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ABSTRACT

In this work, we discuss our vision for neuromorphic accelerators
based on integrated photonics within the framework of the Hori-
zon Europe NEUROPULS project. Augmented integrated photonic
architectures that leverage phase-change and III-V materials for
optical computing will be presented. A CMOS-compatible platform
will be discussed that integrates these materials to fabricate pho-
tonic neuromorphic architectures, along with a gem5-based simu-
lation platform to model accelerator operation once it is interfaced
with a RISC-V processor. This simulation platform enables accurate
system-level accelerator modeling and benchmarking in terms of
key metrics such as speed, energy consumption, and footprint.
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1 INTRODUCTION

Recent advances in deep learning (and more recently genAl) em-
power machines with remarkable information processing and syn-
thesis capabilities. At the same time, the exponential growth in
data volumes generated by an extensive range of consumer de-
vices and industrial sensors calls for novel approaches to advanced
and efficient data processing. Although advanced Al models are
typically deployed in purpose-built high-performance cloud clus-
ters, some applications require advanced data processing locally
at the edge, that is, closer to where data were originally generated
[3]. More specifically, edge computing requires the development
of lightweight accelerators capable of providing Al-tailored data
processing locally with low latency and high energy efficiency [19].
Current state-of-the-art Al is enabled by graphical processing units
(GPUs), tensor processing cores and similar application-specific
hardware that allows for high computing parallelization and op-
timized computation of linear algebraic operations that underpin
modern deep learning workloads [18]. In line with other conven-
tional computing approaches, these digital architectures utilize Von
Neumann processor architectures with distinct memory and com-
puting blocks. This poses some inherent limitations in terms of
high demands on data movement between these functional blocks
in terms of bandwidth, energy efficiency, and power consumption.

The goal of alleviating these bottlenecks is one of the main
objectives in fields such as in-memory computing, where (a part
of) the data needed for the computation is co-located with the
computing core architecture, thus requiring less data movement
[23]. In neuromorphic (brain-inspired) engineering, the principle
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Figure 1: CMOS-compatible augmented platform in the NEUROPULS project. Reprinted with permissions from [15].

of memory-compute co-location is further enhanced with signaling
and information processing principles analogous to those observed
in the brain, which promises further improvements in computation
sparsity and energy efficiency [11]. Although significant efforts
have been devoted to leveraging existing CMOS technology to
develop digital and mixed-signal neuromorphic computing cores
[6, 13], alternative technologies such as spintronics or photonics
are nowadays gaining considerable momentum for the implemen-
tation of next-generation computing hardware [12, 20]. However,
there are still certain practical limitations towards achieving accel-
erators based on integrated photonics. Current CMOS-compatible
silicon photonic platforms do not provide a full range of required
functional modalities. In addition, photonic accelerators are of-
ten investigated standalone, rather than being interfaced with a
system-level architecture and used in real-world scenarios. Finally,
full-scale, system-level simulation platforms of a photonic accelera-
tor interfaced with a processor core remain mostly unexplored. In
the next sections, we will discuss how we are aiming to tackle all
these aspects within the framework of the NEUROPULS project.

2 CMOS-COMPATIBLE SIPH PLATFORM

Unlike in the electronic neuromorphic approaches, photonics allow
one to leverage desirable properties of lightwaves such as wave-
length multiplexing, low-loss signal propagation without Joule
heating as well as access to very high bandwidth devices (above
tens of GHz) to e.g. encode or read-out data [22]. In particular, inte-
grated photonics has emerged as a promising size, weight and power
(SWaP)-optimized platform. Silicon photonics (SiPh) currently rep-
resents arguably the most promising approach to photonic integra-
tion due to its compatibility with existing CMOS approaches for cost
and volume. However, certain functionalities are not available in
pure Silicon-On-Insulator (SOI) platforms. In particular, the ability
to realize non-volatile optical memory elements is one of such miss-
ing functionalities that is key to achieving energy-efficient optical
computing architectures [8, 9]. In addition, active devices (such as
lasers) cannot be realized in silicon because of its indirect bandgap.
Therefore, additional materials such as III-V compound semicon-
ductors need to be co-integrated into SOI platforms, typically using
heterogeneous or hybrid integration methods. A monolithic fabri-
cation approach is the most desirable way to achieve these missing

functionalities in a compact manner with excellent alignment tol-
erances between patterned layers and consequent ease of coupling,
as well as packaging costs lower than those of hybrid approaches.
Such platform has not yet been developed or presented as an open
access service, as is the case for pure SOI platforms [16].

One of the goals of the Horizon Europe NEUROPULS project
is to develop a platform that can accommodate these additional
functionalities in a monolithic manner. In Figure 1, the integration
strategies for PCMs (e.g., GSST or other types) and III-V materials
are shown. This integration does not affect other building blocks,
such as high-speed modulators and detectors (above 50 GHz band-
width) that have already been developed for the platform and are
already provided to the end users. Therefore, novel building blocks
taking advantage of these additional functionalities will be devel-
oped to further enhance the existing selection of building blocks
on the SOI platform.

3 PCM/III-V AUGMENTED SOI BUILDING
BLOCKS

One of the key building blocks for broadband neuromorphic pho-
tonic architectures is the Mach-Zenhder interferometer (MZI, shown
in Figure 2(a)). An individual MZI consists of couplers and phase-
shifters (PS) and represents a SU(2) transformation. Typically in
SOI, a specific phase-shift is induced through the thermo-optic
effect via an adjacent heater, and continuously consumes electri-
cal power. Given that this phase-shift remains constant for a set
weight matrix (that is, during inference), a non-volatile approach
would be ideal to remove this constant energy consumption [14].
Furthermore, besides the non-volatile nature of optical phase shift
or attenuation effects, the devices should be compact with mini-
mized optical loss to enable deep arrangements of MZIs. One of
the goals of NEUROPULS is the development of low-loss, compact,
and reconfigurable multilevel PCM-based MZIs with heaters above
PCM patches and waveguides (see Figure 2(a)). Various approaches
are currently being investigated to benefit from the properties of
PCMs such as GeSe and GSST that present a large figure of merit
(FOM) given by dn/S8k, where 8n and Sk are the refractive index
contrasts for the real and imaginary part, respectively, around the
standard telecom wavelength of 1550 nm [7, 21].
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Figure 2: (a) MZI with the PCM-augmented (in green) non-
volatile optical phase-shifters with heaters on top (in yellow)
for programmability. (b) An example of an MZI mesh ar-
chitecture (here implementing 8 X 8 matrix) dedicated to
accelerating matrix-vector multiplication operations via in-
memory optical computing.

Furthermore, Q-switched III-V on-chip lasers are explored as
chipscale excitable spiking sources. Pioneering works in this direc-
tion have already been carried out; however, spikes were generated
off-chip, unlike the approach that we will be pursuing in NEU-
ROPULS [9]. By leveraging the ultrafast response (sub-ns) and
accumulation behavior of PCM-based devices to optical pulses,
the viability of photonic spiking neural networks (SNN) and bio-
inspired learning rules such as spike-timing dependent plasticity
(STDP) will be investigated.

4 COMPUTING ARCHITECTURES

The main focus of the photonic neuromorphic architecture is to
realize optical in-memory acceleration of linear algebra operations
that underpin a majority of current deep learning models. In partic-
ular, we focus on realizing a photonic matrix-vector multiplication
(MVM) engine to enable a generalized matrix-matrix (GeMM) core.
These architectures are based on meshes of programmable inte-
grated MZIs that operate as multiport interferometers with a de-
gree of matrix expressivity (universality) determined by component
arrangement. Within the NEUROPULS project, various mesh archi-
tectures of MZIs (or, more generally, couplers and phase-shifters)
are investigated and evaluated. These include previously proposed
mesh architectures such as the Clements [5] architecture with com-
pacted interferometers [1] (shown in Figure 2(b)) or the Fldzhyan
[10] architecture with parallel PS blocks [1], as well as newly pro-
posed multiport interferometer architectures. In these, input vectors
are encoded into amplitude/phase of individual inputs (typically us-
ing high-speed Mach Zehnder modulators), and the multiplication
(weighting) matrix is encoded in the state of the programmable PS
blocks. Generalization to GeMM operations can be realized through
separating of the input matrix into rows, and processing those either
via time-division multiplexing or through encoding into multiple
dense wavelength division multiplexed (DWDM) channels that can
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be processed in parallel in a single multiport interferometer without
incurring additional resource costs.

5 SIMULATION PLATFORM

In the ever-evolving landscape of computing systems, the integra-
tion of neuromorphic accelerators and hardware security primitives
on a consolidated simulation platform is crucial. Both electronic and
photonic domain-specific accelerators (DSAs) continue to be active
areas of research and development as the demand for specialized
and efficient computing solutions grows across various industries

In the NEUROPULS project, we will: (a) create efficient full sys-
tem simulation tools on top of the gem5 simulator [2] to model and
evaluate complete computing systems with neuromorphic acceler-
ators and security primitives, as shown in Figure 3; (b) explore the
diverse design space of heterogeneous computing systems employ-
ing photonic neuromorphic accelerators and hardware primitives;
and (c) facilitate detailed system-level evaluation of both software
and hardware, with a specific emphasis on the security properties
of the computing platform.
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Figure 3: gem5-based system architecture modeling and sim-
ulation infrastructure overview.

NEUROPULS simulator is based on gem5, an open-source, system-
level computer architecture simulator that provides a flexible and
modular framework for modeling and simulating various aspects
of computer systems. It supports cycle-level simulation of a wide
range of computer architectures, including x86, Arm, RISC-V, and
others, making it a versatile platform at the system level (including
the microarchitecture, architecture, operating systems, and applica-
tion layers of the computing stack). Given the tremendous growth
of the RISC-V ecosystem in the past few years, we have taken gemS5-
SALAM, which uses an advanced dynamic graph execution engine
based on LLVM [17] and only supports Arm ISA processor cores
(the CPU part in Figure 3), and ported it to support the RISC-V ISA
and system configuration. We introduce gem5-MARVEL [4], which
is based on LLVM IR (Intermediate Representation) to model DSAs
using C descriptions of their functionality. The gem5-based simula-
tion infrastructure comprises two core components: the Compute
Unit and the Communications Interface. The Compute Unit repre-
sents the custom accelerator’s datapath, while the Communications
Interface facilitates memory access, control, and synchronization
through memory access ports, Memory-Mapped Registers (MMRs),
and interrupt lines. The memory access ports allow parallel access
to different memory types, such as scratchpad memories (SPMs)
and register banks (these two types of memories occupy the largest



DAC 24, June 23-27, 2024, San Francisco, CA

part of the area of many accelerators). MMRs consist of configurable
status, control, and data registers, allowing low-level device config-
uration and facilitating communication between the accelerator and
the host, as well as between multiple accelerators (i.e., processing
elements - PEs) in a cluster (as shown in the right-most side of Fig-
ure 3). By treating the accelerator as a memory-mapped device, the
host can utilize the provided interrupt signals for synchronization
without the need for constant polling. Additionally, the gem5-based
infrastructure includes Direct Memory Access (DMA) devices and
custom memories that can be seamlessly integrated into acceler-
ator designs, enhancing its versatility. gem5-MARVEL is also a
fault injection framework that operates at the microarchitecture
level and supports transient and permanent fault injections to all
hardware structures of the CPU and for the three prevailing ISAs
(Arm, x86, RISC-V). The fault injection feature was implemented in
the simulation framework to support the reliability aspect of the
NEUROPULS project.

6 CONCLUSIONS

Integrated photonics represent one of the technological platforms
with potential to empower modern heterogeneous computing sys-
tems by enabling high bandwidth and improved energy efficiency
during data movement and computing. While silicon photonics
benefits from compatibility with CMOS technology, further aug-
mentation with additional material platforms is required to unlock
the full scale of needed chipscale optical building blocks. In the
NEUROPULS project, we have augmented a CMOS-compatible SOI
photonic platform with III-V semiconductor technology (enabling
on-chip active optical devices), and chalcogenide-based PCMs (to
realize non-volatile optical modulators). Using this augmented plat-
form, we propose and evaluate a system-level implementation of a
neuromorphic accelerator based on an in-memory photonic MVM
accelerator core. Various MZI mesh architectures are evaluated for
the MVM core, including their performance, matrix expressivity
and robustness. Furthermore, we have developed a novel gem5-
based simulation framework with RISC-V ISA support to allow
for extensive performance evaluation and benchmarking of the
complete photonic-enabled accelerator interfaced with controllers
and processors. We believe this comprehensive system-level im-
plementation is key to realize practical, photonic neuromorphic
accelerator.
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