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Neuromorphic computing using photonic hardware is a promising route towards ultrafast

processing while maintaining low power consumption. Here we present and numerically

evaluate a hardware concept for realizing photonic recurrent neural networks and reservoir

computing architectures. Our method, called Recurrent Optical Spectrum Slicing Neural

Networks (ROSS-NNs), uses simple optical filters placed in a loop, where each filter pro-

cesses a specific spectral slice of the incoming optical signal. The synaptic weights in our

scheme are equivalent to the filters’ central frequencies and bandwidths. Numerical appli-

cation to high baud rate optical signal equalization (>100 Gbaud) reveals that ROSS-NN

extends optical signal transmission reach to > 60 km, more than four times that of two state-

of-the-art digital equalizers. Furthermore, ROSS-NN relaxes complexity, requiring less than

100 multiplications/bit in the digital domain, offering tenfold reduction in power consumption

with respect to these digital counterparts. ROSS-NNs hold promise for efficient photonic

hardware accelerators tailored for processing high-bandwidth (>100 GHz) optical signals in

optical communication and high-speed imaging applications.
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Recurrent Neural Networks (RNNs) are universal compu-
tational tools tailored to process time-dependent data1.
State-of-the-Art RNN architectures, such as Long Short-

Term Memory, Bi-directional RNNs or Gated-Recurrent-Units2,3

remain notoriously difficult to train, requiring the optimization of
a significant number of hyper-parameters. Furthermore, the
practicality of RNNs becomes even more questionable, when
multi-GHz data inference is required by demanding applications
in the area of optical communications and imaging. Up to now,
RNN’s superiority over other nonlinear digital signal processing
techniques has been proved only through offline signal proces-
sing. Unfortunately, their realization by field programmable gate
arrays or application-specific integrated circuits constitutes a
quite challenging task, especially if processing rates exceeding 50
Gbaud are targeted4. Aiming to amend these drawbacks, Reser-
voir Computing (RC) has emerged as a neuromorphic paradigm
that offers radical simplification of the cumbersome RNN
training5. In detail, by splitting the recurrent network in a
reservoir (hidden layer) with random and untrained weights and
a readout layer, where all training is taking place in a linear
manner, RC reduces complexity, while retaining performance.
Moreover, from a hardware perspective, the randomness of the
reservoir layer does not translate to performance deterioration,
but on the contrary provides robustness against fabrication
imperfections. These unique features of RCs render them a
hardware-friendly solution for various implementations, exploit-
ing diverse platforms ranging from spintronics6, polaritons,
CMOS electronics7 to free-space optics8,9 and integrated
photonic-based approaches10. Especially photonics technology
constitutes a proliferating platform for such schemes, due to
inherent advantages such as computational parallelism through
signal multiplexing, low power consumption, high-bandwidth
support and processing at the speed of light10. These merits are
exploited to the maximum in applications where the information
to be processed is already in the optical domain, therefore direct
complex processing can be obtained, alleviating the need for
power-hungry optoelectronic and electro-optical conversions. On
the other hand, although photonics is suitable for implementing
linear transformations using passive components11,12, it fails to
provide integrated and low-power non-linear nodes, which is a
critical part of an RC/RNN architecture.

In a photonic RC context, most efforts have concentrated on
the rich non-linear dynamics of semiconductor lasers subjected to
feedback. These schemes, when combined with time-multi-
plexing, have proved their efficacy in addressing difficult pro-
blems like time-series prediction13–15, image recognition16, non-
linear channel equalization17,18 or chromatic dispersion (CD)
compensation in intensity modulation/direct detection (IM/DD)
transmission systems19,20. This sub-category of photonic RC,
called time-delayed RC in the literature, has minimum photonic
hardware requirements, consisting of a single nonlinear physical
node and multiple time-multiplexed virtual nodes. Nevertheless,
it is not compatible with all-optical coherent processing and is not
integration friendly due to the fact that the number of nodes is
proportional to the length of the external delay path. For the same
reason, time-delayed systems may achieve real-time signal pro-
cessing only up to 20 Gbaud as, the smaller the symbol period, the
lower the number of virtual nodes that can be exploited for
processing, thus affecting processing power. To make matters
worse, in time-delayed RCs, a high-speed pseudo-random gen-
erator is also needed so as to mask the incoming signal, thus
evoking differentiation between the dynamics of the virtual
nodes. This unavoidable requirement hinders all-optical imple-
mentations and increases the digital processing requirements. A
different implementation strategy consists of RC or RNN with
spatially distributed nodes that usually contain passive

waveguides21, spatial sampling positions across the complex
multimode field of an injection-locked vertical cavity surface
emitting laser22, semiconductor optical amplifiers23 or micro-ring
resonators (MRRs)24,25. In terms of a node’s non-linearity, a
limited number of solutions have been proposed, either
demanding power-hungry active elements, power-demanding
nonlinear phase shifters relying on Kerr effect or are based on the
square law offered by the photodiodes at the output layer. The use
of photonic components for realizing RC nodes offers practically
unlimited processing speed without sacrificing coherent proces-
sing. This feature outweighs all spatial RC’s restrictions when
high-speed applications are considered. In this context, photonic
RC has attracted attention in the optical communications field,
thanks to its ability to compensate transmission impairments
such as CD-induced power fading and Kerr-related non-
linearities26. All the aforementioned works do not rely on any
type of spectral slicing and optical processing of selected fre-
quency components in the optical domain.

In this work, we numerically explore a recurrent photonic
integrated node consisting of a hardware-friendly filter-in-a-loop
architecture that harnesses computational efficiency in a two-fold
manner. First, the proposed architecture implements spectral
slicing of the incoming signal through a complex node response,
directly in the optical domain, leading to spectral decomposition
of the signal, which is a prerequisite when broadband optical
signals (from 100 GHz to several THz) are to be processed.
Spectral slices consist of lower-bandwidth components of the
original signal offering the possibility of diverse and specialized
treatment of information in the frequency domain. By arbitrarily
manipulating the frequency/phase information of the signal,
random weighting is applied in the spectral domain. Second,
although an optical filter performs a linear transformation of the
complex field, it also provides a non-linear mapping of the
incoming signal’s phase variations to the node’s intensity (see
Supplementary Discussion 1)27. Hence, the coherent interaction
of spectrally sliced components on the photodiode provides a
complex nonlinear activation function at the output. This filter-
based neuromorphic assumption of nodes is inspired by the filter-
and-fire model28 which treats each retinal ganglion cell as a linear
filter followed by a nonlinear activation function. Spectral slicing,
through simple non-recurrent filters, before RC processing was
first proposed in29,30 where the output of each filter was sent to a
digitally implemented reservoir computing network. Nonetheless,
this approach is not advantageous in terms of power consump-
tion because the recurrent processing still lies in the digital
domain. In such a case, the digital complexity remains high,
important phase information is not provided to the processing
system and the spectral processing is incomplete and limited.
Here, we implement a fully photonic structure based on filters-in-
a-loop. Based on the functionality of the photonic node, we call
the proposed architecture Recurrent Optical Spectrum Slicing
Neural Network (ROSS-NN). Each node of the ROSS-NN exhi-
bits truly passive operation, and there is no intrinsic bandwidth
limitation burdening the proposed scheme. Processing speed is
capped only by the bandwidth of the photodiodes and the analog-
to-digital conversion. A ROSS-NN can be incorporated either as
an RNN or spatial RC architecture, providing direct coherent
processing without costly electro-optic conversions, speed pro-
cessing penalty, high-speed pseudo-random generators for mask
realization13 and most importantly, with marginal power con-
sumption. In the RC case, the application of weights is imple-
mented at a digital output layer. Thus, through parallelization, the
weighting of the RC outputs can be performed with a speed,
matching the digitization process. Aiming to demonstrate the
merits of ROSS-NN, we have numerically investigated its pro-
cessing capabilities in two tasks. First, we confirm its nonlinear
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processing nature by exhibiting its efficacy in generic non-linear
tasks, such as inferring the behavior of unseen data of a dyna-
mical system using multi-Gbaud rates. Second, and more
importantly, we also numerically demonstrate its performance in
real-life problems such as the mitigation of transmission
impairments caused by CD and Kerr effect in IM/DD systems at
112 Gbaud PAM-4 as well as in coherent systems employing
QAM-16 signals. ROSS-NN exhibits improved performance over
well-established techniques such as Maximum Likelihood
Sequence Estimation (MLSE) and Volterra Non-Linear Equalizers
(VNLE) and other photonic neuromorphic approaches, extending
the reach of high-speed IM/DD systems far beyond the 10–15 km
limit of the digital algorithms. The bit-error-rate (BER) achieved
by ROSS-NN is only limited by noise, as in typical linear chan-
nels. The simulated system achieves real-time processing with
almost zero latency at tasks exceeding 100 Gbaud. In this work,
numerical simulations show that ROSS-NN can operate at
timescales of a few picoseconds.

Results
ROSS-NN node and overall architecture. The basic unit of our
system is a recurrent node consisting of a first-order bandpass or
bandstop optical filter, two couplers and a feedback loop with
delay Τd. The feedback loop is equipped with a phase shifter so as
to adjust the feedback phase, whereas feedback losses (L) can be
adjusted during fabrication or through the optional inclusion of a
variable optical attenuator (Fig. 1a)31. The whole architecture can
be monolithically integrated using mature silicon photonics
technology, whereas the optical filters in the loop may be
implemented by means of Mach-Zehnder Delay Interferometers,
MRRs or any equivalent bandpass/bandstop optical filter. In
Fig. 1b, we present a generic architecture consisting of multiple
recurrent optical filters organized in separate filter banks, spec-
trally slicing different frequency bands of the input optical signal.
This complex architecture can be easily implemented if add/drop
MRRs are used, as rings can be interconnected using through
ports and provide outputs using drop ports which are directed to
the output layer. The output layer could be implemented in the

optical domain, by combining filter’s outputs through an optical
combiner, followed by a single photodiode and analog-to-digital
converter (ADC)32, or in the digital domain with the use of a
photodiode/ADC per filter output. Depending on the problem to
be solved, the architecture may contain one or more filters
incorporated in one or multiple loops. The number of filters or
loops is mostly limited by optical losses and the corresponding
signal-to-noise ratio at the output layer. Each recurrent node
focuses on a specific frequency band of the input optical signal.
Thus, the number of nodes is on one hand related to the required
granularity of spectrum slicing as dictated by the problem and
should on the other hand be sufficient to properly cover the full
optical bandwidth to be processed.

The transfer function of the recurrent node in Fig. 1a is given
by:

Hnodeðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
H f
� �

1þ
ffiffiffiffiffiffiffiffiffi
a bL

p
H f
� �

e�i 2πfTdþφð Þ ð1Þ

where a and b are the coupling ratios at the input and output, L
the variable optical attenuator induced losses, Td is the total delay
of the loop. H(f) is the transfer function of the in-loop filter(s)
and φ is the phase imposed by the in-cavity phase shifter. The
aforementioned nodes can be considered as building blocks of
ROSS-NN which may serve as a photonic RNN or an RC. In
particular, we have the possibility to follow the RC paradigm and
mimic random inter-node connectivity by stochastically varying
the complex amplitude of the signal injected from filter to filter in
Fig. 1b. To further enforce random connectivity, we can induce
arbitrary frequency offsets between adjacent nodes that con-
tribute to a stochastic mixing of the frequency components
handled by successive filter nodes belonging to the same bank. In
a RC-like treatment of the configuration depicted in Fig. 1b, we
follow the RC-related training, thus restricting training only at the
output layer of Fig. 1b. On the other hand, one may handle all
these variables (filter bandwidth, offset between successive filters,
phase shifter, feedback attenuation etc.) as hyper-parameters that
can be optimized for a specific task. In this case, the network
mostly resembles an RNN configuration where optical weighting

Fig. 1 The architectural structure of Recurrent Optical Spectrum Slicer-Neural Network (ROSS-NN). a Configuration of a single ROSS-NN node, (b) The
architecture of ROSS-NN consisting of NB filter banks with each bank consisting of NF filters in-a-loop serving as recurrent optical spectrum slicers. c The
architecture of ROSS-NN as a hardware neuromorphic processor for high-speed optical communications signals suffering from chromatic dispersion,
bandwidth limitations of the transceiver and nonlinear effects.
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between units can be applied in different forms (variation of
signal amplitude and phase after each filter, variation of frequency
offset between adjacent filters). Figure 1c depicts the scheme that
has been numerically tested and that provides improved results in
the most important application of transmission impairments
mitigation at very high baud rates (>100 Gbaud) and at low
complexity. It will be shown in the results section that this simple
scheme relying on two passive recurrent optical filters for PAM-4
and three filter for 16-QAM has the ability to outperform state-
οf-the-art digital equalizers, while its complexity and therefore its
energy footprint is over an order of magnitude lower.

ROSS-NN for the nonlinear autoregressive moving-average
(NARMA) task. One of the key properties that a recurrent
neuromorphic scheme should be able to address is the repro-
duction or prediction of pseudo-chaotic sequences with increased
temporal complexity. Although these tasks (NARMA, Santa Fe,
Mackey-Glass etc.) are of minor importance application-wise,
their successful processing can assess the overall efficiency of a
neuromorphic dynamical scheme. We chose the NARMA task,
originally introduced in33. In this context, we utilized a pseudo-
random input, drawn from a uniform distribution u(n) and
computed the tenth order NARMA-10 sequence y(n).

y nþ 1ð Þ ¼ 0:3 � y nð Þ þ 0:05 � yðnÞ ∑9
i¼0yðn� iÞ� �

þ 1:5 � u n� 9ð Þ � u nð Þ þ 0:1
ð2Þ

Each value from the pseudo-random input sequence u(n) is
used to modulate the amplitude of a laser source at a rate of 40
Gbaud. The optical input is equally split and injected to a ROSS-
NN configuration consisting of one to six banks (NB), where each
bank embeds one to five filters (NF) that are numerically
implemented as add/drop MRRs. Intra-cavity losses and the
coupling coefficient between the circular and straight waveguides
of the MRRs have been used as hyperparameters to tune the
Q-factor and bandwidth of each MRR. The central frequency of
each filter bank can be easily adjusted in a course way by placing a
phase tuner inside the MRR. The drop ports from all filters are
considered as the scheme’s optical outputs and are fed to a typical
detection scheme (photodiode and ADC) followed by a digital
linear regression as the RC’s trainable output layer. The
regression has 10 taps, matching the NARMA’s order. The
purpose of the system is to train the output layer of the RC so that
the system correctly emulates the sequence y(n+1) after training.
To achieve this, 50% of the NARMA outputs of 4000 symbols was

used as a training sequence, regulating the weights of the linear
regression. Following the training procedure, the RC was fed with
2000 u(n) subsequent symbols and the generated output ŷðnþ 1Þ
was recorded. Accuracy was evaluated by computing the
normalized mean square error (NMSE) between y(n+1) and
ŷðnþ 1Þ. Taking into account that ROSS-NN is based on the
spectral slicing property, for each combination of banks/filters, all
the critical parameters such as the MRR’s Q-factor, the detuning
of each bank relevant to the signal’s bandwidth and the central
frequency of each MRR resonance compared to the banks center,
were scanned so as to achieve optimum performance. In Fig. 2a, it
can be seen that in order to get NMSE < 0.1, a minimum of
number banks equal to NB = 3 each having NF = 4 MRRs is
needed, resulting to only 12 physical nodes. A critical observation
is that for each neural configuration (NF, NB) each filter’s
bandwidth and each bank’s spectral band is optimized so that the
full spectrum of the incoming signal is covered. Up to now we did
not really treat the ROSS-NN as a RC network. Although we
restricted training in the linear regression part, we also tried to
optimize all the other hyperparameters related to the number of
filters per bank, the number of banks and the exact shape in terms
of bandwidth and central frequency of each individual MRR. This
treatment contradicts with one of RC’s most fundamental aspects,
the randomness of connections, that contributes to its hardware
friendliness. In order to evaluate the impact of randomness on
performance, we have assumed realistic structural deviations, as if
this scheme was realized in a typical silicon photonic
platform34,35 (methods). In particular, we solved the same
NARMA task using 200 ROSS-NN instances (RCs in Fig. 2b)
each having NB = 5, NF = 5. These ROSS-NN instances exhibit
structural deviations compared to an ideal prototype, such as the
effective refractive index of each MRR due to waveguide
roughness, resulting to frequency detuning deviations, inter-
MRR transmission coefficient and delay (phase). The ideal in our
case is a ROSS-NN whose key properties (detuning, bandwidth)
are optimized for the specific task as hyperparameters and no
fabrications-related imperfections are considered. In Fig. 2b, the
histogram for this scenario alongside a gaussian fit is presented
showing that the NMSE ¼ 0:086 ± 0:0005, not deviating signifi-
cantly from the ideal NMSE. The NARMA results obtained from
the ROSS-NN scheme can be directly compared to other
numerical RC investigations that offer NMSE values in the same
order using different RC numerical implementations of over 50
virtual nodes14,36. It is reminded that a linear shift register can
provide NMSE~0.1613. Hence, while preserving marginal power

Fig. 2 Results of for the Nonlinear Autoregressive Moving-average (NARMA)-10 reproduction. a Normalized Mean Square Error (NMSE) as a function
of the number of filters per bank (NF) and the number of filter banks (NB) in the Recurrent Optical Spectrum Slicer-Neural Network (ROSS-NN)
configuration. The actual number of spatial nodes is equal to NF x NB. b Distribution of NMSE values for random implementations of ROSS-NN internal
connectivity in the form of random frequency offset of all filters’ central frequency.
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consumption and integration capabilities, ROSS-NN presents
good performance along with the reduction in node count
compared to the state of the art. Furthermore, the proposed
scheme can address this task without any speed penalty that is
present in time-delayed RCs, whereas even higher bandwidths
can be envisioned without any additional considerations apart
from signal-to-noise ratio, the elevated analog bandwidth of the
photodiodes and the ADC, which are typical limitations for all
photonic neuromorphic or signal processing schemes in general.
Lastly, it is worth mentioning that the previous demonstration
showcased that ROSS-NN is capable of playing the role of a
general-purpose recurrent processor in the well-established
NARMA-10 test. However, by solely modulating the amplitude
of a carrier, one cannot fully harness the true capabilities of a
system offering coherent processing. In the next section, a real-
world problem requiring coherent processing and frequency
diversity is considered in order to reveal all the merits of ROSS-
NN proposition.

Few-node ROSS-NN as a photonic hardware accelerator in 100
Gbaud and beyond optical communication systems. Until
today, data center interconnects are mainly based on cost-
effective direct detection systems covering distances from 500 m
to 80 km. The main limitation in such distances is the interaction
between CD and the square-law of the photodiode which results
in power fading. Generically, a real-valued unipolar signal at the
transmitter with a direct current bias can be expressed as:

r tð Þ ¼ s tð Þ þ c tð Þ ð3Þ
in which s(t) is the original signal and c(t) is the optical carrier
related to direct current bias. The received signal with square-law
detection is represented as:

y tð Þ ¼ c2 tð Þ þ s tð Þ � h tð Þ
�� ��2 þ 2 c tð Þ � s tð Þ

� F�1
�
Re
�
Hfiberð f Þ

	� ð4Þ

where ⊗ is the convolution operator, and

Re
�
Hfiberð f Þ

	 ¼ cos
�
2π2β2

2Lf 2
�

ð5Þ
in which β22 is the second order dispersion coefficient, L denotes
fiber length and f represents signal frequency. Based on Eq. (5), it
can be found that the received signal suffers from power fading
caused by CD and its nonlinear transformation at the photodiode.
This dispersion-induced power fading will result in deep spectral
zeros when 2π2β2

2Lf 2 � π
2 is a multiple of π.

Many works in the literature have been devoted to the
mitigation of this distortion and a number of techniques such as
optical dispersion compensation, Single Sideband modulation,
digital equalization in the form of Decision Feedback
Equalizer37,38 or Maximum Likelihood Sequence Detectors
(MLSD)39,40 have been reported. The quadratic dependence of
CD on baudrate is the reason why next-generation 112 Gbaud
IM/DD links are forced to rely on heavy digital signal processing
(DSP) algorithms that cancel out accumulated dispersion up to
10 km, while for longer links, coherent detection is the only
viable, but expensive solution. ROSS-NN is capable of equalizing
both IM/DD and coherent schemes.

We first demonstrate that ROSS-NN consisting of two nodes is
capable of mitigating transmission impairments in an IM/DD
link, at the challenging next generation 112 Gbaud rates,
achieving even 60 km reach with very high CD tolerance. In
general, an intuitive way to understand RC operation, is as a
nonlinear dynamical system that acts as a pre-filter on the input
data, transforming it into a higher dimensional space41. This is
achieved by using a transformation resulting in multiple outputs
which have undergone different routes in the spatial, temporal

and – most importantly in our case – the spectral domain. Gonon
et al.42 clearly state that very important features of causal and
time-invariant filters like the fading memory property or
universality are naturally inherited by reservoir systems. Our
proposition consists of nodes that are causal and time-invariant
optical filters that provide fading memory as shown in
Supplementary Discussion 3 and that have the echo state
property, since the reservoir will asymptotically wash out any
information from initial conditions due to the passive nature of
the recurrent filter (optical feedback below 1) which precludes
instabilities in the dynamical behavior. The recurrent connectivity
offers rich and frequency-dependent memory (see Supplementary
Discussion 3) which is important when transmission impair-
ments are caused by nonlinear channels with memory, such as
single-mode fibers. The proposed ROSS-NN consisting of two
recurrent nodes (Fig. 1c) provides evident frequency diversity of
power fading, characterizing the distorted signals at the two
outputs due to CD (see Fig. 3a). This is achieved by treating
differently the lower and higher frequency components through
spectral slicing of each sideband and by leveraging optical
feedback as an extra mechanism to enhance specific frequency
components and fading memory. Both outputs are followed by
photodiodes with bandwidth lower than the baud rate and ADCs
that require only one sample per symbol (sps), thus showing that
real-life implementation of the scheme is practical at high baud
rates (>100 Gbaud) and more appealing than coherent detection
which requires at least 1.25 samples/symbol in order to decode
the signal43. A feed-forward equalizer (FFE) follows the ADC in
order to act as a linear regression stage and to assist in the
elimination of Inter-symbol Interference and bandwidth limita-
tions caused by CD and transceiver optoelectronic components.
As for the accumulated CD tolerance, Fig. 3b compares the
proposed system with a system consisting of two simple optical
filters offering frequency diversity22 and an FFE, showing that,
especially for high CD values as the ones in C-band, and for
reaches beyond 10 km, ROSS-NN is the only viable solution with
one order of magnitude better BER performance. Furthermore,
the ROSS-NN outperforms state-of-the-art digital algorithms like
MLSE with 5 taps and a 3rd order VNLE with 91,31,11 taps for
each order (Fig. 3b). ROSS-NN, compared to VNLE or MLSE,
can perform superior equalization, requiring only 40-100 multi-
plications/bit at the digital back-end, whilst the Volterra
algorithm employed here requires over 2400 and the heavy
MLSE of 5 taps over 10000, for the results presented in Fig. 3b. It
must be stressed that, in the strict environment of short-reach
communications, the power consumption is of paramount
importance. With a two-node ROSS-NN, we propose a receiver
that, apart from its almost passive optical part (sub-μW
consumption for state-of-the-art phase shifters44), consumes less
than 1W for 112 Gbaud, based on the latest 7 nm FinFET
technology45,46 for the two relaxed 40 GHz ADCs and a 50-tap
FFE. For comparison, a light 2-tap MLSE with 128 multi-
plications, with a 56 GHz ADC, would consume over 1.5W. In a
transceiver with four coarse wavelength division multiplexed
channels, this corresponds to more than 2W or 20% reduction in
the transceiver power envelope.

In order to benchmark the RC-system in a harsh nonlinear
transmission environment, we compensate CD using a dispersion
compensating fiber with a high non-linear parameter and launch
powers in the numerical model that excite Kerr non-linearities.
By comparing ROSS-NN with a simple FFE as a postprocessing
method, 2 dB higher tolerance in nonlinear effects is achieved
(Fig. 3c). ROSS-NN is also capable of mitigating bandwidth
limitations induced by optoelectronic components of the
transceiver. The bandwidth provided by vendors of Mach-
Zehnder modulator drivers and Digital-to-analog converter is in
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the order of 60 GHz, which poses strict limitations to the
extension of baud rate beyond 112 Gbaud. Although FFEs and
Pre-Emphasis filters are recognized tools for the mitigation of this
distortion, it still constitutes a major problem. In Fig. 3d we
provide results for the tolerance of the proposed system to the
limited bandwidth of the transmitter. Τhe photodiode bandwidth
after each node is assumed constant at 35 GHz. It is shown that
even with 50 GHz analog bandwidth in the transmitter, sub-Hard
Decision-Forward Error Correction results could be achieved
even for a 40 km long O-band link. If the 25% overhead Soft
Decision Forward Error Correction is considered, the analog
bandwidth could be reduced to almost 45 GHz. It must be stated
that all critical hyperparameters of the ROSS-NN have been
optimized in this study (see Supplementary Discussion 2).

We further benchmarked a three-node system in a coherent
transmission link in order to prove the versatility of the ROSS-
NN and its suitability to deal with coherent modulation formats.
We take advantage of a residual carrier that permits the reception
of the coherent signal with simple photodiodes following the
paradigm of cost-efficient self-coherent systems47. State-of-the-
art 120 Gbd QAM-16 and QAM-32 scenarios are numerically
simulated solely focusing on chromatic dispersion mitigation with
the use of ROSS-NN. In this baudrate, 400 Gbps and 500 Gbps
net data rates can be achieved in a single wavelength and

polarization. We keep the Carrier-to-Signal Power Ratio within
the limits of a typical Kramers-Kroning receiver47, namely
between 9 and 12 dB. In such systems, the CD effect is linear if
coherent detection is utilized. In this work we choose the much
simpler direct detection leveraging the residual carrier, however,
dispersion management without using the efficient but compu-
tationally heavy Kramers Kronig algorithm, constitutes a rather
challenging signal processing problem. By employing ROSS-NN,
we perform phase-to-amplitude conversion that maps all the
different QAM symbols to the amplitude domain. Spectral slicing
by three nodes also relaxes the need for large analog bandwidth in
the order of 40-45 GHz, thus constituting an attractive solution in
the bandwidth-hungry area of coherent communication technol-
ogy. The readout is split in two linear layers, one per quadrature.
In Fig. 4, indicative results of the BER performance of the two
modulation formats is presented as a function of transmission
distance in an O-band link. Sub Soft Decision- Forward Error
Correction performance is achieved after 20 km using 16-QAM
with a Carrier-to-Signal Power Ratio of 9 dB while almost 8 km
reach is achieved with 32-QAM and Carrier-to-Signal Power
Ratio of 12 dB. Thus, we present a simple direct detection scheme
suited for M-QAM at high baud rates based on a very simple DSP
at the back-end of the receiver. It must be also stated out that the
BER tolerance to transmitter phase noise is very high (see

Fig. 3 Performance of Recurrent Optical Spectrum Slicer-Neural Network (ROSS-NN) in the mitigation of transmission impairments in intensity-
modulated optical communication links. a The spectral response of the recurrent nodes after photodetection. The power fading effect, due to 20 km
C-band transmission, is observed with multiple spectral dips in both outputs, however, frequency diversity is also observed. With the proper adjustment of
bandwidth, frequency detuning and delay values characterizing the ROSS-NN system, we can almost completely eliminate power fading and provide
additional memory for tackling intersymbol interference caused by Chromatic Dispersion (CD). b The CD tolerance of the proposed RC-system in
comparison with a system exploiting two filters without any feedback and Feed Forward Equalizer (FFE), Maximum Likelihood Sequence Estimator (MLSE),
Volterra Non Linear Equalizer (VNLE) as postprocessing. While for small accumulated CD values (for example, <20 km reaches in the O-band), two simple
filters or heavy MLSE, VNLE can achieve acceptable results, for higher CD values, only the system with the recurrent nodes can achieve results below Hard
Decision - Forward Error Correction (HD-FEC) limit. c The efficiency of the proposed system in the mitigation of Kerr-related non-linearities when CD is
optically compensated. The system provides 2 dB gain in comparison with a linear algorithm. d The performance of the ROSS-NN-system and the FFE as a
function of transmitter’s bandwidth for fixed 35 GHz bandwidth per photodiode. The results refer to a 40 km O-band link with a group velocity dispersion
parameter D = 0.5 ps nm−1 km−1.
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Supplementary Fig. 6a). The results depicted in Fig. 4 consider
transmitter linewidth in the order of 300 kHz, whilst coherent
receivers require narrow linewidth lasers (< 50 kHz).

Finally, in Table 1, the proposed architecture is compared with
numerical results from similar works in the literature in terms of
the well-established metric of bitrate-distance product. The
comparison reveals that in the inherently coherent and frequency
depended task of dispersion compensation in high baud rate
optical transmission, recurrent coherent processing provides the
best performance over all state-of-the-art solutions at only 1 sps.

Discussion
In this paper we have proposed and numerically evaluated a
neuromorphic photonic concept based on recurrent optical
spectrum slicing, implemented by optical filters embedded in a
delay loop. Such a concept constitutes a practical and realization-
ready solution in silicon photonics chips48 or even leveraging
programmable photonics platforms49. The main advantage of the
proposed scheme is its compatibility with direct processing in the
optical frequency domain, thus rendering the specific neuro-
morphic approach suitable for spectral decomposition and pro-
cessing of ultra-broadband signals (~ THz). Especially, when
ultra-fast processing is necessary, a solution that can easily scan
and process broad optical spectra directly in the optical domain
and with minimum power consumption or need for data storage
is a useful tool. ROSS-NN can cover this need and play the role of
a high-speed optical frequency processor in applications such as

high throughput real-time flow-cytometry50, high-resolution 3D
imaging51 and generally in tasks where simultaneous spectro-
temporal knowledge is required at very fast rates.

It must be stressed that, by introducing the spectral degree of
freedom in addition to the existing time and space ones, ROSS-
NN outperforms both time-delayed and spatially distributed RC
systems in processing speed capabilities. In the case of time-
delayed systems, for processing a signal of bandwidth B, a system
of N virtual nodes requires sampling bandwidth R equal to N x B
both at the input and at the output. A spatially distributed system
requires N receivers of B bandwidth, so the total R equals again to
N x B, while a ROSS-NN requires N receivers of bandwidth
slightly greater than B/N due to slicing, or a total R ≈ B in the
general case. Furthermore, even in the case of a modulated car-
rier, where the filtering cannot be conducted far away from car-
rier frequency, spectral slicing still relaxes the required receiver
bandwidth.

Since optical communications industry has the strongest
foothold in photonic applications for real-life problems, we
anticipate that ROSS-NN could have an impact in the advent of
edge-cloud interconnects. Edge-cloud era seeks for straightfor-
ward, low-cost ideas for facing the strict requirements in low
latency, high bandwidth, stability and power efficiency. Already,
moving digital processing as near as possible in the optical
transceiver, through co-packaged optics is a colossal migration
step, which will disrupt the field in the next decade52. But,
implementing computing and processing directly in the optical
domain, in the core of the optical engine, is an ambitious
endeavour. By relaxing the optical bandwidth requirements (less
than 40 GHz optoelectronic components for 112 Gbaud and
beyond signals as shown in Figs. 3 and 4) and keeping DSP to the
bare minimum, through optical pre-processing, ROSS-NN could
counteract the severe power consumption issues that 800 G
technology poses, creating even 20% savings in the 10–40 km
transceivers. In comparison with coherent technology, which
conquers even the shortest reach scenarios of Inter Datacenter
Communications53, ROSS-NN offer multi-Watt reduction in the
overall transceiver power budget, as 800 G coherent modules are
anticipated to have over 20W power dissipation54, while with the
proposed hardware accelerator we estimate less than 14W.
Combating CD even in Extended Reach (ER) 40 km channels
with relaxed energy consumption, ROSS-NN receivers constitute
an appealing tool for the 6 G, Internet-of-Everything and
Industry 4.0 revolutions of the next years, either in the IM/DD or
in its self-coherent approach.

An interesting field towards further exploration of ROSS-NN
systems is their training. As already pointed out, ROSS-NN can
be used as building block for both RC and RNN implementations.
In the former case, the readout layer is one of the most critical
parts of the architecture. Digital or even optical readout should be
studied in-depth in forth-coming studies. First evaluations show
that optical readout further enhances the performance of the
network in specific tasks from the telecom arena, due to the fact
that the nonlinear activation is boosted when all favored fre-
quency components from diverse nodes are combined on the
same square law detector32. When the network is operated as an
RNN, then activities on training become even more demanding as
all hyperparameters along with the readout layer must be opti-
mized concurrently utilizing back-propagation or equivalent
techniques. Another critical property of ROSS-NN attributed to
its recurrent nature is that ROSS-NN has the property to enhance
the number of output traces through time multiplexing which is
equivalent to temporal unfolding of each spatial node’s dynamical
behavior55, or to a post-FIR filter that expands the readout
layer56. More complex networks can be realized if the char-
acteristic delay of the loop of each bank is varied. ROSS-NNs

Table 1 Comparison of different Reservoir Computing works
for equalization of optical links in terms of bitrate-distance
product.

Work Rate/Format Distance (L) bitrate*L
(Gbps*km)

Analog/Digital
(samples per
symbol)

20 28 Gbd/PAM4 27 km 1512 8
62 40 GBd/OOK 15 km 600 –
29 32 GBd/OOK 80 km 2560 2
[this work] 112 GBd/PAM4 80 km 17920 1

Format refers to pulse amplitude modulation (PAM) and on-off keying (OOK).

Fig. 4 Performance of Recurrent Optical Spectrum Slicer-Neural Network
(ROSS-NN) in the extraction and equalization of coherent signals. Bit-Error
Rate results as a function of transmission reach for Quadrature Amplitude
Modulation (QAM)-16 and QAM-32 in the self-coherent configuration.
With the QAM-16 format, 20 km of transmission is achieved with carrier to
signal power ratio (CSPR) of 9 db, while with QAM-32 the reach is at least
5 km with a CSPR of 12 dB. The transmission reach is compared with the
Soft Decision-Forward Error Correction (SD-FEC) limit 2 × 10−2.
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open new paths in investigating and training neural networks in
the frequency domain and could be also considered as a neuro-
morphic approach even in the electronic domain where the
implementation of analog filters with diverse transfer functions is
mature and CMOS technology permits the hardware imple-
mentation of complex networks consisting of thousands of filter
nodes with fine granularity.

Methods
Recurrent node simulation. In this work, we propose a recurrent filter node for
RNN/RC architectures. Such recurrent filters are easily integrated into photonic
circuits along with many other optical components like semiconductor optical
amplifiers, variable optical attenuators, phase shifters, couplers etc.57,58. In our
simulations, each filter is modelled through its transfer function H(f), while the
phase shifters and variable optical attenuators are inserted as phase and feedback
terms in (1).

The transfer functions of the Mach-Zehnder Delay Interferometers and MRR
filters H(f) are given by

HMZDI f
� � ¼ 1

2
1þ e�i2π f�f 0ð ÞΔTh i

ð6Þ

where f0 is the central frequency of the filter and ΔT is the delay difference between
the two arms. f0 can be tuned with the use of phase shifter in one of the two Mach-
Zehnder Delay Interferometers arms. Regarding MRRs, the through port and the
drop port transfer functions are given by (7)–(8),

HMRR;Through f
� � ¼ �T2e

Φ þ T1 � ðK1
2 T2 e

ΦÞ
ð1� T1 T2 eΦÞ

ð7Þ

HMRR;Drop f
� � ¼ �K1K2 e

Φ

ð1� T1 T2 eΦÞ
ð8Þ

Φ ¼ �a L=2 � �
i2π

�
f � f 0

�
L neff

�
c

ð9Þ

where T1, Τ2 the transmittance, K1, Κ2 the coupling coefficientσ, a the waveguide
losses, neff the effective refractive index, L the circumference of the ring and c the
speed of light.

Transmission system simulation – ROSS-NN evaluation in optical commu-
nication tasks. The transmission system consists of a semiconductor laser mod-
elled with the well-known Lang-Kobayashi rate equations59 for the complex slowly
varying amplitude of the electrical field E(t) and the carrier number inside the
cavity N(t).

dE
dt

¼ 1þ iα
2

Gs �
1
tph

" #
Ef þ

ffiffiffiffiffiffiffiffiffi
2βN

p
ξ ð10Þ

dN
dt

¼ I
q
� N

tn
� G Ej j2 ð11Þ

G ¼ g N � N0

� �
1þ s Ej j2 ð12Þ

Here α is the linewidth enhancement factor, g is the gain parameter, s is the gain
saturation coefficient, tph is the photon lifetime, tn is the carrier lifetime and N0 is
the carrier number at transparency. The simulation values of these parameters are
given in Table 2.

The symbols for the laser modulation rely on the Mersenne Twister pseudo-
random generator with a unique seed and a repetition period of 219937-1. The
reason for this measure is to hinder ROSS-NN from anticipating the next symbol in
the sequence and thus, overestimate the equalization results. An external Mach-
Zehnder modulator is assumed, acting as a 2nd order Butterworth filter, emulating
bandwidth limitation at the transmitter. We simulate, with the integration of
Nonlinear Schrödinger equation using the Split-step Fourier method, the
transmission of 112 Gbaud PAM-4, QAM-16 signals in a range of 10 km to 60 km
transmission distances. Signal propagation in our model is governed by Manakov
equations60. The group velocity dispersion parameter takes values between D =
0.5 ps nm−1 km−1 and D = 4 ps nm−1 km−1 for O-band transmission, while D=
17 ps nm−1 km−1 is assumed for simulations in the C-band. The fibre losses are set
to a = 0.34 dB km−1 in O-band and a = 0.21 dB km−1 in C-band. The non-linear
parameter is γ = 1.3W−1 km−1, while when dispersion compensation fiber is used,
its γ = 6W−1 km−1. In the receiver side, a pre-amplifier with 5 dB noise figure is
simulated in order to compensate for the transmission losses, the chip’s insertion
loss and the initial splitter. In a real-life scenario, a semiconductor amplifier in
single wavelength transmissions or a Doped Fiber Amplifier in wavelength division
multiplexing scenarios could play the role of pre-amplifier. The intensity of
recurrent nodes output is captured with photodiodes modelled as a square-law

element of responsivity R = 0.8 A/W and bandwidth 35 GHz. Shot and thermal
noise are taken into account. An 8-bit, 112 Gs/s ADC follows each photodiodes,
with analog bandwidth of 35 GHz.

Training of the readout layer. The ADC generates one sample per incoming
symbol. These digital samples are inserted to a linear classifier that resembles the
typical symbol-spaced FFE block in IM/DD DSP. The length of the FFE is adjusted
so as to match the channel’s memory which is proportional to the group delay time
Τ = D Δλ LD, where D is the second order dispersion parameter, Δλ the optical
bandwidth occupied by the signal and LD the transmission distance. In these
simulations the memory ranges from 11 to 21 symbols for O-band transmission,
while for C-band links this number reaches up to 71 symbols. Half of the symbols
are considered as pre-cursor and half as post-cursor taps. The weights, b, of the
linear equalizer are calculated by finding the pseudo-inverse matrix through
Tikhonov regularization. With 20000 symbols for training and 100000 symbols for
testing, we achieve enough precision for BER above 10−4. When QAM is con-
sidered (Fig. 4), we apply two separate linear readouts, one for the real part and one
for the imaginary part (see Supplementary Discussion 2).

NARMA10 task. The pseudo-random signal that is used as input for the NARMA
sequence consists of 4000 samples drawn from a uniform distribution (python’s
generator). The values range from 0 to 0.5. The NARMA output is computed
assuming to have an order (memory) of 10. Simulation wise, the pseudo-random
values are oversampled using 8 samples per symbol and the time scale was regu-
lated so as to result to a rate of 40Gsymbol/sec. These analog values were used to
amplitude modulate a continue-wave (CW) laser with power of 0 dBm, assuming
an extinction ratio of 20 dB. The optical signal was assumed to be amplified, using
an amplifier gain of 10 dB and a noise figure of 5 dB. The signal was subsequently
split according to the number of ROSS-NN nodes used. In this case inside each
ROSS-NN module, add/drop MRR filters are assumed. The outputs from the
MRR’s drop ports were recorded by photodiodes and typical shot and thermal
noise was incorporated. The computed photocurrents were normalized and they
were fed to a linear regression algorithm with 10 taps so as to match the NARMA’s
memory. 2000 samples of the NARMA were used as teacher so as to train the
weights of the linear regression. Following this step, 2000 samples from NARMA’s
pseudorandom input were fed to the ROSS-NN for inference; aiming to reproduce
the actual NARMA output. The two traces (predicted and reproduced) were
compared using the normalized mean square error.

Regarding the neuromorphic architecture used for addressing NARMA, we
varied the number of banks (ROSS-NN node) and MRRs per bank. For all
instances the MRRs were assumed to have a radius of 55 μm and propagation
losses of 0.4 dB cm−1. The waveguides connecting the MRRs per bank were
assumed to exhibit transmission coefficient of 0.95, whereas inter-MRR delay was
fixed at 0.1 of symbol duration. The detuning of each MRR was assumed to be such
that the combination of banks and filters span over the whole bandwidth of the
signal. Therefore, the center frequency of each MRR and the spacing among
different filters was scanned for each combination of banks and filters per bank. In
the same context, the coupling coefficient for each MRR, partially regulated filters
bandwidth and was scanned so as to locate the lower NMSE during inference. The
delay in each bank was set to 1 symbol time and feedback strength was set to 0.5.

RC random synapses realization: so as to evaluate the impact on NMSE of
parameter deviations, we fixed the number of banks and filters (NF = 5, NB = 5)
and optimized all the other parameters so as to locate the lowest NMSE for this
setup. This optimized neural network was considered as ideal. Then we generated
200 RC instances where all the parameters randomly varied using a uniform
distribution, with a range of +/− 10% with respect to the ideal. The parameters
subject to this perturbation were: the center frequency of each MRR and the inter-
MRR transmission efficiency. In addition, following34,35 we assumed that for the
inter-MRR connections, the effective refractive index of each waveguide varies
following a normal distribution with standard deviation of Δneff = 0.15 due to
roughness.

Table 2 Numerical Model Parameters.

Symbol Parameter Value

g Differential gain parameter 1.2 × 10−8 ps−1

s Gain saturation coefficient 5 × 10−7

β Spontaneous emission rate 1.5 × 10−10 ps−1

tn Carrier lifetime 2 ns
N0 Transparency Carrier Number 1.5 × 108

A Linewidth enhancement factor 3
ω0 Central oscillation frequency 1.206 × 1015 rad s−1

I Bias current 35mA
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Data availability
Simulated transmission datasets are available in (https://github.com/ksozos/ROSS_NN)
(https://zenodo.org/badge/latestdoi/499526668)61.

Code availability
The functions generated during the current study are available in the ROSS_NN
repository (https://github.com/ksozos/ROSS_NN) (https://zenodo.org/badge/latestdoi/
499526668)61.
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