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Abstract
Event-based cameras are cutting-edge, bio-inspired vision sensors that differ from conventional 

frame-based cameras in their operating principles. In the field of machine learning, the switch from 
CMOS cameras to event-based cameras has improved accuracy in settings with critical illumination 
and rapid dynamics. In this work, we examine the combination of event cameras with extreme learning 
machines in the context of imaging flow cytometiy. The experimental setup, with the exception of the 
image sensor, is similar to a set-up we utilized in a previous work in which we demonstrated that a 
simple linear classifier can achieve an error rate of about 10% on background-subtracted cell frames. 
Here, we demonstrate that by utilizing an event camera's capabilities, the error rate of this basic 
imaging flow cytometer could be reduced to the order of 10-3. Additionally, advantages like 
increased sensitivity and effective memoiy utilization are obtained. Finally, we make further 
suggestions for potential upgrades to the experimental setup that records events from moving 
microparticles which will enable more precise and reliable cel! sorting.

Introduction

The biomedical sector employs a tool called flow cytometry to analyze a large number 
of cells or particles [1]. The technique has been used in a variety of applications, including 
the progression of cancer therapy and cancer detection, as well as the categorization of 
microparticles and microalgae [2,3],

In this work, we use PROPHESEE’s event-based camera (also called a dynamic vision 
sensors DVS) in imaging flow cytometry to overcome two main drawbacks faced by 
systems which rely on traditional CMOS (or frame-based) sensors. The two drawbacks 
of continuously capturing consecutive frames are memory usage and the difficulty of 
filtering the background noise. Since the machine learning training can be very sensitive 
to noise, not filtering noise properly could result in lower achievable classification 
accuracies. Since event-based cameras only capture the changes in the scene (Figure 1),



the background noise is automatically removed and the memory usage is much more 
efficient.

Methods

A laser source generating light with a 632.8 nm wavelength makes up the configuration 
created for this work as seen in figure 2. The light is directed onto a PMMA microfluidic 
channel after passing via a lens and a 25 m pinhole. A manual syringe pump attached to 
the top port of the channel is used to pump flowing microparticles . One syringe was used 
for particle A, another for particle B, and a third one was used to wash out the system 
with water. The movement of the particles changes the diffraction pattern which is 
captured by a Prophesee event camera. We used two different classes of spherical 
microparticles (class A of diameter 16 pm and class B with a diameter of 20 pm).

Fig. 2: The experimental setup built to generate the training and test datasets. Light coming from a 1550 
nm He-Ne laser passes through a lens then a 25 am pinhole. Behind the pinhole is a vertically-mounted 
PMMA microjhiklic channel inside which micropanicles are flowing downwards. The diffraction pattern 
t'atised by a flowing particle is captured by the event-based camera which is connected to a laptop with a 
dedicated software for recording the events fired at different pixels.

Results

The events fired by the camera upon the passage of different particles inside the 
microfluidic channel were recorded by a laptop. We then build a machine learning 
pipeline which starts by first framing all the different events belonging to a certain sample 
as shown in figure 3. We compared such samples with a simulation model that was done 
in ASAP1 using gaussian beam propagation method. The generated frames then went 
through different preprocessing steps (downsampling, flattening, standardization, feature

1 ASAP is an optical simulation software for predicting real-world performance



selection), then a simple regularized logistic regression (a classification algorithm) was 
applied on the resulted feature matrix.

Fig. 3: Experimental flop) and simulated (down) data of the diffraction pattern caused by the flowing 
microparticles. Particles with two different diameters were used, 16 pm (left) and 20 pm (right). The model 
was simulated using ASAP's waveoptics simulator. Notice the first disc of the airy pattern appears in the 
.simulation model but not in the experimental frames. This is because the events in the center are not fired 
line to the fixed illumination.

In machine learning, it is crucial to split the data into three different categories for 
training, validating and testing our model. At first, we had only one single measurement 
session from which we collected those three types of samples. However, we found that 
models trained and validated this way give misleading high accuracy when tested on the 
same measurement session’s data. However, when we test such models on data from new 
experiments, we found that the accuracy drops significantly. Therefore, we decided to 
train our classifier in an intertwined way making it see data from different experiments 
while testing was done on data from unseen experiments during training. Figure 4 shows 
the error rates achieved by our trained classifier.

Finally, we compared the error rates of the current system with the one we had previously 
in [3] which used a CMOS camera. We found that we could decrease error rate by 2 orders 
of magnitude.

64 x 48 pixels 24x32 pixels 12xJ6 pixels 6x8 pixels 3x4 pixels 2x3 pixels 
3.072 features 768 features 192 features 48 features 12 features 6 features

Fig. 4: Test error rates for different classifier models trained using samples from different measurement 
sessions. The trained models were tested on unseen data from different sessions than those in either training 
or validation. On the x-axis are the resolutions of the frames sent to the linear classifier.



Conclusion

In this work we have demonstrated experimentally the different benefits novel event- 
based sensors bring to the field of flow cytometry. These included higher accuracy, lower 
background noise and more efficient memory utilization. We compared the new results 
with the results from previous work which used a frame-based camera. Future work 
encompass classifying biological cells and training spiking neural networks on the signal 
from the DVS sensor.
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