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Abstract: In photonic reservoir computing, semiconductor lasers with delayed feedback have
shown to be suited to efficiently solve difficult and time-consuming problems. The input data
in this system is often optically injected into the reservoir. Based on numerical simulations,
we show that the performance depends heavily on the way that information is encoded in this
optical injection signal. In our simulations we compare different input configurations consisting
of Mach-Zehnder modulators and phase modulators for injecting the signal. We observe far
better performance on a one-step ahead time-series prediction task when modulating the phase of
the injected signal rather than only modulating its amplitude.
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1. Introduction

With current developments in machine learning, we are becoming increasingly able to process
and analyze information in our technological society [1]. The concept of reservoir computing
(RC) within the machine learning field offers a simple, yet powerful technique to use recurrent
networks for computing. RC systems have shown good performance in various benchmark tasks,
such as speech recognition [2–4], non-linear channel equalization [5] or time-series predictions
[6–8]. An RC system consists of a large recurrent neural network with fixed interconnections. Its
topology can be described in three separate components: an input layer, the reservoir, and an
output layer. In the input layer, the data is injected into the system and is sent to the reservoir,
which consists of a recurrently connected network of non-linear nodes (i.e. neurons). The
processed information is then sent to the output layer, where the output weights are optimized to
match the output with a corresponding target output. The optimization of weights, and thus the
training phase, occurs only in the output layer, whereas the internal weights of the reservoir itself
are not altered. This makes training much more straightforward compared to other artificial neural
networks (such as deep artificial networks, that also require training of the network’s internal
nodes) and simplifies reservoir computing in its implementation. Interesting implementations
of RC systems can be found in the emerging field of neuromorphic photonics. The advantages
of using photonic systems are abundant, ranging from a low-energy consumption, high-speed
performance and the possibility of high inherent parallelism [9,10].

There already exist several successful implementations of photonic RC systems, e.g. based on
a network of passive elements or semiconductor optical amplifiers [11–14], by using a diffractive
optical element coupled to a network of vertical cavity surface emitting lasers [15] or by using
excitable photonic systems (also referred to as spiking systems) [16,17]. In this paper, we focus
on a single mode semiconductor laser with delay-based RC [5,18–23]. The injection of input
data into this reservoir can be performed via several methods. The input data can e.g. be injected
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electronically by direct modulation of the injection current [24]. In this work, however, we will
focus on optically injected data, which has the advantage of allowing higher data injection rates
[25]. This latter method can be performed by modulating the phase of the injected electric field
by using a phase modulator or by modulating the amplitude of the electric field [19,26–29].
Although these various injection schemes will have an effect on the final performance of RC, their
influence on RC performance has not yet been studied and compared in detail. In this work, we
numerically investigate the effect of the optical data injection configurations on the performance
of delay-based reservoir computing system.

The paper is organised as follows: in Section 2, we give a short introduction to the specific
reservoir computing method which is used: delay-based RC. We also discuss the model used to
perform our numerical study of the RC systems and the different input configurations considered
in this paper. In Section 3, we discuss the RC performance of the different input configurations
when changing the strength of the amplitude and/or phase modulation of the input signal. In
this Section, we also investigate the role of the number of nodes and their separation on the
performance and study the effect of phase modulation on the memory capacity of delay-based
RC systems, before drawing conclusions in Section 4 of this paper.

2. Numerical implementation of reservoir computing

2.1. Delay-based reservoir computing

Semiconductor lasers with delayed feedback rely on a time-multiplexing approach to implement
reservoir computing [19]. This delay-based technique has been implemented in several types
of electronic or photonic reservoirs [19,21–23]. Figure 1 shows the topology of a photonic
delay-based RC using a single mode semiconductor laser as non-linear node, which will be
studied in this paper, and consists of an input layer, reservoir and output layer. In the input layer,
we optically inject the discrete input data uk, with k the index of the data sample, via an input
configuration which we will vary in this work. Due to the time-multiplexing, we need to make
use of a preprocessing mask m(t) before injecting the input data into the reservoir. In this paper,
this mask is created by randomly choosing N values, from following 5 sublevels:

[︁
0, 1

4 , 1
2 , 3

4 , 1
]︁
.

The mask is kept piecewise constant over the randomly selected sublevels, with each interval
having a duration θ, the node separation. This piecewise constant segment is then repeated such
that the mask is periodic with period Nθ, with N the number of virtual nodes in the system. The
injection of the input samples uk is handled numerically in the following procedure. Every data
sample is first stretched to a time interval equal to Nθ resulting in a piecewise constant continuous
signal u(t). Subsequently, we multiply this signal u(t) with the mask m(t) resulting in a masked
data signal S(t). After multiplying this masked data signal with an amplitude (and possibly a
bias), it is sent to the reservoir.

The reservoir itself consists of a semiconductor laser (SL) with optical feedback with a delay
τ. Note that in this paper, we assume τ and the period of the mask matched, i.e. τ = Nθ. A
mismatch between these two can be introduced, as in e.g. Reference [5,30–32], which can
improve the performance of RCs. However, in this work, we do not consider such a mismatch
here for simplicity. The reason for this is that the value of such a mismatch would need to be
scanned to further optimize performance. This improvement in performance is expected to be
equally applicable to any of the systems which we consider here and would not change the relative
differences between them. After the signal passes through the reservoir, the output state, A, is
sent to the output layer. The RC’s output is then calculated as a linear combination of the node
states using (trained) output weights w [9,18].

We use the intensity of the nodes as output of the reservoir. We can find the output weights w
corresponding to the N nodes of the reservoir in the training phase. In order to achieve this, we
use the output of the RC system A, which represents the node responses to the training input data,
and the expected target data ytrain. In practice, the weights w can be retrieved by minimizing the
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Fig. 1. Illustration of a delay-based RC system using a semiconductor laser (SL), with input
data uk, mask m(t), nodal separation θ and delay time τ. The light blue circles represent the
virtual nodes and the output layer is defined by the reservoir output A and output weights w.

squared error Esq(w) between the predicted value for the target data ŷtrain and the expected target
data points ytrain. We have used the real Moore–Penrose pseudoinverse (denoted by the symbol †)

w = A†ytrain. (1)

Because of the presence of internal noise in the reservoir, we do not use any regularization
methods. Once the weights have been found in the training phase, we test how the RC performs
on unseen data, which is referred to as the testing phase. In order to quantify this performance, we
use the normalized mean squared error (NMSE) between the expected output ytest and predicted
output ŷtest, unless indicated differently.

2.2. Numerical implementation of our RC system and the input configurations

The delay-based RC system with a single-mode semiconductor laser as non-linear node, can be
accurately modeled using rate-equations [33]

dE(t)
dt
=

1
2
(1 + iα)ξn(t)E(t) + ηE(t − τ)e−iΩ0 τ + F̃β + µEinj(t) (2)

dn(t)
dt
= ∆J −

n(t)
τc

− [g + ξn(t)] |E(t)|2 , (3)

where E(t) and n(t) are the complex valued electric field of the laser and the excess amount of
available carriers (both dimensionless). α represents the linewidth enhancement factor, and ξ
and g the differential gain and threshold gain. Parameters η and µ are the feedback rate and the
injection rate. ∆J represents the excess pump current rate, and is defined as ∆J = Ithr∆I/e, where
Ithr is the threshold pump current, e the elementary charge and ∆I the dimensionless pump current
excess, ∆I = (I − Ithr)/Ithr. We use a single feedback phase, which is not varied in our work,
Ω0 τ = 0. F̃β represents complex Gaussian white noise to simulate the spontaneous emission
noise strength. F̃β has a zero mean and autocorrelation equal to ⟨F̃(t)F̃(t′)∗⟩ = β/τc δ(t − t′),
where β controls the spontaneous emission noise and where τc is the carrier lifetime. Furthermore,
the input data is injected through an optical input signal Einj(t) with the same wavelength as the
free running laser, i.e. the injection frequency detuning is therefore equal to zero and not varied
in this work. Following previous work in Ref. [34], we have chosen a value of 20 ps as the
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standard value for the node separation [26]. Table 1 contains a summary of the parameters of
above equations, with their respective standard values. Unless stated otherwise, we keep these
parameters fixed to their standard value.

Table 1. Parameters, and their respective values, which are used in the
simulations, unless stated otherwise.

Parameter Symbol Standard value

Amount of virtual nodes (i.e. neurons) N 200

Node separation θ 20 ps

Linewidth enhancement factor α 3

Threshold gain g 1 ps−1

Differential gain ξ 5 ×10−9 ps−1

Spontaneous emission noise factor β ≈ 102

Carrier lifetime τc 1 ns

Threshold pump current Ithr 16 mA

Excess pump current rate ∆J 1.02 × 105 ps−1

Feedback rate η 7.8 ns−1

Injection rate µ 98.1 ns−1

Amplitude of injected field ϵ 100

Feedback phase mismatch Ω0 τ 0

Modulation amplitude of MZM AMZM
π
2

Bias voltage of MZM ΦMZM
π
4

Modulation amplitude of PM APM Variable

Bias voltage of PM ΦPM 0

In Fig. 2, we show the different input configurations which we have considered and which
were numerically implemented in the input layer of Fig. 1. The first configuration is shown in
Fig. 2(a) and consists of a Mach-Zehnder modulator (MZM), which is used to modulate the
output beam of a semiconductor laser using the masked data. The second configuration consists
of the combination of an MZM together with a phase modulator (PM) to inject the data and is
shown in Fig. 2(b). Both of these configurations use an MZM, where it can be either balanced or
unbalanced. With the balanced type, we apply a positive voltage to one arm and an equal, but
negative voltage to the other arm. With the unbalanced type, we only apply a voltage to one arm.
This is shown in Fig. 2, where VMZM,1 and VMZM,2 represent the two voltages that are applied to
the two arms of the MZM, and VPM is the voltage of the PM. The third and last configuration uses
only a phase modulator to inject the data, as shown in Fig. 2(c). The optical input signal Einj(t)
generated by each of the input configurations shown in Fig. 2 is subsequently sent to the reservoir.

In order to simulate the injection of data in Eq. (2), we specify the term Einj(t):

Einj(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϵ
(︂
1 + eiBMZM(t)

)︂
for unbalanced MZM (4)

ϵ
(︂
e

i
2 BMZM(t) + e−

i
2 BMZM(t)

)︂
for balanced MZM (5)

ϵ
(︂
e

i
2 BMZM(t) + e−

i
2 BMZM(t)

)︂
eiBPM(t) for balanced MZM with PM (6)

ϵ̃ eiBPM(t) for PM (7)

The terms Bj(t) (j ∈ {MZM, PM}) represent the masked time-dependent modulator signal
which is used as input for the different input configurations of the RC system. These terms are
directly related to the voltages Vj(t) in Fig. 2 through Bj(t) = πVj(t)/(2Vπ), where Vπ is the
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Fig. 2. Illustrations of the different input configurations which are used to optically inject the
input data uk, starting from the beam emitted by a semiconductor laser (SL): the (un)balanced
MZM only (a), the (un)balanced MZM combined with a phase modulator (b) and a phase
modulator (c), with their corresponding voltages Vj(t).

voltage that results in a π phase-shift in the arms of the modulators. Note that the injected intensity
|Einj(t)|2 in Eq. (4)–(6) is time-dependent, while this is not the case for Eq. (7). Therefore, we
have replaced ϵ by ϵ̃ in Eq. (7), such that we can set the time-averaged energy in Einj(t) equal
for all configurations. This ϵ̃ factor is calculated as the product of ϵ and the time average of
the modulus of Einj(t), as present in Eq. (4)–(6) and allows for a fair comparison between the
different input configurations.

We define the modulator signal Bj(t), corresponding to input configuration j, from the masked
data signal Sj(t) using an amplitude Aj and bias Φj,

Bj(t) = Aj Sj(t) + Φj. (8)

In order to compare our results for tasks which have different ranges for their input data, we
will introduce in our discussions the range of Bj, marked by ∆Bj.

For the simulations of our delay-based RC system we numerically integrate the rate-Eqs. (2)–(3),
with the input configurations defined in Eq. (4)–(7).

3. Numerical results

3.1. RC performance on the Santa Fe task for different input configurations

In order to compare the performance of the different input configurations, we use a one-step
ahead time-series prediction task. The input dataset used for this task is the Santa Fe dataset,
which consists of just over 9000 data points sampled from a far-IR laser in a chaotic regime [35].
The goal is to find the input configuration which results in the lowest error, and thus the best
performance for this particular task with the given reservoir parameters. Typical values for the
NMSE for the Santa Fe one-step ahead predictions via simulations of RC systems are around
0.01 [26,36].

We have taken the first 3000 data samples from the discrete Santa Fe dataset, utrain
k , where

k ∈ {1, . . . , 3000}, as the training set in the RC system. As test set utest
k , we have taken the next

1000 data samples, as done in Ref. [37]. Before injecting the signals, all of the Santa Fe data
was normalized over the whole dataset, so that for both training and testing, uk ∈ [0,1]. We have
repeated each numerical experiment 10 times, each with different mask realizations, from which
we calculate the average NMSE and its standard deviation. We use the standard deviation as the
error bars in subsequent figures.
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If we use an unbalanced MZM as input configuration, we find a value for the NMSE =
0.0194 ± 0.0047 for the testing set. If we consider a balanced MZM as input configuration, we
find an NMSE = 0.134 ± 0.044. Both results are in agreement with typical NMSE values found
in literature [26,36], however, it is also immediately clear that the unbalanced MZM outperforms
the balanced MZM as input configuration. Our conjecture is that this difference is due to the
fact that the unbalanced MZM inherently modulates the injected signal Einj(t) both in amplitude
and phase, whereas the balanced MZM is not performing any phase modulation. To investigate
this, we consider the input configuration of Fig. 2(b), an unbalanced MZM combined with a
PM. We alter no parameters with regards to the MZM, but now have complete freedom over
the modulation in phase. Our results are shown in Fig. 3, where we show the NMSE versus
the total range of the phase modulator signal ∆BPM for different input configurations. In this
figure, we have indicated the performance of the balanced and unbalanced MZM (without PM)
as horizontal lines. For the balanced MZM combined with a PM, we have made the distinction
between a case where we reuse the mask of the MZM for the PM, shown in blue, and a case in
which we use a different mask for the PM and the MZM, shown in red. Note that we do not show
the performance of the unbalanced MZM combined with a phase modulator, as this configuration
can always be replaced by an equivalent balanced MZM combined with a phase modulator.

Fig. 3. NMSE in function of the total range ∆BPM of the phase modulator signal for
one-step ahead prediction of Santa Fe data.

We observe for all input configurations with a PM that the NMSE initially decreases when
increasing ∆BPM , reaches an optimal point (lowest) and then again increases for larger ∆BPM .

When investigating the balanced MZM combined with a phase modulator, we observe no
significant difference in performance between using the same mask for the PM and the MZM or
opting for a different mask. Furthermore, we observe that the input configuration of a balanced
MZM combined with a phase modulator, with an identical mask, reaches around ∆BPM =

π
4 an

NMSE which is the same as the situation where we use only an unbalanced MZM. This can be
understood from the fact that the optical input signal Einj(t) is actually identical in both cases,
which can be verified by setting Eq. (6) equal to Eq. (4).

As we achieve a large improvement by adding a phase modulator, the question can be raised
whether an MZM is required at all to obtain good RC performance. Ultimately, this allows for a
simpler input configuration that only uses a phase modulator. We observe in Fig. 3 that the input
configuration where only a PM is used results in the best mean NMSE for the given reservoir.
We do, however, want to stress that the standard deviation error bars of this configuration overlap
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with the configuration of the balanced MZM combined with a phase modulator. Nonetheless, this
shows that by removing the MZM from the input configuration, and thus reducing the complexity
of the input system, a similarly good performance compared to input configurations with an
MZM can be achieved.

In Fig. 3, we observe that the lowest NMSE values occur for input configurations with PMs
around the broad range of ∆BPM =

π
2 to ∆BPM = π. Therefore, we achieve an improvement in the

performance within this large ∆BPM range. This optimal NMSE can be explained by two factors.
For small ∆BPM (around π

4 ), the system is limited by noise that obstructs the masked data, so that
it becomes difficult for the system to distinguish noise from different sublevel mask values. For
large ∆BPM , the phase modulated signal will stand to wrap on itself. Both of these phenomena
will have a negative effect on the achieved performance and explain the existence of the optimal
range in the modulator signal range ∆BPM . Note that it is possible to change some of the internal
parameters, such as e.g. the linewidth enhancement factor α or the injection frequency detuning.
However, we do not change these internal system parameters, as we are interested here in the
influence of the input configuration rather than in the influence of these internal parameters on
RC performance. Moreover, investigating the role of these internal parameters in detail would
require to scan a large multi-dimensional parameter space in order to find their optimal values,
which is outside of the scope of this paper. However, we have performed a quick scan (not shown)
with a small detuning of ∆ω = ±1GHz and found qualitatively the same results. Additionally,
we have redone the simulations for an α factor of 5, and also found a broad maximum in RC
performance around ∆BPM =

π
2 , which indicates that phase modulation remains important to

achieve optimum RC performance.

3.2. Effect of number of nodes

In the previous section, we have fixed the number of neurons N = 200. In this Section, we
investigate how far N can be reduced because of the better performance due to the inclusion of a
phase modulator in the input configuration.

In Fig. 4, the NMSE is shown in function of the amount of virtual nodes N for both the input
configuration with only a PM (in green) and the input configuration with the balanced MZM and
a phase modulator (with identical mask, in blue). Additionally, the NMSE in function of the
number of neurons for the unbalanced MZM is also shown (in orange). For clarity, the balanced
MZM is left out because of its poor performance. The total modulator range ∆BPM is kept fixed,
and corresponds to the minimum NMSE achieved in Fig. 3. Therefore, for the configuration with
only a phase modulator we have chosen ∆BPM = π and for the balanced MZM with PM, we use
∆BPM =

3π
4 .

We observe in Fig. 4 that for low N we find a poor performance, because of the high NMSE, for
all input configurations. The performance increases for increasing N for all input configurations,
until it eventually saturates. This is because, for large N, several nodes will become increasingly
correlated, thus resulting in a stagnating performance when increasing N. We observe that the
saturating point, where the NMSE remains approximately constant, can be found around N = 125
for the unbalanced MZM, while this is around N = 75 for the phase modulator. As a result, by
choosing a phase modulator at the input of the RC system, we can vastly reduce the amount of
virtual nodes and increase the data injection rate, while retaining the same NMSE. For example,
we achieve the same performance with a PM as input configuration for an RC system with N = 50
as an unbalanced MZM for an RC system with N = 125. This reduction in N improves the
computational performance, due to a lower computation time.
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Fig. 4. NMSE in function of the number of virtual nodes for one-step ahead prediction of
Santa Fe data.

3.3. Effect of node separation

In the previous results, we have fixed the node separation at 20 ps, as was done in Ref. [34].
Varying this value can give insight into which timescales are relevant in the RC system, which is
what we will study in this Section.

In Fig. 5, we show the NMSE as a function of the node separation θ for the unbalanced MZM
(in orange), for the balanced MZM combined with a PM (with identical mask, in blue) and for
the input configuration consisting of only a PM (in green). The values for ∆BPM of the PMs are
taken equal to the most optimal values found in Section 3.1, i.e. ∆BPM =

3π
4 for the balanced

MZM with a PM and ∆BPM = π for the PM only. For computational reasons, the amount of
neurons for all these cases has been kept constant at N = 50 nodes, so that θ is the only varying
parameter, with values scanned between 2.5 ps and 1 ns. This implies that we are probing both
the short timescales related to phase dynamics as well as long timescales related to relaxation
oscillations. We want to remark that the optimum node distance depends on the laser’s inherent
timescale and thus also on the laser parameters.

In Fig. 5, we observe a sharp decrease in the NMSE when increasing the node separation θ
for both the balanced MZM combined with a PM and for the PM only. This behaviour holds
until around θ = 25 ps. For the unbalanced MZM, there is a somewhat smaller decrease in the
NMSE. At θ = 25 ps, we find a global minimum for all three input configurations, after which the
NMSE increases with increasing θ. Additionally, we observe that for the PM and for the balanced
MZM combined with the PM configurations, we have similar NMSE values for θ below 100
ps. For θ above 100 ps, we observe that the performance of all configurations is different. For
node separations between 100 ps and 400 ps, we observe that the NMSE remains approximately
constant for the unbalanced MZM and the balanced MZM combined with a PM. For the input
configuration where we only use a PM, we observe that in this region the NMSE to some extent
slightly decreases, around 150 ps. For node separations higher than 400 ps, all three input
configurations show an increasing NMSE when increasing the node separation. Furthermore,
over nearly all values of θ, we observe a better performance for both the PM and balanced MZM
with a PM compared to the input configuration consisting of only an unbalanced MZM.

The global NMSE minimum in Fig. 5, occurs around the same value for all input configurations,
θ = 25 ps, indicating that the initial value of θ = 20 ps from Ref. [34], is well chosen for the RC
systems studied in this paper. This can be explained by the fact that this timescale corresponds to
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Fig. 5. NMSE in function of the node separation for one-step ahead prediction of Santa Fe
data.

the typical timescales of phase dynamics in this system [26]. The slight decrease around 150 ps
can be found for the input configuration consisting of only a PM, although this decrease is less
pronounced here. The corresponding timescale is around the same characteristic timescale of
that of relaxation oscillations (with typical frequencies of several GHz).

3.4. Memory capacity of PM input configurations

In Section 3.1, we have found that ∆BPM reaches an optimal value which results in the best
performance on the Santa Fe task. In this Section, we calculate the non-linear memory capacity
of different input configurations in order to quantify the memory of our reservoir system, which is
independent of any specific task and useful to better understand the performance differences. The
procedure for calculating the memory capacity is based on the techniques from Ref. [38]. One
injects discrete inputs uk, drawn from a uniform distribution between [−1,+1], into a reservoir
and trains the system to reconstruct a set of products of normalized Legendre polynomials via
l-delayed past inputs uk−l [37,38], which is limited in our work to l = 10.

Reproducing a certain target input ŷk by a set of Legendre polynomials Pdl (·), of degree dl,
from previous inputs is performed by

ŷ{dl }(k) =
∏︂

l
Pdl (uk−l) . (9)

The mean squared error between the signal calculated by the RC ŷ(k) and expected signal y(k)
over all input samples can be calculated. This value is then used for the definition of the memory
capacity, which is defined as

C = 1 −

⟨︁
(y − ŷ)2

⟩︁⟨︁
y2
⟩︁ , (10)

with values for C between 0 and 1 and where the average is taken over all input samples and
combinations of Legendre polynomials.

The sum of all memory capacities C, will result in the total computational capacity of the
system, CC. The theoretical upper limit of this total computational capacity in our system is
given by the amount of neurons N. In practice, we can only use a finite amount of input data,
due to computational reasons, which can potentially lead to overestimating the value for the
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memory capacity. To counter this effect, we utilise a threshold capacity Cthr so that values below
this threshold are not counted, as discussed in Ref. [38]. This is because memory capacities
below this number are not statistically relevant and are thus discarded. The value for this memory
capacity threshold is calculated by a generalised χ2.

Finally, to better understand the dependence of the results of Section 3.1 on ∆BPM , we calculate
the task independent memory capacities C of the various input configurations. We perform the
simulations for 25 virtual nodes, with a node separation θ = 20 ps on uniformly distributed data
with a size of T = 5 × 105 data points and values between −1 and 1. The threshold memory
capacity is approximately Cthr ≈ 2.7 × 10−4 for the configurations in this Section.

In Fig. 6, we show the memory capacity of the systems in function of ∆BPM . The memory
capacities are represented as coloured bars per degree. We have opted to only calculate the
memory capacity for the input configurations consisting of only a phase modulator, because it is
the simplest input configuration we considered that results in the best performance.

Fig. 6. Memory capacity per degree of linearly independent basis functions for input
configurations with only a PM.

In the same figure, we observe that the total memory capacity of the RC system combined with
a PM increases with increasing ∆BPM , up to ∆BPM =

3π
2 , after which it slightly decreases again

for larger ∆BPM . Nonetheless, there exists a broad region, situated at large ∆BPM values, for
which the total memory capacity remains fairly high and where it does not vary much with ∆BPM .
For small ∆BPM , we observe that the total memory capacity consists of mostly degree 1 and 2.
For larger ∆BPM , the larger degrees will become more important and have a larger contribution
to the total memory capacity. We also observe that for large ∆BPM , the memory capacity reaches
its largest value for degree 3 and decreases for larger degrees.

Furthermore, the highest memory capacities for degree 1 and 2 (i.e. linear and quadratic
capacities) are given by the phase modulators where ∆BPM = π and ∆BPM =

5π
4 . These values

for ∆BPM agree with the best performing ranges found in Fig. 3 for the Santa Fe task, so that the
systems with the highest linear and quadratic memory capacities result in the best NMSE for the
Santa Fe dataset. The fact that we reach an optimal value for the linear and quadratic memory
capacity for certain ∆BPM is because we can make the same argument as in Section 3.1.

For further studies, we hypothesise that for tasks which require large degrees of memory
capacities, and thus also large total memory capacities, setting ∆BPM =

3π
2 will result in the most

optimal performance.
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We remark that the theoretical total computational capacity is bounded above by the number
of nodes [38], which is in this case 25. The fact that we do not reach this upper limit can be
explained by correlations present between the nodes and by the existence of noise in the systems,
which effectively reduce the memory capacity of the system.

4. Conclusion

We have numerically investigated the effect of several input configurations used for optically
injecting data, with the goal of improving delay-based reservoir computing with semiconductor
lasers. We have found that using an unbalanced Mach-Zehnder modulator as input configuration
outperforms the balanced Mach-Zehnder modulator in the one-step ahead prediction Santa
Fe task. This performance difference can be explained due to the unbalanced Mach-Zehnder
modulator inherently modulating the injected signal both in amplitude and phase, whereas
the balanced Mach-Zehnder modulator is not performing any phase modulation. This has led
us to the investigation of using a phase modulator to inject the signal, which resulted in an
improved performance compared to the systems using a Mach-Zehnder modulator, and also
an improved performance compared to literature. We therefore conclude that modulating the
phase of the injected signal strongly increases the performance of optical reservoir computing.
As a result, we were able to drastically decrease the required amount of virtual nodes of our
reservoir computer, while retaining the same performance. For example, we could achieve the
same performance using a phase modulator combined with a reservoir computer with only 50
nodes when compared with an unbalanced Mach-Zehnder modulator combined with a reservoir
computer with 125 nodes. We conclude that using only a phase modulator, with well-adjusted
modulation amplitude, as input configuration is ideal for the one-step ahead prediction Santa
Fe task, both performance-wise as well as in simplicity for implementation. Ultimately, from
our results on the task-independent memory capacity we see that many non-linear capacities are
available which indicates that a phase modulator as input configuration will have a beneficial
effect on the performance for other tasks.
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