesired, we compute the prob-
ability p that instead of a random bit, the desired header pattern
hdesired will be injected into the bit sequence. p is computed as

p “ 1 ´ P px <“ Mactual, λ “ Mdesiredq, (6)

where P px, λq is the cumulative distribution function of the
Poisson distribution. Thus, the smaller the probability of the
generated sequence to containMactual or less instances ofhdesired,
the larger the probability p that instead of a single, uniformly ran-
dom bit will be drawn, the desired sequence will be inserted into
the bit sequence. Finally, a test on the probability p is performed
to determine whether a new random bit or the desired header
will be appended at the end of the bit sequence. This procedure
is repeated until the bit sequence contains the predetermined
amount (in this work: 10000) bits. This procedure allows us to
control the number of desired patterns in a header while still
generating random bit sequences.

APPENDIX D
INPUT AND READOUT NODE CONFIGURATION FOR 4 ˆ 8

AND 8 ˆ 16 RESERVOIRS

For the 4 ˆ 8 building block reservoir, we inject inputs into
nodes number 1, 2, 12, 13, 18, 19, 27, 28, 29 and 30, where nodes
are numbered row by row and left to right. For the 8 ˆ 16 baseline
reservoir, we inject inputs into the nodes with the same input
indices as well as nodes with the input indices that correspond
to the original nodes multiplied with 2, 3, and 4. This results in
nodes 1, 2, 3, 4, 6, 8, 12, 13, 18, 19, 24, 26, 27, 28, 29, 30, 36,
38, 39, 48, 52, 54, 56, 57, 58, 60, 72, 76, 81, 84, 87, 90, 108,
112, 116 and 120 being input nodes to the baseline reservoir.
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