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Abstract We numerically show modulation format identification in the optical domain using Silicon-on-

Insulator-based Photonic-Integrated-Circuit (PIC) reservoir. We fabricate the reservoir’s building-blocks 

and use the experimental results to model the PIC layout. Identification of 32 GBd single-polarization 

signals of OOK, PAM4, BPSK and QPSK is successfully achieved. ©2022 The Author(s)

Introduction 

Reducing power consumption and latency 

represent essential requirements for optical 

networks in 5G and beyond. The recent 

advances in hardware-based artificial Neural 

Networks (NN) technologies provides promising 

energy-efficient solutions compared to the 

traditional computing approaches based on von 

Neumann architectures [1]. Reservoir computing 

presents an attractive low cost alternative to other 

NN architectures primarily due to the reduced 

complexity in the training of its weights [2-3]. 

To achieve a more efficient transmission, a 

better use of the existing infrastructure at any 

given moment and for any given throughput 

requirement, current optical networks employ 

different modulation formats. This approach 

creates the demand for devices which can 

identify the modulation format present in an 

optical link. Current solutions to this problem 

include expensive equipment on the receiver side 

which increase the complexity system [4]. Thus, 

both the capital expenditure and operational cost 

can scale up significantly. Furthermore, digital 

domain solutions for format identification [4-5] will 

suffer from scaling limitations of CMOS. 

However, photonic reservoirs have the 

potential of providing an all-optical solution and 

as such benefit from ultra-high processing 

speeds and parallelism compared to their 

electronic-domain counterparts [6-8]. Still better, 

realization of a photonic reservoir on standard 

planar waveguides such as Silicon-on-Insulator 

(SOI) is a promising approach due to its smaller 

footprint and the possibility to utilize the 

commercially available CMOS technologies. 

In this paper, we present a numerical analysis 

and evaluation of a photonic domain NN that is 

capable of identifying optical modulation formats. 

We exploit SOI waveguides on a PIC to realize 

the reservoir, and its building blocks have 

practical parameters obtained from AMO's 

nanophotonic SOI platform, available as foundry 

offering [9]. To train, validate and test our 

Modulation Format Identification (MFI) NN 

model, we use 32 GBd single-polarization data of 

four different modulation formats (i.e., On-Off 

Keying (OOK), 4-level Pulse-Amplitude 

 
Fig. 1: Depiction of the simulation setup showing: (a) the data generation stage for 4 different modulation formats, (b) a four-port 

16-node SOI-based photonic integrated circuit reservoir and (c) a multiclass classifier assisted readout layer. 
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Modulation (PAM4), Binary Phase-Shift Keying 

(BSPK), and Quadrature Phase-Shift Keying 

(QPSK)). 

Generation of Test Data 

Fig. 1(a) shows the implemented simulation 

setup of the transmitter using VPIphotonics 

Design Suite 11.1 [10]. The investigations were 

conducted for four different modulation formats 

(OOK, PAM4, BPSK and QPSK). For each 

modulation format, six different scenarios were 

simulated, namely; one back-to-back (b2b) 

scenario, four scenarios with different levels of 

Additive White Gaussian Noise (AWGN) and 

finally one scenario with a 20 km Standard 

Single-Mode fiber (SSMF), to allow the 

introduction of polarization mode dispersion and 

chromatic dispersion. The goal was to compare 

the accuracy of the format predictions under 

these different conditions. All the signals have a 

symbol rate of 32 GBd. For each format and 

scenario, 219 symbols were generated and 

transmitted, making the total number of symbols 

in the dataset around 12.6 million. The data 

collected after the links is what we consider as 

the actual input for our PIC-based SOI photonic 

reservoir for the MFI. At the input of the reservoir, 

the optical signals were normalized to have the 

same average power for each format and were 

split equally into all nodes. 

SOI-based Photonic Reservoir 

Reservoir networks are a type of recurrent 

network in which the signals from current and 

previous symbols mix together. Contrary to a 

recurrent NN, all connections inside the reservoir 

are fix. The intersymbol mixing is driven by delay 

lines which determine its timescale (typically on 

the order of symbol duration). 

We translated the logical layout sketched in 

Fig. 1(b) into a physical PIC layout. We fabricated 

and characterized its main components 

(waveguides and Multi-Mode Interferometer 

(MMI) splitters) and used these measurement 

results as inputs for a circuit level simulation of 

the PIC. The used architecture has a four-port 

topology as reported in Ref. [7], [12]. The 

computational structure of this topology has been 

shown to be capable of solving key known 

complex tasks including XOR calculation and 

header recognition [7-8], [11-12]. Each node in 

the reservoir was realized by a 3×3 MMI, and 

connected to four neighbouring MMIs via fixed-

delay waveguides. One of the remaining two 

ports of each MMI served as input whereas the 

last port was connected to the output of the 

reservoir as shown in Fig. 1(b). Note that for this 

particular task, we used a 16-node architecture 

(with 16 inputs and 16 outputs). The design was 

optimized for 1-channel signals with a center 

wavelength of 1550 nm and a symbol rate of 

32 GBd. We performed a parameter sweep of the 

delay lengths to optimize MFI performance, and 

the optimum length of the interconnecting 

waveguide between the MMIs was found to be 

3.68 mm (i.e., a group delay of 47 ps). The 

reservoir was implemented using the 

Photontorch photonic simulator developed at 

Ghent University [13]. 

Readout 

Fig.1(c) depicts the used electrical readout of our 

model, where optical signals are first translated 

into the electrical domain using photodiodes 

(PDs), subsequently linearly combined and 

weighted in the digital domain. Several 

approaches can be used to realize the readout 

[8], [11-12], [14]. For a practical implementation, 

that would require analog-to-digital converters, 

but for this numerical evaluations the data is 

already in the digital domain. This approach 

allows for a simplified prototyping with simpler 

optical components as also shown in [12]. The 

digital part can be trained by conventional 

methods such as offline computing, online 

evaluations using a Field Programmable Gate 

Array (FPGA), or using a specifically developed 

electrical circuit. The electrical data at the output 

of each PD was normalized, filtered by Finite 

Impulse Response (FIR) Low-Pass Filter (LPF) 

and down sampled to a single data point for every 

320 received symbols. Note that we intentionally 

identified the modulation formats at a rate of 

100 MHz. The resampled signals for all 16 

outputs were then sent to the NN designed as a 

multiclass classifier [15]. In this implementation, 

the multiclass classifier consisted of a hidden 

layer with 256 nodes and a sigmoid activation 

function, followed by the output layer with 4 

nodes and a Softmax function [15]. Each node in 

the output layer corresponded to one of the 

modulation formats to be identified, and the 

output with the largest value was taken as the 

actual prediction for the current input signal. 

Training of Classifier for MFI 

The training of our model was exclusively done 

on the multiclass classifier stage. The whole 

model was implemented combining the use of the 

Pytorch [16] and Scikit-learn frameworks [17]. 

A cross-validation scheme was used on the 

dataset with 10 stratified folds for each case. 

Each was divided into approximately 80% 

training, 10% validation and 10% testing subsets, 

while maintaining a balance of the classes 

throughout each partition. The training was 

arranged in up to 100 epochs for each fold, each 

using a batch size of 64 data points. To avoid 



overfitting and speed up the training, after the first 

50 epochs, we implemented early-stopping when 

there was no improvement for 10 consecutive 

epochs. Adam was chosen as the optimizer [18]. 

The cross-entropy loss was computed on the last 

layer and minimized during the training. Both 

learning rate and weight decay were set to 0.001.  

Results 

The average results over all 10 folds show that, 

independently from the scenario, the predictions 

in relation to the two amplitude modulation 

formats, OOK and PAM4, have a better precision 

compared to the phase modulated ones, BPSK 

and QPSK. Most of the incorrect predictions 

occur when a QPSK signal was incorrectly 

identified as BPSK, and vice versa. This can be 

clearly seen in Tab.1 and 2. 

When comparing the performance with 

AWGN present in the link, one can clearly see a 

trend, where a lower Optical Signal-to-Noise 

Ratio (OSNR) translates directly to a drop in the 

accuracy of the predictions. For this comparison, 

we trained our model independently with subsets 

of our data with different OSNR levels. One 

interesting result is that a certain level of 

dispersion and noise in the signals will improve 

the accuracy of the predictions. When dispersion 

occurs, consecutive symbols on the signal will 

begin to overlap and mix, also increasing the 

level of intersymbol interference inside the 

reservoir, which could be the reason for the 

increase in the performance. The results, which 

include the standard deviation of prediction 

accuracy across the 10 folds for the cross-

validation, are shown in Tab. 1. Lowering the 

cutoff frequency on the FIR filter inside the 

readout, which corresponds to a wider impulse 

response in time domain, resulted in an 

increased performance as shown in Fig. 2(a). 

The impact of the OSNR level on the accuracy of 

the prediction can be seen in Fig. 2(b). 

Conclusions 

In this paper, we have presented the accuracy of 

the predictions of a reservoir network regarding 

modulation format identification on optical 

telecommunication systems. We focus our 

analysis on signals with a symbol rate of 32 GBd. 

The network can correctly predict the modulation 

format of links using OOK, PAM4, BPSK and 

QPSK with very high accuracy. In future works, 

we plan to extend the amount of identifiable 

modulation formats, beyond this proof-of-concept 

approach, to include more widely utilized 

schemes with higher-order constellation that 

allow the transmission of more bits per symbol. 
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Fig. 2: (a) Prediction Accuracy vs cutoff frequency of the FIR 

filter on b2b. (b) Prediction Accuracy vs OSNR (in 0.1 nm). 

Each model was trained and tested with a different OSNR. 

 
Tab. 2: Confusion matrix of the model trained and tested 

using the back-to-back scenario. 

 

(a) (b) 

Tab. 1: Results for models trained and tested for different scenarios, averaged over all 10 folds. 

Link distortion OSNR 
Prediction Precision Prediction 

Accuracy 

Cross-Validation 
Standard 
Deviation OOK PAM4 BPSK QPSK 

Back-to-Back ideal 99.94% 100% 95.23% 95.97% 97.78% 0.787 

White Gaussian Noise 

32 dB 99.94% 100% 99.76% 98.05% 99.44% 0.322 

24 dB 99.94% 100% 95.48% 94.99% 97.60% 0.738 

16 dB 89.50% 100% 92.67% 87.73% 92.48% 0.404 

8 dB 93.35% 97.68% 73.87% 60.38% 81.32% 7.680 

Polarization Mode and Chromatic Dispersion ideal 99.88% 100% 97.74% 97.25% 98.72% 0.395 
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