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Emergent Self-Adaptation in an Integrated Photonic Neural
Network for Backpropagation-Free Learning

Alessio Lugnan,* Samarth Aggarwal, Frank Brückerhoff-Plückelmann, C. David Wright,
Wolfram H. P. Pernice, Harish Bhaskaran, and Peter Bienstman*

Plastic self-adaptation, nonlinear recurrent dynamics and multi-scale memory
are desired features in hardware implementations of neural networks,
because they enable them to learn, adapt, and process information similarly
to the way biological brains do. In this work, these properties occurring in
arrays of photonic neurons are experimentally demonstrated. Importantly, this
is realized autonomously in an emergent fashion, without the need for an
external controller setting weights and without explicit feedback of a global
reward signal. Using a hierarchy of such arrays coupled to a
backpropagation-free training algorithm based on simple logistic regression, a
performance of 98.2% is achieved on the MNIST task, a popular benchmark
task looking at classification of written digits. The plastic nodes consist of
silicon photonics microring resonators covered by a patch of phase-change
material that implements nonvolatile memory. The system is compact, robust,
and straightforward to scale up through the use of multiple wavelengths.
Moreover, it constitutes a unique platform to test and efficiently implement
biologically plausible learning schemes at a high processing speed.
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1. Introduction

In recent years, computational power and
applicability of artificial neural networks
(ANNs) have grown rapidly, to the point
that this technology is taking a more
and more important role in many dif-
ferent fields and aspects of society.[1,2]

However, the mainstream approach of sim-
ulating ANNs in software is highly ineffi-
cient because of the large number of par-
allel operations required for inference and
training.[3–5] On the other hand, biological
brains show us that more versatile, more
powerful and continuously learning neural
networks exist that are extremely energy ef-
ficient. Still, there are many unknowns re-
garding the mechanisms of learning and
memorizing in our brain, and today’s ANN
models are based on an extremely simpli-
fied abstraction of the brain’s behavior.[6]

An example of a research path striving to correct this mismatch
is the search for biologically plausible learning rules.[6–11] This
search mainly originates from the evidence that backpropagation
(BP), the pillar of conventional training approaches, is not likely
to happen in biological neural networks. Therefore, researchers
in the field are looking for biologically plausible learning mecha-
nisms to obtain powerful and efficient ANNs. In particular, plas-
tic self-adaptation is a central property in this regard, as it is con-
sidered to be the main enabling mechanism behind memory and
learning in biological brains.[12] We consider a network “plastic”
when the response of its components (nodes, connections) to
their input depends on the history of this input, in a non-volatile
way w.r.t. the relevant timescales. Importantly, thanks to plastic
self-adaptation, a suitably designed physical neural network can
learn to perform useful functions just by plastically adapting to
its inputs in an autonomous way, without the need for an external
controller setting the plastic weights. Although there are still no
powerful training algorithms nor ANN architectures able to fully
achieve this brain-like type of learning on hardware, we agree that
plasticity-based learning and self-adaptation is very likely to play
a fundamental role in future development of large-scale neuro-
morphic hardware. In fact, intense research effort is being spent
both to achieve it in ANNs[13] and, in parallel, to better under-
stand related mechanisms in biological neural networks.[6,9]

An attractive feature of such self-adaptation is that it could
alleviate a major scalability issue in hardware implementations
of ANNs. Indeed, current state-of-the-art training approaches
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require full and precise tuning of network parameters and
observability of internal states (as it is demanded by BP and gra-
dient descent). In hardware implementations this implies access
to the internal components of an ANN through physical connec-
tions and control devices, making it extremely hard to actually
scale these systems up to numbers of synapses and neurons
comparable to the ones in biological brains. However, learning
by plastic self-adaptation would remove this limitation, since the
network connections would be used at the same time both to
process input information and to train the network parameters.

In this work we provide a key step forward in development of
autonomous self-adapting neuromorphic computing, by exper-
imentally realizing for the first time a scalable hardware ANN
whose physical nodes exhibit both volatile memory (short-term
plasticity) and non-volatile memory (long-term plasticity), provid-
ing at the same time high computing power and the possibility
of efficient training through self-adaptation. Importantly, the net-
work’s plastic behavior is fully emergent in the sense that it does
not rely on an external controller updating the synaptic weights,
or on a global reward signal that is explicitly fed back into the
network. Our system is implemented in silicon photonics,[14] a
compact and industry compatible technology to create chip-based
optical networks. In order to realize the plasticity, we use phase
change materials (PCMs), whose properties can be modified in a
nonvolatile way using optical pulses.

Compared with electronics-based or other neuromorphic com-
puting platforms,[15–17] photonics offers unique advantages in
terms of parallelism, energy efficiency, latency and bandwidth of
interconnects.[13,18,19] These are particularly relevant for the de-
velopment of large-scale hardware ANNs, which comprise a huge
number of parallel weighted connections (synapses). Such advan-
tages ultimately arise from the intrinsic difference in the physics
behind signal propagation: differently from current-based sig-
nals conveyed by an electronic connection, photons traveling
through a dielectric medium do not directly interact with each
other. This enables the transmission of multiple signals in paral-
lel through the same channel by using light of different wave-
lengths (i.e., WDM, short for “wavelength division multiplex-
ing”). This can happen at high speeds and with low energy loss.
On the other hand, for the very same reason, nonlinearity and
memory have been notoriously difficult to implement efficiently
in photonics.

Recently, however, phase change materials (PCMs) have been
shown to introduce all optical non-volatile memory, and thus
physical plasticity, into integrated photonics with relatively high
energy efficiency and speed.[20,21] In particular, chalcogenide al-
loys such as GST (short for Ge2Sb2Te5) can be deposited in thin
films on top of integrated photonic waveguides, whose optical
absorption and refractive index depend significantly on the PCM
memory state, which is in turn determined by how much of the
PCM is in the amorphous state or in the crystalline state. Specifi-
cally, infrared light absorption by crystalline GST is much higher
compared to amorphous GST. Importantly, powerful enough op-
tical pulses traveling through the waveguide can quickly heat and
melt the PCM layer, whose final non-volatile state will depend
on how fast the optical heating decays: slow cooling allows the
melted PCM to crystallize, while fast cooling leaves it in the amor-
phous state. Typical optical pulses used for memory switching
have peak powers of a few tens of milliwatts and durations of

tens to hundreds of nanoseconds. In this work, we employ GST
layers to introduce all-optical cascadable memory, and thus long-
term plasticity, in an integrated photonic ANN.

Although photonics and PCMs have been used to build neu-
romorphic systems before, they mainly rely on an external con-
trol scheme that explicitly sets the weights. As such, they can
be described only as plastic in the very narrow sense that they
can be changed, but they lack autonomous emergent behav-
ior. Moreover, current state-of-the-art approaches still have some
additional drawbacks. Indeed, the difficulty of fabricating effi-
cient and cascadable nonlinear nodes is still a major impedi-
ment to the scalability of neuromorphic photonics systems.[18]

This challenge has been tackled, for instance, by employing all-
optical PCM switching in order to obtain a threshold-like nonlin-
earity on optical input pulses at different wavelengths.[21] How-
ever, this approach requires separate optical pulse generation
for the input and output of a neuron, and a dedicated oper-
ation cycle to reset the PCM state after a neuron activation,
making the employment of many cascaded neurons challeng-
ing in practice. In contrast, in this article we present a fully au-
tonomous recurrent neural network capable of processing se-
quential data, whose nodes concurrently provide nonlinearity,
multi-scale volatile memory and plastic self-adaptation. Another
popular approach to build artificial neurons is exploiting the non-
linearity arising from converting optical signals into electric ones
by means of a photodetector.[22–24] In order to cascade multiple
neurons of this type, the signal can be reconverted to the optical
domain by means of a modulator. Nevertheless, this approach
presents evident scalability issues, such as a relatively large neu-
ron footprint, high complexity and copious metal wiring. More-
over, similarly to the aforementioned approach based on PCM,
every neuron layer requires two dedicated optical input channels.
Furthermore, an important general challenge is to cascade mul-
tiple neuron layers in a photonic integrated ANN, which can be
trained in situ and online.[25] Indeed, state-of-the-art efforts to-
ward this direction managed to deploy only a quite limited num-
ber of neurons and layers.[26,27] Again, as mentioned before, in
these artificial photonic neurons, autonomously emerging plas-
ticity is hardly ever considered, especially in the context of scal-
able networks. Even outside the field of photonics, e.g., consid-
ering the more mature electronics-based neuromorphic hard-
ware, most experimental works about self-adaptive neuromor-
phic computing are still about single components (such as an
artificial neuron or a synapse) rather than full ANNs.[13] Still, self-
adaptation is considered to be an essential challenge and oppor-
tunity for future research.

In this work, we present an experimental realization of plas-
tic photonic neurons in scalable arrays. We combine for the first
time the volatile nonlinear dynamics of silicon microring res-
onators (MRRs) and the non-volatile memory provided by PCM
cells, in order to create an autonomously self-adapting dynam-
ical system. In addition, we pair this with a novel cascaded ar-
chitecture based on simple linear regression, where the most
promising plastic adaptations are selected and combined. The
training is backpropagation-free and vastly simplified compared
to, e.g., backpropagation in deep neural networks. Moreover, the
system naturally lends itself to WDM exploitation, such that the
cascading does not come at the expense of on-chip footprint. Im-
portantly, the proposed neuromorphic hardware can be trained
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and used as a testing platform for biologically compatible train-
ing procedures based on plastic self-adaptation and recurrent dy-
namics, as we discuss later on. As a test for its learning and in-
ference capabilities, we show that the system, combined with a
novel backpropagation-free training scheme, achieves a particu-
larly good accuracy of 98.2% on the MNIST[28] task, a popular
benchmark task looking at classification of written digits.

In Section 2, we introduce the proposed type of integrated pho-
tonic network and its main properties. In Section 3, we then
present an investigation on the emergent network plasticity prop-
erties for a highly nonlinear time series classification task, us-
ing purposely constructed pulse sequences to trigger plasticity.
In Section 3, building on this knowledge, we subsequently in-
troduce a hierarchical network architecture continuously operat-
ing in the plastic regime without requiring specially constructed
training sequences. This is coupled to a simple BP-free learning
scheme that amplifies the most promising autonomously emerg-
ing plastic adaptations. As an example application, we show that
the network response can be used to achieve high accuracy of
98.2% on the popular MNIST benchmark task. In the Discus-
sion section, we explore the scalability of the proposed hardware
neuromorphic platform and the relation to existent biologically
plausible algorithms, like FF (Forward–Forward) and DFA (Di-
rect Feedback Alignment). The Supporting Information contains
further material regarding the single building block (MRR), the
investigation of the plasticity property and our machine learn-
ing approach.

2. A Scalable Photonic Recurrent Neural Network
with Emergent Synaptic Plasticity

We present a compact and simple (in terms of design and fabri-
cation) integrated photonic circuit that mimics several key prop-
erties of biological neural networks. We now explain its main op-
erational characteristics, arising from a balance between volatile
and non-volatile all-optical nonlinear memory. The system takes
as input and returns as output multiple time-dependent optical
signals. If the input power is high enough (over the nonlinear-
ity threshold but below the plasticity threshold, see Figure 1a), the
corresponding outputs consist of nonlinear transformations with
memory (here also referred to as representations) of the input, re-
sulting from complex multiphysics dynamics occurring in our
photonic network. Such a network activity does not modify the
behavior of the nodes in a persistent way. However, increasing
the power above the plasticity threshold, results in nonvolatile
changes of the network response, that persist when the power
is decreased again below the plasticity threshold. Important to
realize is that the exact plastic changes depend on the time evo-
lution of the light intensities inside the different nodes. These
in turn depend in a nontrivial way on the input sequence sent
into the system, which is subject to all the nonlinear resonances
inside the MRRs. As such, we have created a system that can au-
tonomously modify its behavior in an emergent fashion based
on the inputs it receives, and is able to encode this in long-term
memory. This way, as we will demonstrate in Section 3, multiple
and diverse permanent network modifications can be obtained
by means of different input signals.

Additionally, our photonic neural network can take in several
time-dependent inputs with different optical wavelengths at the

same time (WDM), at each physical port, while producing as
many output signals at each output port. This greatly increases
the network computational power and throughput. Conveniently,
in the same circuit and depending on the employed wavelength,
different wavelengths can either be coupled together by the pho-
tonic neurons, so as to expand the effective network dimension,
or they can be processed separately and concurrently by differ-
ent subnetworks (consisting of disjoint sets of neurons) forming
spontaneously, so as to carry out multiple tasks at the same time.
In the rest of this section we will go into more technical details
in order to explain how the described network properties arise.

The building blocks of the neuromorphic hardware are
simple, compact and mature photonic devices, namely silicon
microring resonators (MRRs),[29] which we drive into a non-
linear regime in order to achieve cascadable nonlinear nodes
with multi-scale volatile memory.[30–32] To do so, we exploit the
competing effect of variations in temperature and free carrier
concentration (with timescales of respectively a few hundred
nanoseconds and a few nanoseconds) triggered by optical in-
put signals. At the same time, for the non-volatile memory,
we benefit from the power concentration and the enhanced
sensitivity to perturbations granted by the resonant behavior
of MRRs. This allows us to achieve a sufficient optical contrast
with relatively short PCM patches, thus obtaining more efficient
and faster memory operations.[33] That way, we can introduce
cascadable and efficient all-optical non-volatile memory nodes
into our photonic ANN. In the past, MRRs have been success-
fully employed to build synapses or neurons in neuromorphic
computing applications,[34] as well as integrated photonic PCM
devices.[21,35,36] In this work, we combine for the first time
nonlinear dynamics of silicon MRRs and non-volatile memory
provided by PCM cells, to build a hardware ANN with multiscale
volatile memory and emergent plasticity.

The network architecture we propose, which we call photonic
plastic recurrent resonator neural network (PPRRNN), is composed
of an arrangement of nonlinear nodes (bare silicon MRRs) and
plastic nodes (silicon MRRs with PCM, for details regarding this
single component see Sections S1, S2, and S4, Supporting In-
formation), that are coupled to a number of straight waveguides
(see e.g., Figure 1a,c). Laser light sent into any one of the dif-
ferent straight input waveguides will only couple significantly to
those rings along the light path that have a resonance close to
the wavelength of the laser. At the same time, these rings will
also act as connections to neighboring straight waveguides, set-
ting up a non-trivial interconnection topology that depends on
the wavelength, on the PCM states and, for high enough input
power, on the volatile nonlinear effects in silicon. Considering
for example a triangular PPRRNN (i.e., one in which the MRRs
linking straight waveguides form a triangular arrangement, as in
Figure 1b), measurements of spectra in the linear regime, i.e., for
low enough input power, show the overlapping of the resonance
dips of different MRRs (Figure 1b). Because of light interference,
nontrivial spectral features can arise from the coupling of multi-
ple MRRs.

Although the MRRs are designed to be identical, each one
shows a different resonance wavelength due to fabrication imper-
fections. While this often limits the scalability of systems based
on cascaded MRRs, all the demonstrated and proposed uses of
PPRRNNs in our article are not hindered by node variations due
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Figure 1. Photonic plastic recurrent resonator neural network (PPRRNN). a) Basic functionality of a PPRRNN. First row: a low-power input waveform
does not trigger nonlinear dynamics, thus resulting in a linear network response (no distortion on the output waveforms). Second row: a powerful
enough input waveform can excite nonlinear dynamics in the PPRRNN, so that different nonlinear representations of the input are obtained at different
output ports (and at different wavelengths). Third row: a further increase in input power can trigger non-volatile changes in the PPRRNN, due to PCM
switching. Forth row: setting the same input power as in the second row results in different output nonlinear representations because of the previous
non-volatile changes (see third row). These properties enable network training through plastic self-adaptation. b) Design of a triangular PPRRNN and
measured optical spectra at the indicated output ports, each corresponding to a low-power input inserted through the grating coupler to the left on
the same straight waveguide. The numbers indicate which nodes correspond to which resonant dips in the spectra. c) Possible light distribution in two
“virtual” networks occurring in a rectangular PPRRNN by exciting it with coherent light at two different wavelengths and at two different input ports. d)
Corresponding equivalent ANN schematic showing optical connections (grey) and recurrent connections associated with different nonlinear effects in
the network nodes excited by light propagation (see the legend).
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to fabrication errors, as we do not need to optimize parameters
before fabrication. In this particular chip, resonances are gen-
erally red-shifted as the MRR position is moved to the right or
upward, with a smaller random shift superimposed on top of this.
Thanks to this correspondence between MRR position in the spa-
tial and in frequency domain, significantly different input wave-
lengths (i.e., significantly larger than the MRR resonance width)
in a PPRRNN can be coupled to different groups of MRRs (see
an example in Figure 1c). Operationally, each group of coupled
MRRs corresponds to a different virtual network, which can op-
erate separately and in parallel if the corresponding input wave-
lengths are different enough. Exploiting this property, a PPRRNN
can be designed to host a few large networks comprising many
coupled MRRs, or many smaller networks that can work sepa-
rately and in parallel at different wavelengths, even sharing the
same input ports. Moreover, many different wavelengths can
excite the same group or overlapping groups of nodes, through
the different quasi-periodic resonances in a single MRR. These
virtual networks are an important ingredient in the scalability
properties of a PPRRNN, as they do not require additional chip
area.

If the network input has high enough power, the silicon
nonlinear effects in the excited MRRs can shift and change
the shape of the resonance dips, enabling complex dynamic
responses.[30,32] In particular, temporary resonance perturba-
tions due to free carriers and thermal effects (blue and red shift
respectively) provide the nonlinear activation functions of the
artificial neurons but also, respectively, short and long term
volatile memory. Moreover, those MRRs with a PCM cell (one in
every three in each row was chosen for this work) also feature
non-volatile memory. In Figure 1d we depict the ANN diagram
corresponding to the physical PPRRNN in Figure 1c, showing
the main connectivity and memory elements, leaving out the de-
pendence of the neuron response to the input wavelength. In this
work we consider the optical connections (grey arrows) as instan-
taneous w.r.t. the dynamics of input signals and memory effects
(recurrent arrows), since light propagation happens much faster.
Therefore, the memory effects of the nodes are in practice applied
to the equilibrium state of the purely optical network dynamics.

It should be stressed that the plastic nodes (MRRs with PCM)
have less pronounced nonlinear and volatile memory effects than
bare MRRs, due to the lower Q factor caused by the optical loss
at the PCM cell. Therefore, in Figure 1d we neglect the weaker
memory due to free carriers (blue arrows), while temperature still
has a significant but reduced influence. In this section we have
introduced a triangular PPRRNN in order to show how the spec-
trum of an increasing number of coupled nodes builds up. How-
ever, from now on, we will only consider rectangular PPRRNNs,
which are more compact.

3. Emergent Synaptic Plasticity Enables
Self-Adaptive Non-Volatile Weight Modifications
Without External Control

In this section, we present an experimental investigation on self-
adaptation due to the emergent plasticity property in a PPRRNN,
and on how it can be exploited to improve machine learning
(ML) performance on a time-series classification task, without

explicitly tuning the network weights externally. In particular, as
we explain below in more details, we repeatedly insert a specific
waveform into our PPRRNN to induce plastic adaptation, which
stops only when the network “learns” to dissipate the optical
power so that the PCM cells are not significantly switched any-
more by the input waveform. Therefore, the obtained non-volatile
weights configurations are the result of the complex interplay
between network activity and plastic adaptation of PCM cells,
and the feedback given by energy dissipation. Indeed, we show
that the non-volatile weights configuration obtained through
this process strongly depends on the employed input waveform,
allowing us to explore the parameter configuration along dif-
ferent directions without resetting the PCM cells and without
additional connections to control the weights. Here, our main
aim is to demonstrate that non-volatile plasticity in our network
is rich, accessible and can be concurrent with volatile nonlinear
memory. By rich, we mean that multiple and significantly differ-
ent non-volatile plastic configurations can be realized by slightly
different input optical waveforms. By accessible, we mean that
these plastic configurations can be obtained using reasonable
time-dependent optical input signals (not too powerful, not too
noise-sensitive response, not too slow or fast, etc.) and affect the
network output in a well-readable way. Concurrency with volatile
nonlinear effects means that the network is able to exploit both
non-volatile (plastic) and volatile memory at the same time, in
order to carry out a task. Indeed, richness, accessibility and con-
currency with volatile effects are three fundamental properties
for physical plasticity in order to be practically employable for
biologically plausible learning based on self-adaptation. Here we
demonstrate, for the first time to the best of our knowledge, all
three attributes to be readily available in a photonic hardware.

In this section we study an example application in order to gain
insight into the plasticity properties of our network, by employ-
ing a bespoke task and a dedicated optical training scheme, which
allows us to study the system in a more controlled environment.
For the task, we consider five classes of input waveforms, each
being a different permutation of four high bits over eight bit po-
sitions in time (see upper plots in Figure 2a). These waveforms
have the additional constraint that, at the first and the last posi-
tions, bits are always high. Altogether, this represents a temporal
frame. A single bit is 5 ns long. During the inference phase, a
high bit has a relatively low peak power of around 7 mW. The
pulse power is chosen so that it can trigger nonlinear volatile ef-
fects (thus the output waveforms present nonlinear distortions
w.r.t. the input) but not significant non-volatile changes. That is,
dimensionality expansion can be obtained while the solid-state
phase change of the GST patches is considered negligible. Under
these conditions, we can test the ML performance for a certain
fixed configuration of the non-volatile weights in the network.
Figure 2d shows examples of average output waveforms corre-
sponding to the five classes (columns), for two different wave-
lengths (blue for 1549.01 nm and red for 1547.10 nm) and at
output ports in rows 1 and 3, with reference to the PPRRNN in
Figure 2c. Here, it should be stressed that, in order to give an idea
of the noise and of potential instability in the acquired network
output, we plotted for each output waveform and in the same
color the median and both the 10% and 90% percentiles, from
a sequence of five repetitions of a certain input. The different
shades of blue and red, instead, show to the output after different
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Figure 2. Impact of plasticity on the network response. a) Example of input waveforms from the considered five classes (columns), employed in the
inference step (first row) and in the plastic adaptation (PA) step (second row). b) Example of non-volatile spectrum modification due to the plastic
adaptation of the considered PPRRNN (measured using the third input port and the third output port). c) Schematic of the considered PPRRNN. d)
Examples of average output waveforms (median, 10% and 90% percentiles) for different input waveform classes (columns) at two different ports and
two different wavelengths (rows). The five different shades in the plots correspond, from dark to light, to the output obtained at the beginning and after
different subsequent PA steps from class 1 to 5. e) Example of variations of the median output features (last pulse energy of output waveforms) for
different output ports, due to different classes of consecutive PA steps (columns) and for two input wavelengths (rows). f) Example of error rates (for the
considered five-classes waveform classification) in a PA step sequence, as a function of consecutive PA steps. g) Histogram of the minimum error rate
relative variations w.r.t. the initial error, in each measured PA step sequence. This provides an idea of how often and how strongly the PA step sequences
improves (negative values on the x axis) the corresponding initial ML performance.

plastic adaptations of the network, which will be discussed later
on in this section.

We employed a simple ML pipeline to evaluate the network
performance for different plastic configurations: for each input
waveform, we applied a linear classifier (logistic regression) on
only a single value per output waveform. This value is the out-
put energy corresponding to the last pulse of the input waveform
at the considered output port. This particular choice for a small
number of features makes the ML task far more difficult. Im-
portantly, without the volatile memory and the nonlinearity pro-
vided by our PPRRNN, it is in principle impossible for the em-
ployed classifier to learn the classification, since the last trans-

mitted pulse would be independent on the previous pulses. (For
clarity, here we stress that a single classifier is applied to all the
network outputs, as opposed to the ML model described in the
next section, where multiple linear classifiers are applied each to
a single output waveform and then combined).

In order to investigate the variations of the network response
and of the corresponding ML performance due to plastic PCM
weights modifications, we alternate so-called inference and plastic
adaptation steps (from now on we will shorten the latter to PA
steps), which we now explain.

During an inference step, the waveform classes are repeat-
edly inserted into the PPRRNN, one after another but always
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separated by around 2 μs to eliminate thermal memory between
waveforms. The energy of the last pulse of the obtained output
waveform is used as the sole feature for the linear classifier.

During a PA step, a modified version (called here pump wave-
form) of one waveform class is repeatedly inserted. In particular, a
pump waveform from a given class is the same as a normal input
waveform from the same class, with the only difference that its
last pulse has significantly larger peak power (usually by a factor
2.5, see lower plots in Figure 2a). The enhanced power in the last
pulse is chosen so that it can significantly modify the accessed
plastic PCM weights in the network. On the other hand, the first
three pulses of a pump waveform are meant to set the same
volatile PPRRNN configuration obtained by the first three pulses
in a corresponding normal waveform, so that the last enhanced
pulse reaches the same nodes and output ports as the last pulse
in a normal waveform. This way we aim to demonstrate richness
of plasticity, showing that different classes of pump waveforms
can modify the plastic weight configuration in different ways, re-
lated to the specific light path induced by the corresponding class
of normal input waveforms. It should be specified that both in-
ference and PA steps consist of a repetition of the waveform with
a total duration of around 1 s. Therefore, given the large number
of inserted waveform copies (hundreds of thousands), the plas-
tic weight configuration is considered to have reached an equi-
librium non-volatile state after each PA step, depending on the
class used in the step and also on the order of the classes used in
previous PA steps. Figure 2b shows an example of non-volatile
spectrum modification due to plastic adaptation of the consid-
ered PPRRNN. Further practical details regarding the plasticity
investigation and the ordering of classes during training can be
found in the Methods, Section 7.3.

A first result we will demonstrate in this section is that dif-
ferent input (pump) waveforms can achieve significantly differ-
ent plastic weight configurations. Therefore, we now analyze the
output of our physical network, without considering any specific
ML task. An example is given by Figure 2d, where the five dif-
ferent shades in the plots correspond, from darkest to lightest,
to the average output waveforms obtained at the beginning and
after different subsequent PA steps, spanning over the different
waveform classes. We can notice that the output variations due
to the rearrangement of internal plastic weights by PA steps are
substantial and easy to distinguish. Thus, this shows that net-
work plasticity is well accessible in our PPRRNN. Moreover, all the
output waveforms present evident and different nonlinear dis-
tortions w.r.t. to the input shown in the first row of Figure 2a.
Since each curve corresponds to measurements for a fixed non-
volatile configuration of the plastic weights, these distortions are
due to volatile nonlinear effects. This demonstrates that we can
achieve non-volatile plastic adaptation concurrently together with
volatile nonlinearity.

The output variation due to plastic adaptations (represented,
as we have just discussed, by the different shades in the plots of
Figure 2d) is more accurately quantified in Figure 2e, where the
bar plots show the median variation of each output feature (i.e.,
the intensity of the last pulse) for the different output ports (on
the x axis). Each plot column shows the variation due to a differ-
ent PA step, in chronological order, for two wavelengths (rows).
It can be easily noticed that different variations are obtained af-
ter each different PA step, implying that different plastic weight

configurations are achieved in the PPRRNN. Thus, this demon-
strates richness of network plasticity in our PPRRNN. A more de-
tailed discussion of richness using more extensive experimental
results is given in Section S3 (Supporting Information).

In the previous paragraphs we have discussed plastic effects by
directly looking at the network output. Now we take a step further
and see how network plasticity can be useful in ML. In particu-
lar, we repeatedly evaluate the aforementioned waveform classi-
fication task after different PA steps. Mainly, we are interested
in seeing how different plastic weights configurations result in
different ML performance, i.e., in different performance of the
PPRRNN when employed to provide useful data representation
to be fed to a linear classifier. Indeed, we will see that sequences
of PA steps allow us to explore the plastic weights’ configuration
space so that it is likely to achieve significant ML improvements
w.r.t. the initial (unadapted) state. An example of how the repe-
tition of different PA steps can greatly improve the ML perfor-
mance (regarding the classification of the five different bit pat-
terns) is shown in Figure 2f, where the initial error rate in a PA
step sequence is decreased by more than a factor 6. Remarkably,
after the improvement due to the first six PA steps, the error rate
stays significantly lower than its initial value for the subsequent
steps. This result shows that our approach to modify the plastic
weight configuration of the PPRRNN can permanently improve
the linear separability of the output feature values. Importantly,
this is achieved without any externally supervised weight train-
ing, but just by letting the plastic network adapt to its input, in
an emergent fashion. In this way, the proposed method resem-
bles to the way biological brains memorize and learn.

However, not every measured PA step sequence (each distin-
guished by a different wavelength or input port, see Table 2) re-
sulted in such an evident and stable performance improvement.
Nevertheless, we will show that they still allow one to explore the
plastic weight configuration space such that ML performances
are often significantly improved. In order to illustrate this, we
look at how much the ML error decreases w.r.t. the initial net-
work state, as the consequence of subsequent PA steps. For ex-
ample, considering the PA step sequence evaluated in Figure 2f,
we are interested in the improvement corresponding to the min-
imum error achieved w.r.t. the initial error value. In practice, for
each measured PA step sequence, we calculate the minimum er-
ror rate variation (which is negative if there is a classification im-
provement) relative to the corresponding initial error rate value,
where the minimum is taken over the error values achieved by all
the PA steps in the sequence. We calculated this minimum (rel-
ative) error variation for each measured PA step sequence, and
plotted them in a histogram (Figure 2g). It can be noticed that
most of the PA step sequences allow to improve the classifica-
tion performance (shown by negative values on the x axis). Im-
portantly, the distribution does not decrease as the values on the
x axis approaches –1 (which corresponds to a complete removal
of the initial error thanks to the PA step sequence). This shows
that strong performance improvements, as a result of a PA step
sequence, are roughly as frequent as small ones.

In this section we demonstrated that the non-volatile param-
eter space of our PPRRNN can be explored by using different
input sequences, to reduce the network error. This type of train-
ing approach is expected to have much slower convergence w.r.t.
to other approaches where credit assignment is more directly
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tackled. Nevertheless, plastic self-adaptation in our PPRRNN
can be potentially exploited for more sophisticated training ap-
proaches, for example by modulating a PA step with the error of
the network, as we discuss in Section 5. It should be stressed that
demonstrating a full training procedure that optimizes the plastic
weights in the PPRRNN independently of the initial conditions
of the network (e.g., given by the arrangement of the nodes’ res-
onant wavelengths w.r.t. the input wavelength), is considered as
an ambitious goal for a future work. In the next section, instead,
we show that different output waveforms (that are nonlinear
representations of the input) can be exploited as-they-are by a
suitable ML procedure, achieving high accuracy in a far more
complex benchmark task (handwritten digits classification).

4. Combining Parallel Temporal Representations
For Improved Machine Learning Performance
(MNIST Classification)

We will now proceed to present a more universal and relevant
benchmark task, namely the ten-class image classification prob-
lem from the MNIST dataset for handwritten digits.[28] Here we
employ a more practical learning scheme that needs no modi-
fication of the input waveform to enable plasticity. Additionally,
to increase robustness and to better exploit the computational
power and multiplexing capabilities of our hardware, we intro-
duce a hierarchical scheme consisting of many networks, where
each network is trained to improve upon the performance of
the previous one. Importantly, the elements in the hierarchy do
not need to be separate structures, but can be different virtual
structures in the same network, realized by changing ports and
wavelengths.

We start by flattening each image in the MNIST dataset and
insert it as a single time-dependent input that can trigger volatile
memory and non-volatile self-adaptation concurrently in a rect-
angular PPRRNN. Very little preprocessing was employed, mo-
tivated exclusively by limitations of the experimental setup (see
Experimental Section 7.4 for more details). As discussed in the
previous section, different nonlinear output representations of
the input waveform can be obtained in parallel from different
physical output ports and for different input wavelengths. Each
representation is a waveform (a time-dependent 1D signal) that
can be reassembled into a corresponding flattened image of n
pixels (see examples of MNIST images output representations in
Figure 3a). Differently from the application of kernels in a con-
volutional neural network (CNN), the generation of these repre-
sentations is not the outcome of an external learning algorithm,
but it depends on the emergent plastic and volatile properties
of the PPRRNN and on how the input is inserted (power, wave-
length, bitrate). Here we will show that an ensemble of linear
classifiers (multi-class logistic regressors) can learn how to syn-
thesize and combine the information unveiled in these represen-
tations, in order to greatly improve classification performance,
while still having a backpropagation-free lightweight machine
learning (ML) pipeline.

In particular, we considered each parallel PPRRNN’s represen-
tation of the input samples as the output of a stand-alone reservoir,
according to the reservoir computing (RC) framework,[37,38] thus
treating our PPRRNN as a collection of coupled reservoirs work-
ing in parallel. RC is a hardware-friendly ML approach where only

a linear model (a single-layer ANN) is trained, and is applied to
the output of a fixed nonlinear dynamical system (the reservoir,
e.g., a recurrent neural network with fixed synaptic weights), that
is in turn excited by a time-dependent input. Normally, a reser-
voir has only volatile memory, while our PPRRNN also features
non-volatile memory. But, since in this section we do not for-
mally train the PPRRNN, although it plastically adapts to its in-
put, for simplicity’s sake we still refer to its representations as
reservoirs. Following the RC scheme, we applied and trained a
linear classifier (in software) on each PPRRNN’s representation,
forming an RC system per representation. Each single RC sys-
tem alone, though, is a rather weak classifier (the accuracy does
not exceed 88%, which is close to the accuracy of a linear clas-
sifier directly applied to the input, without any neuromorphic
hardware). However, we could assemble a much stronger clas-
sifier by combining the RC systems together in a special way
(see Figure 3b; Section S4, Supporting Information; Section 7.4
in Experimental Section for technical details), such that each RC
system is be trained to correct the errors made by the previous
reservoir. This scheme exploits the PPRRNN’s capability of effi-
ciently producing several different nonlinear representation of a
temporal input at the same time, leaving to the electronics only
the linear models, which are easy to train and computationally
cheap. Importantly, the training procedure does not require gra-
dients, is backpropagation-free and provides an example of how
the PPRRNN can be employed for powerful biologically-plausible
neuromorphic computing.

Figure 3c shows the obtained test and training accuracy aver-
aged over the cross-validation loop, as a function of the number
N of classifiers chained together. The error bars represent the
standard deviation of the cross-validation accuracy. It can be
noticed that our chaining method significantly improves the
classification accuracy and reduces overfitting as the number of
chained representations increases, until the improvement satu-
rates. We obtained a maximum average accuracy of 98.2% from a
chain of length 8. Importantly, a much lower maximum accuracy
(around 92%) was reached if we employ a more straightforward
method of combining the representations, namely stacking all
the features together to obtain a large spatio-temporal repre-
sentation on which the readout was trained. This is probably
caused by overfitting because of the larger number of features
in a single training. On the other hand, we believe significant
improvement in maximum accuracy for both methods could
still be achieved just by measuring more samples to employ for
training.

Finally, we compare our best average classification accuracy
with the ones experimentally demonstrated in other works
about photonic neuromorphic hardware (see Table 1). We
achieved a high accuracy compared to other works, demon-
strating a high computational power and stability of the plastic
spatio-temporal representations produced by our photonic
network. Moreover, the two works outperforming our accuracy
level rely heavily on powerful feature extraction performed in
software.

In fairness, the aim of the compared works is often to improve
also on performance parameters other than accuracy, like energy
efficiency or throughput per footprint area. However, these
other parameters are usually expressed in terms of number
of multiply-accumulate operations (MACs) that can be trained
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Figure 3. MNIST images classification combining different output representations from a PPRRNN. a) Example of images insertion into a PPRRNN and
of the resulting output representations (in this figure these are spatially rearranged to enable visual intuition, but in truth each is a 1D time-dependent
output). After downsampling (see Section 7.4 for more details), flattened images are inserted into a single port (grating coupler on the left) using two
wavelengths. Nine different nonlinear representations of the flattened images are then obtained from different output ports and input wavelengths. b)
Linear ML classifiers are applied to the output representations and combined using a chaining ensemble method. Here, each output representation
and classifier pair is considered as an RC system, representing the reservoir and the readout layer respectively. A high-level diagram is provided in
Section S4 (Supporting Information). c) Classification accuracy as a function of the number of chained representations and classifiers. The best average
test accuracy obtained is 98.2%.

and performed by an ANN. Since we employ a hardware-based
dynamical system approach, it makes little sense to directly
compare, e.g., energy efficiency in terms of MACs/J, because
the operations in our recurrent neural network are not externally
programmable, although they can be reconfigured via plastic
self-adaptation. Nevertheless, in order to give a quantitative
idea of the computational throughput per chip area and of the
energy efficiency of a PPRRNN, we approximately estimated
1015 (MACs+NLOs)/s/mm2 and 5 × 1015 (MACs+NLOs)/J
respectively (see Section 7.5 under Experimental Section for
details on this estimation). The units for these quantities are
similar to the usual energy and aerial efficiency estimations
(MACs/s/mm2 and MACs/J respectively), but imply that each
MAC operation is also accompanied by a nonlinear operation
(NLO), since we work with nonlinear neurons. It should be
stressed that the nonlinearity in each node in principle enhances

the computational power of our system w.r.t. to photonic linear
accelerators, although our synaptic weights cannot be precisely
and individually programmed. Moreover, in our estimation
we neglected the operations happening in the hidden recur-
rent layers in our PPRRNN, so as to make it somehow more
comparable with linear accelerators, which perform one single
layer of weighted connections at a time. Even so, the estimated
computational throughputs and efficiencies for our PPRRNN are
well beyond those of photonic neuromorphic hardware where
synaptic weights are precisely programmable.[18,39] Furthermore,
it should be noticed that it is straightforward to significantly
increase aerial and energy efficiencies by using MRRs with lower
radii, higher Q factors and shorter GST patches. Further details
regarding energy consumption, footprint and throughput of
the employed PPRRNNs are discussed in Experimental Section,
Section 7.5.
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Table 1. Comparison of MNIST classification accuracy experimentally demonstrated employing photonic neuromorphic hardware.

Work System ML approach MNIST accuracy On-chip area

This work Integrated recurrent ANN based
on photonic resonators, with

combination of linear classifiers
applied on each

time-dependent output. With
simple preprocessing (mainly

downsampling).

Ensemble (chaining) of RC systems
based on logistic regression.

Samples: 2941 train, 2941 test, with
4x or 5x data augmentation.

98.2% ∼0.5 mm2

Nakajima et al. (2022)[11] FPGA-assisted fiber-optic system
implementing optoelectronic

time delay RC.

Deep RC, trained with augmented
direct feedback alignment (DFA).

97.80% No integration

Mourgias-Alexandris et al. (2022)[40] CNN (in software) fed into two
final photonic layers.

Standard BP on software using a
noise-aware training model.

99.3% 3 chips, at least 20 mm2 each

Zhou et al. (2021)[41] 3-layer ANN employing large-scale
optoelectronic diffractive

processing units.

Training in software using BP and
adaptive training steps of the optics
to adjust for the experimental error.

96.6% No integration

Feldmann et al. (2021)[36] On-chip photonic crossbar array
with PCM performing

matrix-vector multiplication for
CNN acceleration and a fully
connected layer in software.

Standard BP in software. 95.3% At least 25 mm2

Antonik et al. (2019)[42] Laser, SLM and camera providing
a large-scale optoelectronic

ANN layer.

RC on extracted features (histograms of
oriented gradients, in software)

98.97% No integration

Nakajima el al. (2021)[43] On-chip recurrent, passive and
coherent photonic network.

RC (spatiotemporal). 91.3% ∼32 cm2

Bai et al. (2023)[44] CNN, where the linear part of the
convolutional layer is performed
by on-chip photonic devices and

circuitry. Two fully connected
layers follow in software.

Standard BP and in-situ calibration
based on gradient descent control.

500 test samples.

96.6% ∼0.75 mm2

Zhu et al. (2022)[45] 2-layer ANN, each layer based on
a programmable integrated

photonic network, with
preprocessing.

Standard BP on software. 500 test
samples.

91.4% 0.53 mm2

Oguz et al. (2023)[46] 2 convolutional layers (software),
each followed by an untrained
optical nonlinear mapping (via
multimode fiber), with a final

readout layer (software).

Gradient-free training through the
recently proposed

Forward Forward Algorithm (FFA).[10]

Samples: 4000 train, 1000 test.

94.4% No integration

5. Discussion

5.1. Mechanisms and Properties for High Scalability

In Section 3, we have shown that different plastic weight config-
urations could be achieved in a PPRRNN by insertion of differ-
ent time-dependent optical signals. Moreover, these non-volatile
modifications could often improve the system performance on a
simple time-series classification task. Since plastic adaptation is a
key mechanism for learning and memory in biological brains,[12]

learning with physical plasticity is an extremely relevant research
direction for the development of neuromorphic computing. In-
deed, developing a physical platform where dynamics, nonlin-
earity, volatile and non-volatile memory coexist in complex scal-
able networks is important in order to provide a physical and
experimental underpinning to such a research effort, which is

nowadays mainly limited to simulations or entirely externally im-
plemented learning rules.[6] In fact, simulating large-scale dy-
namical systems is arduous and requires large computational
resources and simplistic approximations. For instance, approxi-
mating or neglecting constraints or richness of response found in
physical systems, might prevent the discovery of important learn-
ing mechanisms in biological neural networks.

In this section we present the main aspects and properties en-
abling scalability (in terms of network computational power and
size) of the proposed neuromorphic computing approach. Here
we would like to highlight the differences between our approach,
without externally tunable parameters and based on linear clas-
sifiers like in reservoir computing (RC), and the more common
one, based on employing backpropagation (BP) on a simulated
version of the ANN, whose trained parameters can be transferred
to the hardware network via external tuning and correction of
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hardware non-idealities. In our approach we have reduced con-
trol and configurability, and in particular we give up the possibil-
ity to accurately predict (before fabrication) and simulate the re-
sponse of our network, which would have allowed us to estimate
the gradient of the cost function and exploit powerful training
methods based on BP. In turn, we gain in complexity (having a
relatively large number of highly dynamical and nonlinear nodes
with multi-scale memory), in robustness to fabrication errors and
in low footprint. Moreover, by introducing the all-optical plastic-
ity given by PCM cells in our network, we aim to mitigate the loss
in control by potentially allowing for a more biologically plausi-
ble way to optimize network parameters, through plasticity and
emergent self-adaptation.

Synaptic weight modification without external connections and
credit assignment: As mentioned before, today state-of-the-art
ANNs are trained using BP, which is considered not biologically
plausible.[6–8] BP requires full observability of the neuron states
and full tunability of parameters, such as synaptic weights. In
practice, where neuromorphic hardware is concerned, this usu-
ally requires physical connections in order to observe states and
to update weights, so as to apply a training algorithm that runs
on an external computer. However, this obviously undermines
the scalability of physical ANNs, preventing the use of a large
number of neurons and synapses. In this work, instead, plas-
tic weights are modified in a more biologically plausible way
through self-adaptation, by exciting the input ports of the net-
work, without requiring dedicated connections. An additional po-
tential advantage of this approach is that, since the signal mod-
ifying the plastic weights is inserted at the network input and
travels through the normal network connections, the updating of
the plastic weights naturally contains information regarding the
state of previous nodes and links along the activation path. For
example, if a certain ML sample (in our case corresponding to
a time-dependent input) is associated with a high inference er-
ror, it is possible to selectively modify the self-adapting weights
responsible for the low performance of that specific sample by
simply letting the network adapt to the sample and, if needed,
by increasing the power of part of the input waveform, as it was
done in Section 3. This would allow us to tackle the credit as-
signment problem without any backward pass nor internal gra-
dient information. Another possible training approach would be
to modulate the input waveform power (or part of it) with the
network error, so as to favor convergence to equilibrium states in
response to low error levels.

Dynamics-enabled cascadability: Cascadability of nodes, and
also of plastic connections in our case, is critical for scalability of
ANNs. However, it is often difficult to achieve in hardware imple-
mentations (especially in photonics) without employing a large
number of amplification stages or alternative signal sources to
compensate for propagation losses, and this may strongly limit
scalability. This problem is mitigated when suitably using silicon
MRRs as a dynamic node. Indeed, let us consider a PPRRNN (see
Figure 2c) with rows containing many MRRs in series, assuming
for simplicity that the resonant wavelengths are aligned. A non-
resonant optical input pulse will reach the corresponding direct
output port with potentially negligible energy loss. Instead, a res-
onant input pulse will be totally or partially absorbed by the first
encountered node. However, if the nodes are suitably designed
and if the pulse carries enough power, the resonance wavelength

of the first node will be red-shifted out of the way by heating due
to optical absorption. Therefore, a subsequent pulse can reach
the second MRR, whose resonance can be shifted as well, and so
on. This way, a detectable signal can reach an output port even
when the transmission in the linear regime through the original
optical path is very low.

Parallelism and network expansion via wavelength division multi-
plexing: As discussed in Section 2, even if each node has only
four physical connections, these can convey several different
signals in parallel and independently by means of WDM, thus
greatly expanding the number of network connections, as well
as the number of input and output ports. Thanks to the quasi-
periodic resonances in the spectrum of a MRR, several different
signals at different wavelengths can nonlinearly interact through
the silicon nonlinear effects in the optical cavity. Indeed, a pow-
erful enough resonant pulse will simultaneously modify (either
temporally or permanently) all the resonances in the MRR spec-
trum, thus changing the way pulses at other wavelengths excite
(or are transmitted by) the neuron. In practice, this mechanism
expands the fan-in and fan-out properties of both the artificial
neurons and the plastic nodes, whose activation can be achieved
by the total power carried by pulses at different times, at different
wavelengths and at different physical connections (in the latter
case, optical interference comes into play as well).

Multi-timescale computation: Nowadays, a major challenge
in the development of neuromorphic computing platforms for
edge computing is the need to match the timescales of the
computing system with the ones of the input information, which
may depend on, e.g., the type of physical quantities targeted
in smart sensing applications.[47] The PPRRNN proposed here
presents dynamic responses with multiple timescales, which can
potentially be expanded or controlled. In particular, the fastest
timescale is given by the travel time of light signals through the
network, considering also that MRRs accumulate resonant light
with typical transient times of tens of picoseconds. This timescale
can be controlled and extended by choosing the Q factors of the
MMRs, or, more effectively, by introducing optical delay lines
in the photonic circuit.[48] The second fastest timescale is given
by silicon nonlinear effects related to free carrier concentration
in ring waveguides, of which time constants can range from
a few to tens of nanoseconds. These can also be controlled by
applying a suitable p-n junction to the ring waveguide.[49] The
slowest timescale is provided by the thermo-optic effect either
in ring waveguides or in the PCM layer, with characteristic
times of hundreds of nanoseconds. Next, the thermal timescale
is mainly governed by the temperature dissipation, which can
potentially be tuned by design of the photonic circuitry. Inter-
estingly, the combination of effects due to free carriers and
temperature can generate self-sustained dynamics in MRRs
(self-pulsing) capable of complex and chaotic behavior.[32] By
suitably tuning the excitation parameters, the decay time of
this type of network response can in principle be controlled
and extended to slower timescales. Finally, the non-volatile
all-optical memory introduced by PCM, allows our PPRRNNs
to couple signals inserted at arbitrarily distant times en-
abling, for suitable types of input excitation, timescale-invariant
computation.

High-throughput generation and large choice of data representa-
tions within a low footprint: As discussed in Section 4, a large
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number of different nonlinear representations of an input time
series can be achieved by a PPRRNN with a relatively low foot-
print (e.g., 0.5 mm2), by considering different input and output
ports, wavelengths, plastic weights configurations and even input
signal parameters (such as bitrate and power). Therefore, once
the circuit is fabricated, it is possible to explore its response so
as to find the parameters providing representations suitable for
the considered application, e.g. employing an RC-based approach
as we did in Section 4. Moreover, several representations can be
obtained in parallel at different output ports. Furthermore, the
number of parallel representations can be multiplied by consid-
ering different input ports and different enough wavelengths (see
Section 4). This possibility in principle allows for the generation
of hundreds of different representations in parallel within foot-
prints of the order of 1 mm2, enabling high-throughput neuro-
morphic computing.

5.2. Relation to Biologically Plausible In Situ Training Methods

Finally, let us briefly discuss the links between our photonic neu-
romorphic system and two inspiring training approaches aim-
ing at biological plausibility and simplicity of implementation
in hardware. In ref. [10], a surprisingly powerful learning pro-
cedure (called Forward–Forward algorithm, or FF algorithm) is
presented, which replaces the forward and backward passes of
BP-based training by two forward passes, with the only differ-
ence being the inserted data. This makes the algorithm more
biologically plausible and eliminates the BP requirement of ac-
curately knowing all the operations performed by the network.
Therefore, the FF algorithm can be implemented in hardware
implementations of neural networks, where internal operations
are mostly unknown due to the variability arising from fabrica-
tion errors and due to complex nonlinear responses of the nodes.
Similarly, in this work (Section 3), there is no backward pass
and we modify the network parameters directly by inserting spe-
cific input signals, leveraging intrinsic physical plasticity rather
than an external learning rule. Another similarity is that in both
cases several linear classifiers are trained and then combined (see
Section 4), although in a different way. In the cited article, it is
also stressed that mortal computation, i.e., computation learned
by non-reproducible hardware like the one here presented, may
generally allow for higher energy efficiency and lower fabrica-
tion costs.

A second relevant work is ref. [11], where a hardware-friendly
augmented version of direct feedback alignment (DFA, see ref. [50])
is presented. DFA already takes a big step toward biological plau-
sibility and on-hardware implementability, by removing the need
for the knowledge of the full network gradient in the learning
rule and by requiring the output network error as the only non-
local information. In the augmented DFA method presented in
ref. [11], the network knowledge required by the learning rule
is further reduced, by replacing the differential of the activation
function with an arbitrary nonlinear function. This results in
a hardware friendly deep learning approach approximating BP,
demonstrated both with software examples and within optoelec-
tronic hardware (deep reservoir computer). Interestingly, high
performance is obtained for different benchmark tasks. Impor-
tantly, the PPRRNN here proposed can be in principle trained

employing this augmented DFA approach, by using the input sig-
nal to convey the output overall error and thus letting the plastic
weights adapt to the error information.

6. Conclusion

We presented an experimental investigation of a new type of in-
tegrated photonic artificial neural network based on silicon ring
resonators and phase change material cells (GST). We demon-
strate, for the first time, complex nonlinear behavior and multi-
scale volatile memory (provided by silicon nonlinear effects), con-
currently with all-optical non-volatile memory (provided by GST
cells).

We investigated how our network can plastically adapt to dif-
ferent input temporal sequences, thanks to the non-volatile all-
optical memory introduced by the phase change material cells.
This adaptation happens in an emergent way, and does not rely
on external control. As part of this study on plasticity mecha-
nisms, we investigate a simple but highly nonlinear machine
learning problem, consisting of the classification of five different
temporal sequences of four optical pulses. We applied a novel
method to modify the network internal weights exclusively via
different input signals (leveraging plastic adaptation) and we
showed that these modifications often significantly improve the
machine learning performances compared to initial configura-
tions.

Moreover, in order to evaluate how powerful is the presented
system in practice, we tackled a benchmark machine learn-
ing task, namely the classification of images from the MNIST
dataset. Each image was inserted in the photonic network as a
temporal sequence. The employed ML model does not require
backprogation and consists in combining several linear classi-
fiers (through the chaining ensemble method) applied to different
parallel outputs of our neuromorphic hardware, where each out-
put provides a different nonlinear representation of the input im-
age. We achieved a surprisingly high maximum average accuracy
of 98.2% and we compared it with the results from other recent
works about experimental neuromorphic computing with pho-
tonics.

Finally, we discussed some properties and mechanisms
enabling scalability of the proposed photonic integrated net-
work compared to other more conventional neuromorphic
computing systems, designed to be trained externally, usually
via BP.

These results lay the groundwork for the application of biolog-
ically plausible and hardware-friendly training approaches (po-
tentially inspired by e.g., refs. [10,11]), by exploiting the emergent
plasticity property and thus without explicitly tuning the network
weights. This type of training approach is particularly interesting
for neuromorphic computing research, since biological brains
learn and memorize by means of plastic adaptation. This allows
to forego additional external connections used to tune the net-
work parameters, as is, instead, usually required by the training
of today’s neuromorphic systems. Such a possibility could greatly
increase the scalability of hardware ANNs, since it would allow to
employ extremely complex physical systems with a large number
of nodes and plastic connections, without the need to externally
access every synaptic weight and neuron.
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Figure 4. Experimental setup.

7. Experimental Section

7.1. Experimental Setup

A setup (see Figure 4) capable of generating a time-dependent
optical signal (max. bandwidth around 300 MHz) was employed,
inserting it into a photonic integrated circuit and acquiring the
response. The output of a Santec TSL-550 tunbale laser was mod-
ulated by an X-blue 40 GHz modulator controlled by an arbitrary
waveform generator (AWG) (Moku:Lab). The signal was then am-
plified by an EDFA (Keopsys) and filtered with a band-pass filter
centered on the laser wavelength. The clean and modulated opti-
cal signal was coupled into and out of the photonic chip by means
of fiber grating couplers. The output of the integrated circuit was
split so that roughly half of the power would reach a power meter
measuring the average light power, used to estimate the optical
power coupled into the chip. The other output of the splitter was
measured by a fast photodetector (Thorlabs balanced photodetec-
tor 1.6 GHz), whose RF electric output was acquired by an oscillo-
scope (Keysight Infiniivision 3000 X-Series). A Python algorithm
was running on a PC to synchronize the operations of the tunable
laser (controlling power and wavelength), the AWG (controlling
the type of generated waveforms), the oscilloscope and the
power meter (used as reference to calculate the on-chip optical
power).

7.2. Design and Fabrication

The photonic circuitry was fabricated through e-beam technol-
ogy using shallow-etched waveguides. The considered MRRs
have a radius of 15 μm, a coupling gap of 350 nm and a GST
patch covering a section of the ring resonator of 1 μm long.
On the same chip, within around 63 mm2, 120 PPRRNNs

with different topologies were designed and fabricated, num-
ber of nodes, sparsity of GST cells and coupling gap of the
MRRs.

7.3. Practical Details of Plasticity Investigation

With reference to Section 3, by alternating inference and PA
steps, the investigation was focused on how different classes of
pump waveforms could achieve different non-volatile weight con-
figurations, and how this would impact the ML performance.
In particular, once selecting an input port in the investigated
PPRRNN, the focus shifted to identifying a wavelength range
where significant waveform distortions would appear at the di-
rect output (i.e., the output port that is directly connected to the
input port by a straight waveguide). Then, the first inference step
was performed, changing the input wavelength with 21 steps
of 0.005 nm, thus spanning over a total range of 0.1 nm. This
measurement was repeated for each output port and resulted in
a well-readable signal, each time acquiring between 70 and 80
waveforms per class. Therefore, an inference step provides 21
ML datasets, one for each wavelength, used to train and test the
logistic regression. Moreover, we have as many ML features as
the number of measured output ports. The first inference step
provides a performance estimation of the considered network
part (given by input port and wavelength range) with the ini-
tial non-volatile weight configuration. Afterward, a subsequent
PA step (usually of the first waveform class) modifies the non-
volatile weights configuration, which is then evaluated through a
second inference step, and so on. Additionally, two nested cross-
validation loops were employed: the inner one to optimize the
L2 penalty, the outer to test the trained model on all the avail-
able data.
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Table 2. List of performed measurements considered for the plasticity investigation presented in Section 3.

Measurement session Input port Output ports Classes in PA steps Wavelength range center

1 3 1,3,5,9 2,3,4,5 1547.06 nm

2 3 1,3,5,7 5 1547.16 nm

3 2 1,2,3,4,6 1,2,3,5,1 1548.28 nm

4 1 1 1,2,3,5,1,2,3 1547.85 nm

5 2 2 6 repetitions of 1,2,3,4,5 1549.27 nm (single)

6 2 2 6 repetitions of 1,2,3,4,5 1548.12 nm (single)

7 2 2 6 repetitions of 1,2,3,4,5 1547.86 nm (single)

8 2 2 6 repetitions of 1,2,3,4,5 1547.28 nm (single)

9 2 2 6 repetitions of 1,2,3,4,5 1547.26 nm (single)

10 2 2 6 repetitions of 1,2,3,4,5 1547.19 nm (single)

11 2 2 6 repetitions of 1,2,3,4,5 1547.17 nm (single)

12 1 1 6 repetitions of 1,2,3,4,5 1548.28 nm (single)

The plotted data in Figure 2a was obtained using the third in-
put port on the left (with reference to Figure 2c) and reading the
signals at the output ports number 1, 2, 3, 4, 6, 8 on the right. The
complete list of performed measurement sessions can be found
in Table 2.

7.4. Machine Learning, Preprocessing and Measurement Aspects

Regarding the MNIST classification task described in Section 4,
the presented results are obtained considering 12 input-output
configurations in the network shown in Figure 3a:

1. Three representations using the fifth input port (counting the
left grating couplers from top to bottom) and input wave-
length 𝜆 = 1548.14 nm, at 3rd, 5th, and 13th output ports
(right grating couplers from top to bottom).

2. Five representations using the sixth input port with 𝜆 =
1547.27 nm, at output port numbers 4, 6, 8, 10, and 12.

3. Four representations using again the sixth input port but with
𝜆 = 1548.77 nm, at output port numbers 2, 4, 6, and 8.

Because of limitations exclusively due to instrumentation (mem-
ory and speed of electronics to generate input waveforms and to
acquire output waveforms), we employed a subset of 2941 im-
ages with balanced classes. Each image was inserted into the
PPRRNN four or five times, thus performing data augmentation
to improve the learning of experimental noise by the training al-
gorithm, reaching a total sample number of 13466. Due to the
same setup limitations, we downsampled the images from 28
× 28 to 14 × 14 pixels, employing the maximum over adjacent
squares composed of four neighboring pixels (Figure 3a), in or-
der to reduce the information loss due to downsampling. Each
image was then flattened to a 1D array, upsampled with a factor
of 2 using linear interpolation and inserted into the PPRRNN as
a single waveform. It should be stressed that the preprocessing
is not meant to make the ML task easier (on the contrary, it prob-
ably makes it harder because of loss of information due to down-
sampling) and, apart from the flattening, it should be avoided if
the instrumentation allows. A bit duration of 4 ns was employed,

with each flattened image temporally separated from the next by a
no-signal period of around 2 μs, in order to avoid temporal cross-
talk due to thermo-optic effects.

The MNIST class label (i.e., the ground truth) corresponding
to each output waveform was encoded in the time distance be-
tween the current waveform and the next generated one. This
way the class labels could be retrieved directly from the output
of the PPRRNN, while ensuring that the label information could
not be retrieved by the readout linear classifiers. In particular,
the time distance between each generated input waveform was
set to 2 μs + 24 ns × class label (from 0 to 9, labeling the previ-
ous waveform). The output waveforms are extracted from the ac-
quired data by detecting the presence of a signal above the noise
floor, which usually corresponds to the beginning of the inser-
tion of the input waveform, since the light delay is negligible. In
those cases where this was not true, because of low transmission
of the full waveform or of its initial part through the network, the
output waveform was discarded.

In Section 4, the results obtained considering the 12 input-
output configurations in the network shown in Figure 3a are
presented. Lets first explain the ML pipeline (Figure 3b), which
consists of building a combination (chain) of linear classifiers,
each applied to a different output representation. The chain is
automatically built by a greedy algorithm, which adds one classi-
fier to the chain at each step, trying to correct the mistakes made
by the previous classifiers. Assume N output nonlinear represen-
tations were measured for each input image. Then, the available
ML dataset was splitted into N + 2 folds with an approximately
equal number of samples per class. Keep the last fold apart to use
it at the very end for testing. In order to select the best stand-alone
output representation, which will be the first in our hierarchical
chain, an individual linear classifier was applied to the samples
of each output representation and train it on fold 1. In fact, this is
analogous to training N reservoir computing (RC) systems,[37,38]

since each representation could be considered as the outcome
of a different untrained recurrent neural network with n tem-
poral outputs. Subsequently, the best performing classifier was
selected, by evaluation of a validation set containing folds 2 to
N+ 1 in the dataset. In general, each single output classifier could
not outperform the baseline of directly applying a linear classifier
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to the input waveform (∼86% accuracy in our experiment, 88%
in software[51]). This is indeed expected, because each repre-
sentation is neither optimized to improve accuracy, nor has a
sufficiently high dimensionality compared to the input, which is
required for traditional RC.

In the second step of the pipeline, an ensemble of two clas-
sifiers was built by employing the chaining method.[52] Recall
that the output of the first classifier consists of ten numbers,
each being the estimated probability of belonging to one of the
classes. Then, a second classifier was trained on these ten num-
bers, combined with the samples of another representation from
a different (virtual) network (Figure 3b). This linear classifier
was trained on folds 1 and 2 of the dataset and its performance
validated on folds from 3 to N + 1. This way, the second lin-
ear classifier in the chain focuses especially on correcting the
errors made by the first classifier (which was trained on fold
1) in generalizing over fold 2. Therefore, this method aims to
progressively improve the computational power of the ensemble
of the classifiers, while reducing overfitting. Among all the N −
1 possible 2-reservoirs chaining combinations, we select the one
with highest validation accuracy.

Afterward, starting from the selected chain of two classifiers,
we repeat the process so as to select the best three-classifier chain,
and so on until we obtain a chain of length N, trained on folds
from 1 to N and validated on fold N + 1. The resulting validation
score was employed to optimize the regularization strength of the
L2 penalty in the training of the last linear classifier in the chain.
Finally, the test accuracy of the obtained N-reservoir chain was
estimated using the unseen fold N + 2. This whole chain forma-
tion was repeated N + 2 times, each time using a different fold to
select the first classifier, so as to perform a k-fold cross-validation,
where k = N + 2. This way, the ML pipeline was evaluated on all
the available data, in order to maximize the precision of our test
accuracy evaluation.

In the experiments, the output representations at different
wavelengths and physical ports were acquired sequentially, one
after another. However, these results were considered to be a good
approximation of a truly parallel measurement, where many pho-
todetectors were employed at the same time, together with filters
to separate the different wavelengths. Indeed, the three consid-
ered wavelengths were distant enough from each others so that
they cannot be significantly coupled by the nonlinear response
of the MRRs. Moreover, since the sample insertion was repeated
a large number of times (much larger even than the measured
repetitions) it is believed that plastic changes have reached an
equilibrium by the time they are measured, allowing repeatabil-
ity. Indeed, if significant changes over time were to occur during
the repetitions, the classification task presented to the linear clas-
sifier would artificially become more difficult to carry out, thus
limiting the achievable accuracy.

7.5. Energy, Footprint and Throughput of the Proposed
Integrated Photonic Network

In this work, a peak on-chip power (for a single input wavelength)
of around 21 mW was employed for a fully white input pixels,
and a power of around 1 mW for a black pixel. This corresponds
to an on-chip input energy per white and black pixel respectively

of around 84 pJ and 4 pJ. An upper estimate for the average on-
chip energy per image is 17 nJ, which is found by assuming half
the pixels to be completely white and the other half completely
black: 17 nJ ≈196× 84 pJ+ 196× 4 pJ. Regarding the on-chip foot-
print, the PPRRNN considered in this section takes up around
0.5 mm2, providing seven physical output ports on the right side
and six on the left side (even though the number of ports is dou-
bled if the counterpropagating field is strong enough to be read-
able). Therefore, it could be estimated that the PPRRNN could
potentially provide at least 13 nonlinear representations per mm2

per wavelength. A large number of representations (hundreds or
even thousands) could be generated on a single chip by employ-
ing several wavelengths at the same time and considering larger
or multiple PPRRNNs. In practice though, one should consider
the feasibility and the impact of having many input and output
optical connections on the same chip, of separating several wave-
lengths at the output, of employing a large number of photodetec-
tors, of managing thermal cross-talk, etc. However, being able to
generate a large number of representations on a small chip area
can be advantageous even if the representations are not read out
all at the same time. Indeed, the achievable representations could
be explored by automatic measurements even one by one, so as
to select the best few.

Finally, here it is explained that how the approximated aerial
and energy efficiency of a PPRRNN is estimated in terms of
multiply-accumulate operations (MACs) plus nonlinear opera-
tions (NLOs), namely 1015 (MACs+NLOs)/s/mm2 and 5 × 1015

(MACs+NLOs)/J, which are reported in Section 4. First, as the
demonstrations presented in this paper, lets consider the use of
free-carrier based nonlinearity to achieve the activation function
of the photonic neurons, and the temperature-based nonlinear-
ity as volatile memory which can integrate several neuron acti-
vations through time. A realistic case is that 2 ns input temporal
resolution was used, a time duration sufficient for free-carriers
to provide strong nonlinearity, and an integration time due to
the thermal memory of around 200 ns. Therefore, considering
only one input port connected to one output port in a PPRRNN,
each 2 ns present at the output is the result of a nonlinear in-
tegration of the input inserted in the previous 200 ns. Thus 100
MACs+NLOs operations were performed each 2 ns, considering
only the time dimension. Equivalently, this system could be seen
as two connected neuron layers (input and output) in the time
domain, each comprising 100 neurons, neglecting for simplicity
the recurrent operations in the hidden node layers. The num-
ber of MACs+NLOs was found by multiplying the dimension
of the two layers, which gives 104 (MACs+NLOs) each 200 ns.
Moreover, in a PPRRNN fitting a 0.5 mm2 chip area, it is real-
istic to have at least ten physical input ports connected to other
ten output physical ports, hence we obtain an input and an out-
put layers of 103 neurons each, achieving 106 MACs+NLOs per
200 ns and per 0.5 mm2, covering both the time and spatial di-
mensions. Furthermore, in such a PPRRNN we can in princi-
ple employ at least 10 input wavelength channels per physical
port, so that they are interconnected by the network activity, thus
further expanding both the input and output dimensions from
103 to 104 each, achieving a total throughput per unit area of
1015(MACs+NLOs)/s/mm2. Regarding the energy efficiency, we
consider a realistic input power of 10 mW per input physical port,
yielding a power consumption of around 200 mW/mm2. Dividing
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the throughput per area by this quantity, we finally find a power
efficiency of 5 × 1015 (MACs+NLOs)/J.
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