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ABSTRACT

Photonic reservoir computing is a neuromorphic computing framework which has been successfully used for
solving various difficult and time-consuming problems. Due to its photonic nature, it offers many potential
advantages such as a low-power consumption and fast processing speed. In this work, we aim to improve an
already well-established design of a passive spatially distributed photonic reservoir computer, consisting of a
network of waveguides connected via optical splitters and combiners. This spatially distributed architecture1 has
shown good performance on a 5-bit header recognition and an isolated spoken digit recognition task. However,
this design only incorporates its nonlinearity at the photodiode in its read-out layer and is susceptible to losses
within the network. Inspired by the delay-based approach to implement reservoir computing, we opt here for
adding extra nonlinearity into the system to increase its nonlinear computational capacity. This is achieved by
adding a single semiconductor laser as active component in an external optical delay line: light from the spatial
reservoir is injected in a laser, and the optical output of the laser is then fed back to an input port of the spatial
reservoir. Based on numerical simulations, we show that the nonlinear computational capacity is significantly
increased by adding the feedback loop. This ultimately confirms that adding the active component can be useful
for solving more complex tasks.

Keywords: delay-based reservoir computing, spatially distributed reservoir computing, temporally distributed
reservoir computing, semiconductor laser, feedback

1. INTRODUCTION

Over the last years there has been a growing interest and demand in machine learning and neuromorphic com-
puting, indicated by the recent success of ChatGPT. The training of such artificial neural networks is typically
performed digitally by von Neumann architectures. However, most machine learning models contain many param-
eters which need to be individually optimized, resulting in a large training time and energy usage. Consequently,
various platforms are being investigated as potential substitutes for the current digital machine implementations.
Photonic implementations of artificial neural networks emerge as one such alternative. This interest is driven by
their potential to boost computing velocity, enhance power efficiency, and leverage the inherent high parallelism
offered by photonics.2–6

An example of this type of photonic neuromorphic architecture is given by photonic reservoir computing (RC).
Reservoir computing systems, which are a form of recurrent neural networks (RNNs), comprise three distinct
layers: an input layer, a reservoir, and an output layer (commonly known as the readout layer). The input layer
is being used for data injection into the reservoir, while predictions are generated in the output layer using the
input data. The reservoir contains many randomly interconnected nodes, and operates as a dynamic nonlinear
system. The connectivity weights within this reservoir remain constant and unchanged. The sole (linear) weights
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that are subject to training are present in the output layer, thus resulting in a substantial reduction in the overall
training duration of RC when compared with conventional RNNs.

In this work, we study the computational capabilities of a spatially distributed photonic network, which can be
realized through an integrated approach utilizing passive optical components as its physical nodes. We specifically
employ the passive spatially distributed network, known as the four-port architecture (FPA), as introduced
in Ref.7 Although the reservoir within this network remains entirely passive, some degree of nonlinearity is
introduced into the reservoir computing (RC) system through the input layer8 and/or through the readout layer.
These networks have exhibited promising performance across various tasks.1,7, 9–11 However, the nonlinearities
inherent in such networks may be insufficient for certain challenging tasks, resulting in suboptimal performance.12

We investigate the incorporation of a single nonlinear component inside the reservoir to add extra nonlinearity
in the form of a single semiconductor laser (SL). This extra component can provide extra power and counter
losses which occur within the network.

2. NUMERICAL IMPLEMENTATIONS

2.1 Four-port architecture

In this study, our focus is on the passive reservoir computing architecture initially introduced in Ref.1 and
subsequently improved in Ref.7 , termed the four-port architecture (FPA). This architecture operates as a
linear photonic network functioning as a multipath interferometer, comprising 16 nodes arranged in a 4×4 grid.
These nodes distribute their input signals evenly across three output ports. Each node is interconnected with
its neighboring nodes via multiple waveguides. Specifically, every node receives input from two adjacent nodes
and transmits its signal to two other adjacent nodes. The two remaining ports of each node serve for data input
and detection. The optical power at each computing node, denoted as nodei, is measured across all output ports
using photodetectors, forming the basis for calculating weights wi.

The discrete input data samples, denoted as uk, are injected using a sample-and-hold method, yielding an
input data stream, u(t). This stream is characterized by being piecewise constant, with each segment stretched
over a constant duration termed τM . A key parameter of this architecture is the length of the waveguides
connecting two MMI couplers. This length determines an internal delay time, denoted as τC , between nodes
within the architecture, along with a phase resulting from propagation. Therefore, the ratio τC

τM
holds significance

as an important parameter for the architectures containing an FPA.

2.2 Four-port architecture with a semiconductor laser in the external delay line

We now combine the FPA with a single-mode SL in an external optical delay line. This architecture is shown in
Fig. 1 and which we refer to as the FPA+SL. The standard input port is arbitrarily chosen to be port 1, with
the remaining input ports of the architecture left unused. Regarding the output ports, one port is linked to an
external optical delay line, rendering the output of one node inaccessible for the readout layer, which we refer
to as the feedback port. The remaining 15 nodes are each connected to photodetectors, with signals from these
detectors, denoted as nodei in Fig. 1, utilized to construct the readout layer and compute linear weights (wi)
during both training and testing on unseen data.

The optical signal from the feedback port is fed into a single-mode SL using an external delay line. Subse-
quently, the emitted field from the SL is coupled back to the 2×1 MMI coupler, which, in turn, connects to input
port 1 of the FPA, thus completing the feedback loop.

In this study, the external delay time (τD) of the delay line from the FPA to the laser is fixed to τD = 5ps.
Moreover, the waveguide lengths between the MZM and the 2×1 MMI coupler, as well as between the 2×1 MMI
coupler and FPA, are both set to zero in our simulations to exclude any additional timing effects. This decision
is made because such delays can be encompassed within the values of τC or τD.

For our simulations, we typically set τM to 30 picoseconds, unless specified otherwise, as this timeframe has
been shown to yield the highest memory capacity13,14 for delay-based reservoir computing when employing an
SL. The dynamics of the single-mode laser are governed using the rate equations from Ref.15
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Figure 1. Illustration of the FPA+SL.

3. NUMERICAL RESULTS

We have opted to examine a task-independent metric of computational capability aimed to examine the nonlin-
earity of a system. Using numerical simulations, we calculate both the linear and nonlinear memory capacities
of the FPA and the FPA+SL configurations.

We vary the internal delay time τC and the input segment duration τM through scanning. We employ input
port 1 for data injection and as feedback port selection, we opt for output port 1. This allows for the introduction
of nonlinearity early in the architecture, minimizing losses from propagation. Alternative feedback port selections
may yield different outcomes in calculated memory capacity, but such considerations lie beyond the scope of this
study. We calculate the memory capacity using the techniques from Ref.16

In Fig. 2(a)-(e), we depict the memory capacity for the initial five degrees, and the total memory capacity up
to the fifth degree for the FPA in Fig. 2(f). In Fig. 2(a), we note that the linear memory capacity (i.e. degree 1,
Cd=1) peaks when the internal delay time τC is equal to the input segment duration τM , i.e. τC = τM . For the
second degree, Cd=2, illustrated in Fig. 2(b), we note the highest memory capacities when τC ⪅ τM . This trend
persists for the third degree, Cd=3, shown in Fig. 2(c), although the region of high memory capacity is in that
case limited to 2τC ⪅ τM . For the fourth and fifth degrees, Cd=4 and Cd=5, shown in Fig. 2(d) and Fig. 2(e), we
observe negligible memory capacities. The total memory capacity, shown in Fig. 2(f), shows a nearly uniform
distribution.

We now compare the memory capacity of the FPA with the memory capacity of the FPA+SL. In Fig. 3,
we show the memory capacity up to the fifth degree for the FPA+SL. For the linear memory capacity, Cd=1,
depicted in Fig. 3(a), we observe the largest memory capacity when the internal delay time τC is equal to the
input segment duration τM , i.e. τC = τM . For the second degree, Cd=2, depicted in Fig. 3(b), we note the highest
memory capacities when τC ⪅ τM . We also observe a region where the quadratic memory capacity decreases, at
τC = 5ps for τM ⪆ 40 ps. The region of high cubic memory capacity, Cd=3, shown in Fig. 3(c), is found around
2τC ⪅ τM (as was the case for the FPA). For the fourth and fifth memory capacity degrees, Cd=4 and Cd=5,
shown in Fig. 3(d) and 3(e), we observe a region where these higher order memory capacities are not negligible,
as opposed to the FPA. The total memory capacity, shown in Fig. 3(f), shows again a nearly uniform distribution
over all τC and τM ranges, except for τC > τM .
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Figure 2. Memory capacity per degree for the FPA (a)-(e), and the total memory capacity (f). The internal delay time
τC and input segment duration τM are varied.
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Figure 3. Memory capacity per degree for the FPA+SL (a)-(e), and the total memory capacity (f). The internal delay
time τC and input segment duration τM are varied, with the external delay time fixed to τD = 5ps. The injection rate is
fixed to µ = 100

√
10 s−1.

4. CONCLUSION

We have numerically investigated the impact of integrating a single-mode semiconductor laser to a passive
spatially distributed reservoir computing system. By incorporating just a single nonlinear element into the
network, we can achieve increased nonlinearity within the reservoir. This increased nonlinearity suggests that
the new configuration will have better task-solving capabilities and yield improved computational performance,
particularly when a more intricate nonlinearity is necessitated for handling more complex benchmark tasks.
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