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Imaging flow cytometry (IFC) is a powerful analytical
technique used for rapidly categorizing small cells and
micro-particles. Unlike traditional microscopy, IFC in-
struments handle a high throughput of cells. Typically,
photodetectors, photomultiplier tubes, or high-speed
frame-based cameras are employed for this task. This
study explores the potential of neuromorphic cameras,
also known as event-based sensors (EVS), as a detec-
tion mechanism for cytometers. While previous work
focused on PMMA microparticles, this investigation cen-
ters on fungal cells. Moreover, while earlier research
leaned towards supervised learning algorithms like lo-
gistic regression and spiking neural networks, our ap-
proach in this paper employs k-means, an unsupervised
learning paradigm. We demonstrate that training such
a simple algorithm in conjunction with PCA achieves
100% classification accuracy without relying on training
labels.

1. INTRODUCTION

Flow cytometry, a technology focused on discerning cell or mi-
croparticle populations within a fluid, holds relevance across
diverse domains including medicine, cosmetics, and environ-
mental engineering [1]. Precision is paramount across these
fields, necessitating highly accurate classification devices. To
address this need for a broad spectrum of cells and particles, we
integrate a novel imaging sensor—referred to as an event-based
camera —with unsupervised learning techniques (specifically
k-means) alongside principal component analysis (PCA) for di-
mensionality reduction.

The rest of this paper is structured as follows.

• In section 2, we explore the theory underlying the event-
based sensor employed in our study.
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• Section 3 elucidates the operational principles of k-means,
the unsupervised learning technique utilized in our re-
search, alongside principal component analysis, employed
as a pre-processing step for dimensionality reduction.

• In sections 4 and 5, we present both fungal cells and PMMA
samples separately, each serving distinct purposes in flow
cytometry applications.

• Section 6 outlines the optical setup utilized in our study,
detailing various components.

• Section 7 showcases the results derived from the application
of k-means for clustering fungal cells and PMMA micropar-
ticles.

• Finally, section 8 concludes the paper, highlighting avenues
for future research.

2. EVENT-BASED VISION

Event-based cameras, unlike traditional ones, do not capture
consecutive static images at fixed rates [2]. Introduced by [3],
these cameras use dynamic vision sensors with pixels reacting
independently to scene changes. Each pixel triggers an event
when light intensity exceeds a set threshold (see Figure 1). Ad-
justing this threshold is crucial; too low captures unwanted
background events, while too high misses targeted events. For
our application, it must be high enough to avoid laser speckle
noise yet sensitive to passing particle diffraction patterns.

3. UNSUPERVISED LEARNING

As the name suggests, unsupervised learning is the approach
of training a machine to perform a task without any sort of su-
pervision. This means that, in contrast to supervised learning
paradigms, no labels are provided during the training phase
of the model development [4]. In this regard, researchers uti-
lize what is known as clustering methods, which is basically
classification without relying on training labels. Several clus-
tering algorithms exist such as k-means, hierarchical clustering,
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Fig. 1. Illustration of the working principle of an event-based
pixel. The intensity of the light is sampled by the camera, and
an event is fired whenever the intensity exceeds by a certain
value. Based on whether there is an increase or a decrease in
the intensity, a positive or a negative signal is recorded.

density-based clustering non-parametric algorithm (DBSCAN),
Gaussian mixture models (GMM), self-organizing maps,.. .

In the context of this research, we focused on basic clustering
algorithms starting with k-means[5]. To illustrate the idea be-
hind it, consider the training points in figure 2. In this figure, the
objective is to divide the points into clusters. The approach is to
partition the data space in such a way that data points within
the same cluster are as similar as possible (intra-class similarity),
while ensuring that data points from different clusters are as
dissimilar as possible (inter-class similarity) [6].

Fig. 2. Illustration of k-means. Two different clusters are
shown. The goal is to minimize distances between samples
in the same cluster and maximize the distances between dif-
ferent classes. K-means achieves this iteratively by choosing
centroids and assigning samples to different classes.

In k-means, every cluster is represented by its centroid, i.e.
the arithmetic mean of the data points assigned to that cluster.
While a centroid denotes the center of the cluster (the mean),
it doesn’t have to be an actual member of the dataset. The al-
gorithm iterates until each data point is closer to its cluster’s
centroid than to any other centroids, progressively minimizing
intra-cluster distance [7]. K-means starts by selecting initial cen-
troids arbitrarily and then iteratively adjusts them to converge
on a final clustering of the data points:

• Initially, the algorithm randomly picks centroids for each
cluster. For instance, with a "k" of 3, it selects 3 centroids

randomly.

• K-means assigns each data point to the nearest centroid,
effectively grouping them based on proximity.

• It recalculates centroids by averaging the points in each clus-
ter, reducing intra-cluster variance. Since centroids change,
points are reassigned to the nearest centroid.

• This process repeats until the total distance between data
points and their respective centroids is minimized, reaching
a maximum iteration limit, or when centroids no longer
change.

Applying k-means in a high dimensional space could be
challenging specially since k-means utilizes euclidean distances
which works best on lower dimensional features. Therefore,
Principal Component Analysis (PCA) was applied to reduce
the dimensionality of the data. Its purpose is to map high-
dimensional datasets into a lower dimensions, all the while
preserving crucial patterns and trends [8].

Reducing variables in a dataset inevitably compromises accu-
racy, but the essence of dimensionality reduction lies in trading
precision for simplicity. Shrinking data makes exploration and
visualization easier, benefiting subsequent stages in the pipeline,
which is k-means clustering in our case [9].

4. PMMA MICRO-PARTICLES

In our research, we initially utilized transparent PMMA (Poly-
methyl-methacrylate) microparticles spanning sizes from 2 µm
to 20 µm from PolyAn GmbH [10]. These particles align with the
size range of micro-plastics, offering an optimal testing ground
for evaluating the viability of our system for this intriguing
application.

5. BIOLOGICAL FUNGAL CELLS

We also considered experiments using fungal cells as an alter-
native to artificial PMMA spherical beads. These cells possess
more complex shapes, presenting greater challenges for the de-
veloped machine learning algorithms. The following species of
fungal cells have been employed, as depicted in Figures 3 and
4 in their respective dishes and individual cell forms under the
optical microscope:

• Aspergillus niger (commonly known as black mold)

• Yarrowia lipolytica (a yeast used in industrial microbiology)

Both microorganisms are safe and straightforward to handle,
requiring no specialized equipment. They were provided by
CERTH (Center for Research and Technology Hellas [11]).

Fig. 3. Yarrowia lipolytica
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Fig. 4. Aspergillus niger

6. OPTICAL SETUP

The experimental setup is similar to that in [12]. It comprises a
laser source that emits light with a wavelength of 632.8 nm. The
light passes through a lens and a 25 µm pinhole before being
focused onto a PMMA microfluidic channel.

The microfluidic channel utilized is from Chipshop (Fluidic
156) and is a straight-channel chip integrating four parallel chan-
nels where only one channel is used. The channel dimensions
are 200 µm × 200 µm × 58.5 mm.

The channel allows the flowing of microparticles and bio-
logical fungal cells, which are pumped using a manual syringe
pump connected to the upper port, while a liquid reservoir is
connected to the other port, as shown in figure 5.

Fig. 5. The experimental setup built to generate the training
and test datasets. Light coming from a 632.8 nm He-Ne laser is
focused by a lens on a 25 µm pinhole. Behind the pinhole is a
vertically-mounted PMMA microfluidic channel inside which
microparticles are flowing downwards. The diffraction pattern
caused by a flowing particle is captured by the event-based
camera. The camera is connected to a laptop with dedicated
software for recording the events fired at different pixels.

7. RESULTS

In this section we discuss the results obtained from applying
k-means clustering on different tasks. The first task concerned
measuring with the two classes of biological samples presented
in Section 5 which are Yarrowia lipolytica and Aspergillus niger.
We pumped the cells into the microfluidic channel and recorded
the corresponding spikes generated by the event sensor over
multiple measurement sessions. We followed a so-called inter-
twined measurement approach, with the goal to make sure that
variations in the measurement conditions do not bias the ma-
chine learning algorithm. Therefore, the train dataset comes
from three different sessions and the samples in testing dataset
come from a fourth session. Those sessions were conducted
at different times, thereby making sure that the measurement
bias has minimal effect on the training. Histogram features
were generated from the event data generated by the Inivation
event-based camera citeinivation. This sensor has dimensions
of 640X480 which results in a total number of features of 3,072

after downsampling by a factor of 10. We reduced the dataset
to 1D, 2D and 3D spaces respectively. Figure 6 shows the re-
sults obtained for the fungal dataset after applying k-means on
those lower dimensional spaces. As illustrated, the clusters were
successfully recovered resulting in 100% accuracy. This shows
that one can directly utilize our system even with cells that have
unknown labels and accurately identify their groups.

Fig. 6. Fungal cell testing dataset post k-means clustering,
with Principal Component Analysis (PCA) reducing the
dataset to 1D, 2D, and 3D spaces. Top to bottom: 1D, 2D,
and 3D representations reveal accurately recognized clusters,
achieving 100% accuracy without requiring training labels.

The task with microparticles instead of biological cells on
the other hand was more challenging to solve. Figure 7 shows
the samples from the original dataset after reducing them using
PCA, similar to what has been done on the fungal cells dataset.
As shown, the classes overlap significantly. This leads to k-
means performing wrong assignments for a large number of
samples as shown in figure 8.
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Fig. 7. True class labels for the original training dataset of
event-based PMMA microparticles reduced to 2D prior to
clustering. The significant overlap of clusters presents a chal-
lenging task for k-means clustering.

Fig. 8. Predicted classes labels after applying k-means cluster-
ing to the event-based PMMA microparticles training dataset.
Unlike the biological cells task, the k-means approach failed to
accurately reconstruct the clusters present in the training set
for this particular task.

8. CONCLUSION

In conclusion, we explored various methods for classifying and
clustering event-based datasets involving micro-particles and
fungal cells. Unsupervised methods like k-means clustering and
principal component analysis (PCA) demonstrated effectiveness
only with fungal cells, but achieving 100% accuracy, due to the
large difference in shape.
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