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THE BLACK BOX
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What can this chip do?
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Several things!

• Do arbitrary boolean calculations with memory on a bitstream

• Recognise arbitrary 5-bit headers at 12.5 Gbps

• Perform speech recognition of isolated digits

• Does not consume any active power

• Easily upscalable to higher speeds
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How does it do it?

Using “Reservoir computing”, a brain-inspired technique to solve 
pattern recognition problems in a fast and power-efficient way
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WHAT IS RESERVOIR COMPUTING?
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What is reservoir computing?

• From field of machine learning (2002)

• Related to neural networks

• So far mainly in software

• Very successful:
• Better than state-of-the-art digit recognition

• Speech recognition

• Robot control

• …
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Reservoir Readout

Reservoir computing

Don’t train the neural network, 
only train the linear readout
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reservoir state

readout

reservoir

nothing pebbles gritpebbles

grit

A hardware implementation…
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Why does it work?
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PHOTONIC RESERVOIR COMPUTING
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Photonics

Photonic reservoirs
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• Faster
• More power efficient
• Richer dynamics in nodes
• Light has a phase

Why photonics?
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OPTICAL AMPLIFIER NETWORKS
The very beginning…
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Looks like tanh, but positive signals only

Output

Use SOAs as neurons
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The gain in the SOA model is dependent on the input power and its 
own history

SOA model
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81 SOAs

Swirl topology
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5 female speakers, saying

10 times the same 10 digits,

ranging from zero to nine

Speech corpus
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• dynamics of light signal should be on time scale of 
SOA dynamics and chip delays

• convert 1 sec speech to 1 ns light signal

• 9 orders of magnitude upconversion

Time scales
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Word error rate
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Optimal delay

75 ps

187.5 ps

312.5 ps
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Absolute minimum

(phase controlled)
Minimum

(phase averaged)

Reducing 2D plots to single number
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Controlling the phase offers clear advantage
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PASSIVE SILICON RESERVOIRS
The next step…
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What happens if you remove the SOAs?
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Passive Silicon reservoir

• silicon photonics: mature technology

• nodes become simple splitters/combiners

• non-linearity in readout suffices

• no need for amplifiers which consume power

• no longer limited by timescale of non-linearity

Vandoorne et al, Nature Comms,  5, 3541, 2014
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NL coming from the detector suffices!

Speech task: passive reservoirs (no amplifiers)
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16 node swirl network where 11 nodes could be measured  
from 1 input
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The input: 11136 bits modulated at 1531 nm with speeds 
between 125Mbit/s and 12.5Gbit/s 
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First task: desired output should be the XOR of every bit with 
the previous bit.

Hard task in machine learning (non-linear!)
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Measurements and simulations for the XOR task correspond
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The XOR task can be solved at different speeds and different bit 
combinations
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Other Boolean tasks can be solved as well (with the same 
reservoir states)
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Header recognition
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Advantages

• Scalability: 
• Note that we spent a lot of effort to slow down the signal!

• Easily scalable to higher speeds by shortening the delays

• No active power consumption on chip

• Same generic chip can be used for
• digital tasks (simulation confirmed by experiment)

• analog tasks (theory only, no suitable equipment)
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APPLICATIONS
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Telecom task: non-linear equalization of optical links
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Signal Equalization: Results….

Up to 200 km below FEC Limit

Metro Links

Equalization results with passive SOI chip
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Scaling this up

• PhResCo: recently started H2020 European project (KULeuven, 
IBM, UGent, Supelec, IHP)

• Integrated readout on chip:

out
…

…

…

…in

reservoir readout
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First design: comparing 3 different technologies

2 x 9 Reservoir

BTO Test Structures

Si Readout BTO Readout

VO2 Readout

VO2 Test Structures
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Conclusions

Neuromorphic computing 

is interesting new paradigm 

for photonics information processing
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Flow cytometry

http://www.lifetechnologies.com
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Imec cell sorter

Integrated micro-fluidic 

channels

On-chip high speed 

cell sorting

On-chip Fast

high-resolution microscopy
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Computational complexity

➢ Complex convolution or sequence of 2D FFTs

➢ 512x512 pixels/image

➢ 1M cells/sec

➢ 48.8M Flops for reconstruction

➢ ~ 60 TFlops/sec including classification

http://www.top500.org/

# Site System Cores Perf.ormance[TF/
sec]

Power [kW]

482 Automotive
United States

IBM Flex System 
x240, Xeon E5-2670 
8C 2.600GHz, 
Infiniband FDR 
IBM

8,336 157.7 181
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Algorithm Methods

classification
feature 

selection
numerical 

reconstruction

Lymphocytes

Monocytes

Granulocytes
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Real experimental data

k

1.39

1.37

1.34
E

Direction of flow

Incident plane wave Scattered wave +

Direct wave

Detector plane

Microfluidic flow 

chamber
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Neural network - pipeline

.

.

.

.

.

.

Input Layer Hidden Layer Output Layer

ANN: < 200 GigaFlop/sec !
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Three-part WBC classification Results

• Dataset of ~7500 non-purified WBC:

Granulocytes (59.8%), 

Lymphocytes (34.6%), 

Monocytes (5.6%)

• Use of 10 random folds for cross-

validating (CV) the results

• Adding noise to weights at fixed SNR
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Purified monocyte/granulocyte classification

Averaged classification results with increasing signal-to-noise ratio 
(from left to right: 30dB, 10 dB, 3 dB)

Class 1 = monocytes
Class 2 = granulocytes
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Towards a hardware solution
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.
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Conclusions

Neuromorphic computing 

is interesting new paradigm 

for photonics information processing
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EXCITABLE SILICON RINGS



PHOTONICS RESEARCH GROUP 53

Building a photonic spiking neuron

=                        ?
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Research question

• People have seen excitability in photonics before, but never 
cascaded it on chip

• Can we cascade excitability on-chip using ring-resonator 
neurons?



PHOTONICS RESEARCH GROUP 55

Thermo-optic effect causes redshift

Light circulation in ring resonance dip/peak

Heating of the ring redshiftT

ire


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Self-heating causes bistability

Light circulation in ring resonance dip/peak

Heating of the ring redshiftT

ire


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Free carriers cause blueshift

Light circulation in ring resonance dip/peak

Free carriers blueshift

ire

N


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Combination free carrier and thermal effect can cause 
self-pulsation

Light circulation in ring ~ ps

Cooling of the ring ~ 100 ns

Free carriers ~ ns

ire

N



T

1

2

3
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Simulations: bistability and self-pulsation

Q 6.25 104

25  pm
62 pm      

R 4    μm

dB3

r −
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Simulation: excitability

Wavelength and input power ‘near’ self-pulsation...
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Simulation: cascadability
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Experiment: self-pulsation
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Experiment: excitability

Pulses excited by external trigger signal:
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Experiment: cascadability
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Cascading rings = creating a delay line

…

t

t

t

t

tt

t
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Cascading rings = creating a delay line

…

t

t

t

t

tt

t

Max ~ 9-10 rings

t

…
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10 rings result in a ~200 ns delay of a 15-20 ns pulse
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10 rings result in a ~200 ns delay of a 15-20 ns pulse
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Making a loop => spike encoded memory/clock

…

t

t t

…

If delay > internal timescale neuron

=> Excitation loops through rings
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The concept works! (loop from ring 2-8)
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Conclusions

Neuromorphic computing 

is interesting new paradigm 

for photonics information processing


