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Neuromorphic  photonics  can  greatly  benefit  processing  of
optical signals transmitted through telecom links or produced by
photonic sensors, by exploiting key advantages w.r.t. electronics
such as highly parallel and energy efficient linear operations. We
present a compact integrated photonic neural network, composed
of 96 neurons  (silicon microring resonators) within a 0.15 mm2

footprint, for high-throughput optical processing concurrently in
time, space and frequency domains. We experimentally test it on
benchmark  image  classification  tasks,  namely  MNIST  and
Fashion-MNIST..
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I. INTRODUCTION

A major challenge in neuromorphic photonics is to cascade
a  large  number  of  photonic  artificial  neurons,  i.e.  nonlinear
nodes  with  fan-in  capability,  which  are  required  to  build
photonic  neural  networks  [1].  Silicon  microring  resonators
(MRRs)  are  promising candidates  for  compact  and  dynamic
photonic  integrated  neurons,  featuring  both  wavelength-
division multiplexing (WDM) and time-division multiplexing
capabilities.  Thanks  to  the  high  sensitivity  of  MRRs  to  the
absorption  and  refractive  index  perturbations  due  to  silicon
nolinear effects, these photonic cavities exhibit energy efficient
all-optical nonlinearity and even spiking behaviour [2,3]. Hece
the  growing  interest  in  investigating  their  employimet  in
building scalable integrated photonic neural networks (PNNs)
[4,5].

In this work, we experimentally study the use of an MRRs-
based PNN that supports complex and recurrent dynamics and
processes  information  by  leveraging  spatial,  temporal,  and
wavelength  dimensions  simultaneously.  Our  PNN is  notably
compact and easy to manufacture. It is composed of 96 MRRs,
interconnected  by  straight  waveguides  which link to  several
input  and  output  optical  ports  (see  Fig.  2  a).  Owing to  the
intricate dynamics facilitated by silicon's nonlinear properties
and  the  periodic  resonances  observed  in  MRR  spectra,  the
network extends beyond its physical layout into the temporal
and wavelength dimensions, while it  occupies a minimal on-
chip  area.  We  demonstrate  that  multiple  nonlinear
representations  of  the  optical  input  time  series  (flattened
images  from  the  MNIST  and  the  Fashion-MNIST  datasets
[6,7])  can  be  simultaneously  achieved  across  various
wavelengths. These representations are utilized in an efficient
and  biologically  plausible  machine  learning  (ML)  approach,
which  combines  simple  linear  classifiers,  each  forming  a

reservoir  computing  unit,  through  ensemble  learning  [8-10].
Specifically,  we  reveal  that  the  accuracy  in  classifying
handwritten  digits  progressively  improves  with  the  use  of
increasing  nonlinear  representations  from  our  PNN,
significantly surpassing the performance achieved with linear
representations,  thus  highlighting  the  crucial  role  of  our
neuromorphic hardware.

Finally, we advance that our PNN can be employed as a
versatile  plug-and-play  interface  between  an  optical  input
comprising  several  signals  at  different  wavelengths  and
physical  ports  (e.g.,  transmistted  thorugh  telecom  links  or
generated  by  a  microwave  photonics  receiver)  and
conventional  electronics-based  signal  processing,  especially
machine  learning  models  (Fig.  1).  Indeed,  our  neurmorphic
hardware can efficiently produce nonlinear representations of
the input signals in real time, enabling: cross-signal interactions
accounting for optical phase relationships, multi-scale memory,
dimensionality  (feature)  expansion  to  enhance  the
computational power of subsequent machine learning models
(e.g.  RC  applications),  addition  of  on-chip  smart  sensing
information (MRRs can be very effective sensors when their
waveguide is exposed to an environment).

Figure 1: The proposed MRR-based integrated neural network as a
plug-and-play neuromorphic interface between optical signal sources
and electronics-based processing, to allow for real-time and efficient
optical interactions, memory, dimensionality expansion for reservoir
computing and addition of on-chip smart sensing information.



II. RESULTS

We  fed  our  integrated  PNN  with  flattened  images  (from
MNIST and Fashion-MNIST datasets, 70000 images each) by
modulating infrared laser light (wavelengths around 1550 nm,
see Fig. 2 a) with a sampling time of 2 ns. We employed 10
different input wavelengths, namely (in nanometers) 1554.46,
1554.62,  1554.78,  1554.94,  1555.10,  1555.26,  1555.42,
1555.59,  1555.75,  1555.91.  Additionally,  for  each  input
wavelength, 10 distinct optical power levels were employed,
each  yielding  unique  nonlinear  outputs.  Specifically,  the
estimated on-chip power levels (respectively mean and peak
power in milliwatt) were as follows: 0.086, 0.17, 0.26, 0.34,
0.43, 0.51, 0.60, 0.69, 0.77, 0.86, and 1.5, 3.0, 4.5, 6.1, 7.6,
9.1, 10.6, 12.2, 13.7, 15.2. Moreover, we collected data from 5
different physical output ports. Therefore, we acquired a total
of 500 different nonlinear representations for each image. In
our machine learning  analysis,  we initially  divided the  first
60,000 samples from the next 10,000, using them as training
and test  sets,  respectively.  Our training procedure  combines
multiple linear classifier applied to different nonlinear output
representations,  step  by  step  (Fig.  2  b).  Each  step  aims  to
incrementally  enhance  the  model's  overall  performance  by
learning to rectify mistakes made in previous steps.  Further
details can be found in [10].
Test ML accuracy was calculated for each training step, each
one corresponding to a different number of chosen nonlinear
representations (see Fig. 2 c). The classification performance
steadily  increases  with  the  number  of  employed  nonlinear

representations,  and it is significantly greater than the linear
baseline, which was obtained by the same training procedure
applied directly to the input representation (without photonic
processing).  We  reach  a  maximum test  accuracy  of  89.5%
(with 87.5% linear baseline). Instead, considering the MNIST
classification task, we achieved a test accuracy of 94.5% (with
92% linear baseline).

III. CONCLUSIONS
We experimentally demonstrated the use of an integrated

photonic neural network based on silicon microring resonators
for  hardware-based  machine  learning,  applied  to  images
flattened into optical time series, without any preprocessing. In
particular, we tackled the MNIST and Fashon-MNIST image
classification  tasks,  obtaining  a  test  accuracy  of  94.5% and
89.5% respectively, via a combination of reservoir computing
units.  In both cases,  we observed  a significant  improvement
w.r.t. the linear baseline, thus demonstrating the enhancement
of  ML  performance  obtainable  with  simple  and
computationally cheap linear classifiers.

Our  network  comprises  96  nonlinear  nodes  with  volatile
memory within a small  footprint, and can produce hundreds
different  nonlinear  representations  of  its  input,  via  highly
parallel and energy efficient operations in the spatial, temporal
and frequency domains. Finally, our photonic neural network
can be employed as a versatile neuromorphic interface between
optical  signal  sources  and  electronics-based  processors  to
enhance  machine  learning performances  while  enabling  new
functionalities.
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Figure 2: ML image classification enhanced by our PNN. a) Images
are flattened into an optical time series without preprocessing and
inserted in the PNN. Several nonlinear representations of the input
are obtained at different wavelengths and different output ports. b)
Diagram  of  our  ML  scheme,  where  linear  classifiers  applied  to
different  nonlinear  representations  are  hierarchically  combined
together. c) Accuracy achieved in the Fashion-MNIST classification
task  as  a  function  of  the  number  of  employed  nonlinear
representations, compared with a linear baseline.
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