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Abstract: A programmable hardware implementation of all-optical nonlinear activation func-
tions for different scenarios and applications in all-optical neural networks is essential. We
demonstrate a programmable, low-loss all-optical activation function device based on a silicon
micro-ring resonator loaded with phase change materials. Four different nonlinear activation
functions of Relu, ELU, Softplus and radial basis functions are implemented for incident signal
light of the same wavelength. The maximum power consumption required to switch between the
four different nonlinear activation functions in calculation is only 1.748 nJ. The simulation of
classification of hand-written digit images also shows that they can perform well as alternative
nonlinear activation functions. The device we design can serve as nonlinear units in photonic
neural networks, while its nonlinear transfer function can be flexibly programmed to optimize the
performance of different neuromorphic tasks.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the rapid development of information technology such as big data, cloud computing, smart
terminals, and global data traffic is growing geometrically. Therefore, in the era of artificial
intelligence(AI), traditional architecture computing systems face serious challenges in terms of
energy efficiency and volume, which are limited by Moore’s law [1,2]. Therefore, AI technologies
represented by neural networks are rapidly developing toward achieving high speed and low
power consumption [3].

Photonics has the inherent characteristics of high speed and massive parallelism with low
energy consumption, thus, it has attracted attention as a promising candidate [4]. Indeed, optical
neuromorphic computing has been experimentally validated in photonic integrated circuits [5–10]
and free-space optics [11–14].

Optical neurons are one of the key technologies in optical neuromorphic computing. The
nonlinear activation function(NLAF), one of the perceptrons [15] of the optical neuron, is crucial
to the training and decision mapping processes of the network. Compared to those in electrical
neurons, all-optical NLAFs are not yet mature [16]. Optical devices can have a superlarge
bandwidth and low power consumption. Therefore, photonics provides advantages in connectivity
and matrix multiplication over electronics. A multitude of photonic devices exhibit nonlinear
transfer functions that resemble neuron-like or gate-like transfer functions; however, a non-linear
response alone is not sufficient for a photonic device to act as a neuron. Photonic neurons must
be capable of reacting to multiple optical inputs (fan-in), applying a nonlinearity and producing
an optical output suitable to drive other like photonic neurons (cascadability). Optical devices
face fundamental challenges in satisfying these requirements in particular [3].
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In recent years, all-optical nonlinear activation functions based on interference between the
dipoles of the plasmon oscillation in the metal nanoparticles and the exciton transition in the
Quantum dot [17], photonic crystal Fano lasers [18], the traditional non-volatile of phase change
materials (PCMs) [8] and the volatile switching of PCMs excited with a free space femtosecond
laser pulse [19] have been proposed. These are all ultra-fast, compact, on-chip solutions for
neuromorphic photonic computing.

Usually, for different AI applications, the activation function needs to be selected according to
the specific task [16]. In addition, the proper activation function affects the overall average test
accuracy [20]. Experimental results show that radial basis functions (RBF) in support vector
machines [21], ReLU in deep learning networks for a 50-hour English Broadcast News task
[22], ELU in different vision datasets [23], and Softplus in deep learning networks for phone
recognition tasks [24], significantly outperform some other activation functions. Therefore, it is
essential to achieve programmability of the all-optical NLAFs.

At present, tuning the bias pulse energy injected in the Periodically poled thin-film lithium
niobate (PPLN) nanophotonic waveguide [25] can be used to implement common used variants
of the Relu function. The cavity paired with the tuning biases on the interferometers [26] and
varying the wavelength of light input to the racetrack resonator with a span of Ge/Si hybrid
waveguide [27] provide programmability among different kinds of activation functions. However,
the programmable all-optical nonlinear activation function has yet to be optimized in terms of
power consumption.

In this paper, we propose a programmable, low-loss all-optical activation function device based
on a silicon micro-ring resonator loaded with PCMs. The NLAF relies on the nonlinear properties
of the silicon micro-ring resonator, which are due to thermal and free-carrier-related nonlinearities.
Programmability is achieved by loading the Ge2Sb2Te5(GST) PCM on the micro-ring resonator
in four different intermediate states (refractive indexes) between the crystalline and amorphous
states. Four different NLAFs of the Relu, ELU, Softplus and RBF are implemented for incident
signal pulses at the same wavelength. The non-volatility of GST is used to maintain the four
nonlinear activation functions without any extra power consumption. The maximum power
consumption required to switch between the four different NLAFs is only 1.748 nJ. Finally,
we simulate benchmark machine learning tasks using our all-optical NLAFs with accuracy
higher than 94.8% in the task of classification of the MNIST handwritten digital image dataset,
benchmark MNIST handwritten digit classification task, which demonstrates the prospect of our
scheme for future applications in all-optical neural networks.

2. Principle and design

2.1. Coupled mode theory for GST-loaded silicon micro-ring

We design an add-drop micro-ring resonator with a radius of 10 µm, and a 0.5 µm long GST
film is loaded as shown in Fig. 1. NLAFs are proposed for the TE mode signal light. When
the signal light is injected into the micro-ring, the two-photon absorption(TPA) effect in the
micro-ring generates free carriers, which will cause free carrier absorption(FCA) and free carrier
dispersion(FCD). In addition, the TPA and FCA effects induce a thermo-optical(TO) effect.
The FCD effect causes the resonant wavelength to blue-shift within the time scale of a few
nanoseconds, whereas the time scale of the red-shift of the resonance wavelength caused by
the thermo-optic effect is in the tens of nanoseconds [28]. Although the micro-ring resonator
exhibits self-pulsation with both FCD and TO effects, it cannot be used as an optical NLAF
device in our design when both effects are non-stationary.

We modeled the optical propagation in the micro-ring resonator using a nonlinear coupled-
mode theory approach based on [29–32], with the inclusion of contributions from GST and an
additional straight waveguide coupled to the micro-ring resonator, i.e. GST changes the refractive
index of the Si/GST hybrid waveguide and introduces extra loss, and the straight waveguide
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Fig. 1. Perspective view of the GST-loaded add-drop micro-ring resonator. The simulation
design parameters are: Wstraight = 350 nm, Wring= 590 nm, gap= 630 nm, hsi= 220 nm, and
hGST = 10 nm.

induces extra coupling loss in our updated model. The coupled ordinary differential equations
are expressed in Eq. (1), where u is the temporal evolution of the intracavity field, N is the
free-carrier density, and ∆T is the temperature change in the GST-loaded micro-ring resonator.

∂u
∂t =

[︁
iδωnl_hy + i(ωr_hy − ω) −

γloss_hy
2

]︁
u + κSin,

∂N
∂t = − N

τfc
+
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2 ℏωV2
FCAn2

g_hy
|u|4,

∂∆T
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τth
+

γabs_hy |u |2

ρSicp,SiVth
,

(1)

where Sin is the amplitude of the signal light (signal light power Pin = |Sin |
2), ω is the frequency

of the signal light, and ωr_hy is the resonance frequency of the hybrid GST/Si micro-ring cavity.
The remaining parameters are listed in Table 1. γloss_hy and γabs_hy represent the total and
absorption losses in the hybrid GST/Si micro-ring cavity, respectively.

γloss_hy = 2γcoup + γrad + γabs_hy (2)

where we have introduced the coupling loss into the waveguide γcoup (with κ = i√γcoup) and the
radiation loss γrad. In the hybrid GST on silicon micro-ring we have absorption by linear surface
absorption, TPA and FCA:

γabs_hy = γabs,lin +
βsic2

n2
g_hyVTPA

|u|2 +
σsic
ng_hy

N (3)

In the Silicon On Insulator (SOI) ηlin = γabs,lin/(γrad + γabs,lin) ≈ 0.4[33,34], γrad + γabs,lin =
cαring_hy/ng_hy, αring_hy,and ng_hy are the total loss and group index of the hybrid GST on silicon
micro-ring cavity.

αring_hy = (1 − ζ)αSi_ring + ζαSi_GST

ng_hy = (1 − ζ)ng_si + ζng_PCM
(4)

where ζ = LPCM/2πR, αSi_GST and ng_PCM depend on the state of the GST film.
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Table 1. Parameters describing the properties of the micro-ring
resonator and their values used in the simulations

Parameter Description Value

βSi TPA coefficient 8.4× 10−12m·W−1

dnSi/dT thermal coefficient 1.86× 10−4K−1

dnSi/dN FCD coefficient -1.73× 10−27m3

σSi FCA absorption cross section 10−21m2

ρSi density of silicon 2.33× 103kg·m−3

cp,Si thermal capacity 700J·kg−1 ·K−1

γcoup coupling loss 2.52× 109s−1

τth thermal relaxation time 65ns

τfc carrier relaxation time 5.3ns

Vth thermal effective volume 3.19× 10−18m3

VTPA TPA effective volume 2.59× 10−18m3

VFCA FCA effective volume 2.36× 10−18m3

ng_Si group index of the silicon waveguide 4.2

αSi_ring the total micro-ring loss 0.16cm−1

Both TO and FCD effects cause a significant shift in the resonance frequency δωnl_hy, whereas
the shift caused by the Kerr-effect is negligible. Using first-order perturbation theory, this gives:

δωnl_hy =
ωr_hy

ng_hy
(
dnsi

dN
N +

dnsi

dT
∆T) (5)

Equation (1) has steady-state solutions when ∂u/∂t = 0, ∂N/∂t = 0, ∂∆T/∂t = 0.The corre-
sponding linear matrix M is obtained by adding small perturbations to the stable results and
substituting the updated parameters into the normalized differential equations with omitting
higher-order terms. Then, a 4× 4 eigenmatrix M is obtained by normalization according to the
method described in [26]. Thus, we can find a stable fixed point (i.e., after a small perturbation,
the system relaxes back to the same point) that is suitable for NLAFs if the real parts of all four
eigenvalues are negative.

2.2. Coupled mode theory for GST-loaded silicon micro-ring

We aim to ensure that the micro-ring is at a stable fixed point when GST is in different states. We
analyzed the corresponding relation between the signal light power and intracavity energy in
Fig. 2(a) as well as the real and the imaginary parts of the four eigenvalues of the M matrix in
Fig. 2(b)–(e) when the crystallization fraction of GST is 50-80%. Figure 2(b)–(e) shows that
the real parts of all four eigenvalues are negative and that the micro-ring is at a stable fixed
point when the GST is in one of these four states. Only two solid and dashed lines are shown in
Fig. 2(b)–(e) because two of the four eigenvalues are conjugate to each other.

Moreover, we also analyzed the relationship between signal light wavelength detuning and
stability, as shown in Fig. 2(f). When the crystallization fraction of the GST loaded on the
micro-ring is 50%, the relationship between the output and input powers of the micro-ring is
determined with the signal light wavelength detuning of 100–250 pm, separately. The red dots
correspond to the unstable fixed point, which appears only when the signal light wavelength is far
from the resonant wavelength. Therefore, there is no effect on our optical NLAFs subsequently.
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Fig. 2. (a) Steady-state response of the intracavity energy versus the signal light power when
the crystallization fraction of the GST is 50, 60, 70 and 80%. (b)(c)(d)(e) Corresponding
real (λR, solid lines) and imaginary (λI, dot-dashed lines) parts of the four eigenvalues of the
M matrix, relatively to the abscissa for each corresponding intracavity energy. (f) Result of
the output and input powers when the incident light wavelength detuning from the resonance
of the micro-ring is 100, 150, 200 and 250 pm at a 50% crystallization fraction of the
loaded-GST, respectively.

2.3. Implementation of programmability

While the nonlinearity results primarily from the power-dependent nonlinear phase change due
to the free-carrier and TO effects, the change in the state of the loaded GST is equally important
to achieve the programmability of the NLAF. From Fig. 3(a)–(d), when the wavelength of the
incident signal light is 1549.38 nm, four different optical NLAFs, RBF, Relu, Softplus, and ELU,
can be generated between the output power and the input power as the crystallization fraction of
the loaded GST on the micro-ring increases from 50 to 80%. There is good agreement between
the ideal activation function (dotted red line) and the device response (solid blue line). The
switching between the different nonlinear activation functions is determined by the state of the
loaded-GST. The initial state of the loaded-GST is crystalline, which is modulated to crystalline
fraction of 80% by optical pulses in TM mode.

The increase in the loaded-GST crystallization fraction implies an increase in the refractive
index and loss, and the resonant wavelength is red-shifted.
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Fig. 3. (a)-(d) NLAFs at different states of the loaded GST. (dotted red: the ideal activation
function, solid blue: the device response). (e) Sketch of the transmission evolution with
incremental crystallization fraction of the loaded-GST for different NLAFs.

The state of the loaded-GST is determined by the control light with a wavelength of 1546.9 nm
in the TM mode. Switching among different crystallization fractions of the GST can be realized
by changing the power and duration of the injected optical pulse [35]. Thus, it is possible to
achieve reversible switching among different activation functions.

Figure 3(e) shows the evolution of the transmission with respect to the input light power
under different states of the loaded GST. It can be observed that the resonant wavelength of the
micro-ring is red-shifted with an increase in the loaded-GST crystallization fraction, while the
wavelength detuning is at a maximum of 50 pm. This further proves that our NLAFs work at a
stable fixed point.

When the crystallization fraction of the loaded-GST is 50%, the incident signal light wavelength
is longer than and relatively far from the resonant wavelength, with a detuning of -50 pm. Thus,
as the signal light power increases, the output power undergoes a drop followed by a linear
increase, resulting in an RBF, as shown in inset A of Fig. 3(e).

As the GST crystallization fraction increases to 60%, the red shift of the resonant wavelength
causes the signal light wavelength to be closer to the resonant wavelength, even though it is still
longer than the resonant wavelength, with a detuning of -23.4 pm. Thus, there is a mechanism
whereby the output power remains almost zero as the input optical power increases, and then
begins to rise as the input power continues to increase. This makes the Relu function, shown in
inset B of Fig. 3(e), feasible.

After the loaded GST is further crystallized up to 70%, the resonant wavelength is red-shifted
to a point shorter than the signal light wavelength. At this point, the resonant wavelength is very
close to the signal light wavelength, and the detuning is 4.3 pm. As the input optical power
increases, the output power increases very slowly resulting in an almost-zero initial output optical
power, and then it increases linearly with the input power; thus, the Softplus function is generated,
as shown in inset C of Fig. 3(e).

Finally, when the GST crystallization fraction is 80%, the resonant wavelength is further
red-shifted towards a wavelength shorter than that of the signal light, and the detuning is -33.3
pm. The output power always increases with the input power; therefore, the ELU function can be
obtained, as shown in inset D of Fig. 3(e).
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In addition, to allows the NLAF to work stably for a long time, we need to ensure that the
signal light does not change the state of the loaded GST. Referring to [36], the detected optical
power range in the experiment is generally between -2 and -6 dBm; consequently, based on the
modulation depth in Fig. 3(e) we conclude that the signal light power coupled into the Si/GST
hybrid waveguide is less than -3 dBm. Thus, the power of the signal light does not change the
loaded-GST state or stability of the optical NLAFs.

2.4. Simulated in benchmark MNIST handwritten digit classification

To validate the applicability of our NLAFs, we performed classification simulations on the
MNIST dataset using (a), (b), (c) and (d) in Fig. 3, which are abbreviated as ONAF- RBF,
ONAF-Relu, ONAF-Softplus and ONAF- ELU. In particular, we use a rational function to fit our
discrete data in Fig. 3 and ensure that the fitting curve passes through the original points; only
the positive part of the function is considered.

We simulated a three-layer fully connected neural network and studied its accuracy in a
benchmark MNIST handwritten digit classification task, as illustrated in Fig. 4(a). Each input
image in the MNIST dataset is of 28× 28 pixels. To implement the classification of the MNIST
dataset, raw images with a size of 28× 28 pixels were first flattened into one-dimensional arrays.
Then, 784 input pixels are fed into the three-layer network, and the output elements are normalized
to represent probabilities from digit 0 to 9.

Fig. 4. (a) Schematic illustration of handwritten digit image recognition using neural
network. (b) Cross-entropy loss of training dataset. (c) Accuracy of test dataset.

Networks with ONAF- RBF, ONAF- Relu, ONAF- Softplus and ONAF- ELU show a good
performance in benchmark MNIST handwritten digit classification task, with accuracy of
96%,96.4%,95.3% and 94.8%, respectively. The cross-entropy loss of the training dataset during
the training process is shown in Fig. 4(b), and the test accuracy in Fig. 4(c). Meanwhile, we
adopt Tanh activation function to verify the programmability and the efficiency. Besides this
classification example, there are other applications where such activation functions are routinely
used for artificial neural network tasks.

3. Discussion

3.1. Control light

GST has a high refractive index contrast between its amorphous and crystalline states. We can
induce a slight change in the resonant wavelength of the hybrid GST on silicon micro-ring using
the intermediate crystallographic states of the GST, that is, states with a mixture of crystalline
and amorphous regions.

Therefore, we used a control light to manipulate the state of the GST. The reason for chose
the TM mode for the control light because the electric field distribution is more concentrated on
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the upper and lower sides of the waveguide than in the TE mode, as shown in Fig. 5(a) and (b);
thereby the GST overlaps with the optical field over a larger area and absorbs more optical power.
This enables a lower power consumption for switching between different NLAFs.

Fig. 5. Simulated (a) TE and (b) TM mode optical profiles (left) and optical absorption
(right) of the waveguide with GST on top in the crystalline state. (c) Transmission spectra of
the micro-ring for GST crystallization fraction from 50% to 80%. Inset: Enlarged view of
the transmission around 1549.5 nm.

However, when the state of the GST changes, the resonant wavelength of the micro-ring and
the optical power coupled into the cavity also change as well. Accordingly, we simulated the
transmission spectrum of the micro-ring when the GST crystallization fraction is from 50% to
80%, as shown in Fig. 5(c). When the control light wavelength is 1546.9 nm, the difference of
the power coupled into the micro-ring does not exceed 2%, as shown in the inset of Fig. 5(c). As
a result, for the control light at 1546.9 nm, the energy coupled into the cavity is approximately
25% at different crystallization fractions of GST.

3.2. Power consumption

We analyzed the power consumption for switching among the four optical NLAFs at a control
light wavelength of 1546.9 nm. Since the crystalline GST has a larger thermal conductivity
and the crystallization process takes a longer time [37], we conclude that the highest power
consumption for switching between the four optical NLAFs is corresponds to the switching from
RBF to ELU (degree of crystallization from 50 to 80%), whereas the lowest power consumption
is switching from ELU to Softplus (degree of crystallization from 80 to 70%).

We then performed a similar analysis referring to [38] for the switching process between
the two states. The power consumption required for state switching is determined by both the
incident optical pulse duration and pulse power. Due to the TO effect the relaxation time is in
the nanosecond regime [39] and due to the limitation in the ablation temperature of the GST,
we separately chose P1= 107 mW, t1= 1 ns and P1= 107 mW, t1= 1 ns, P2= 10 mW, t2= 29 ns
optical pulses to realize the crystallization and amorphization processes, respectively, as shown
in Fig. (6). The maximum and minimum power consumption required to switch between the
optical NLAFs are 1.7488 nJ and 0.428 nJ, respectively. A major advantage of our device is its
non-volatility: no additional power supply is required to maintain the state.
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Fig. 6. (a) (b) Control light injection into a previously 80% crystalline loaded-GST/Si
hybrid waveguide (a)The average temperature of the GST film. (b) Crystal fraction change of
the GST film. (c) (d) Control light injection into a previously 50% crystalline loaded-GST/Si
hybrid waveguide (c)Average temperature of the GST film. (d) Crystal fraction change of
the GST film.

4. Conclusions

We designed a programmable, low-loss all-optical activation function device based on a silicon
micro-ring resonator loaded with PCMs. The NLAF relied on the nonlinear properties of the
silicon micro-ring resonator. Programmability was achieved by configuring the state of the
GST loaded on the micro-ring resonator. Four different nonlinear activation functions, Relu,
ELU, Softplus, and RBF, were implemented for the same incident signal light. The maximum
power consumption required to switch between the four different NLAFs was only 1.748 nJ.
Simulation of the classification of handwritten digit images also showed that they performed well
as alternative NLAFs. Because of the non-volatility of GST, each implementation of the network
after determining the NLAF does not need to be reconfigured and consumes almost no energy,
thereby achieving a genuinely low-power programmable all-optical NLAF. This demonstrates the
potential of the proposed scheme for future applications in all-optical neural networks.
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