
Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 7278

Shapley-guided global optimization algorithm
with applications in integrated photonics
inverse design

MOHAMED SADEK RADWAN,1,* SEAN HOOTEN,2 THOMAS VAN
VAERENBERGH,3 AND PETER BIENSTMAN1

1Department of Information Technology, Ghent University/imec, Ghent, Belgium
2Hewlett Packard Labs, Hewlett Packard Enterprise, California, USA
3Hewlett Packard Labs, HPE Belgium, Diegem, Belgium
*Mohamed.Radwan@UGent.be

Abstract: This study introduces an optimization algorithm, Shapley-Guided Stochastic Opti-
mization (SGSO), which incorporates Shapley values to steer the search towards optimal solutions.
The algorithm was tested on some well-known global optimization benchmark functions, like
the Easom and Ackley functions, to validate its efficiency before applying it to more complex
real-world scenarios, like the inverse design of photonic structures, specifically a 3dB splitter,
a grating coupler, and a multilayer broadband mirror. The SGSO algorithm demonstrated its
capability to direct the search process to generate highly performing designs while maintaining
computational efficiency. Additionally, we propose a simplified approach for computing the
Shapley values that can lower the algorithm’s computational cost while still achieving satisfactory
convergence to the global optimum. The results were benchmarked against Basin Hopping, one
of the established metaheuristic optimization techniques, highlighting the potential of SGSO in
navigating complex optimization landscapes. The SGSO is linked to Basin Hopping through the
shared local optimization step and also shares connections with Genetic Algorithms, particularly
in the crossover process between the different obtained solutions.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optimization is a key part of solving many complex problems, from engineering designs to
machine learning models. Traditional methods like Gradient Descent, Genetic Algorithms [1],
and Simulated Annealing [2] have been widely used in various fields to find the best solutions.
However, as problems become more complex, in areas like inverse design in integrated photonics,
there is a growing need for newer, more efficient algorithms.

Recent developments in combining machine learning with optimization have opened up new
possibilities. One such advancement is the use of surrogate models, like neural networks,
which can quickly estimate complex functions, making the optimization process faster and less
resource-intensive [3]. Additionally, Shapley values, a concept from game theory, have been used
in AI to explain the importance of different features in a model [4,5]. However, their application
to optimization is still emerging, with limited literature directly addressing this approach [6].
This presents a novel opportunity to enhance search strategies by identifying key variables that
most significantly impact the objective function.

In traditional optimization scenarios, variables are often treated with uniform significance
across the search process. However, the intrinsic value of Shapley values lies in their ability to
provide a quantifiable understanding of importance of each variable, thereby enabling a more
focused and informed search strategy. Indeed, by pinpointing variables with higher influence
on the objective function, optimization algorithms can allocate computational resources more
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efficiently, prioritizing the exploration of variable configurations that have the most promise for
reaching optimal solutions.

Lloyd Shapley introduced the concept of the Shapley values in his foundational work in 1951
to address the problem of fairly distributing reward given the outcome in a cooperative game [4].
The Shapley method ensures that each player’s contribution to the collective effort is recognized
in proportion to their input, considering all possible coalitions they could be a part of (a coalition
refers to any group of players who cooperate to achieve a certain game’s outcome). This concept
is formalized as follows in Shapley’s original work:

ϕi =
∑︂

S⊆F−i

|S|!(|F | − |S| − 1)!
|F |! [v(S ∪ i) − v(S)] (1)

Here, ϕi represents the Shapley value for player i, which should correspond to this player’s
contribution to the cooperative game outcome. F represents the grand coalition including all
players, and |F | indicates the total number of these players. S symbolizes a subset of size |S| of
players excluding player i (i.e. a subset of the set F − i). v(S) is the game outcome for coalition S.
The term v(S ∪ i) denotes the game outcome when player i joins coalition S. The Shapley value
therefore captures the marginal contribution of player i across all possible coalitions, providing a
basis for fair reward distribution based on each player’s contribution to the total game outcome.

Transitioning from game theory to the domain of explainable Artificial Intelligence (XAI),
Shapley values have found a novel application in quantifying the contribution of individual
features in artificial intelligence (AI) models. In this context, features of the AI model are
treated analogously to players in a game, each contributing to the model’s output or decision [7].
The Shapley values offer an approach to quantify the impact of each feature, enabling a deeper
understanding of model behavior and enhancing transparency.

Contrary to the implementation in game theory, many of the AI models cannot handle the
absence of one of their input features. In other words, they have to be assigned a full set of input
values to be able to make predictions. As a way around this, we define two different input values:
the ’background point’ and the ’point to be explained’. The absence of a player in a certain
coalition is represented by using the background value as the value for this player. In that case,
the Shapley method quantifies the contribution of each input feature in transitioning the model’s
output from the background value to the point to be explained [8].

To illustrate the computation of Shapley values, let us consider an AI model with three
input features represented by the set F = {xi | i ∈ {1, 2, 3}}. In the context of Shapley value
calculations, each input feature xi can take one of two possible values: the background value
xi = xi,b or the value corresponding to the point being explained xi = xi,e. This results in a set of
8 possible coalitions:

coalitions = {(x1,b, x2,b, x3,b),
(x1,e, x2,b, x3,b),
(x1,b, x2,e, x3,b),
(x1,b, x2,b, x3,e),
(x1,e, x2,e, x3,b),
(x1,e, x2,b, x3,e),
(x1,b, x2,e, x3,e),
(x1,e, x2,e, x3,e)}

(2)

The calculation of the Shapley values as indicated in Eq. (1) requires many evaluations of
the model outcome for every possible coalitions (as given by Eq. (2) for the above example),
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which corresponds to the Figure-Of-Merit (FOM) within the optimization framework. More
specifically, an optimization problem of N variables (i.e. players within the Shapley framework)
would correspond to 2N coalitions and accordingly 2N function evaluations. This can present a
problem when a large number of players exists for a specific problem. Therefore, in the context
of our algorithm, we also propose a simplifying approximation in the calculation of Shapley
values to decrease the number of required function evaluations.

The rest of this paper is structured as follows. We first introduce the Shapley-Guided
Stochastic Optimization (SGSO) algorithm, which uses Shapley values in a novel way to guide
the optimization process. We then apply the SGSO to some of the well-known benchmark
functions like the Easom and the Ackley functions, to show how it handles common optimization
challenges. In addition, we present a way to simplify the Shapley values calculations to reduce its
computational cost, which is an important aspect of optimization methods. Then, we apply the
SGSO to more complex problems in integrated photonics inverse design, using neural network
models as surrogate models to efficiently explore the design space of a 3dB splitter [9,10] and a
grating coupler [11]. We also explore the applicability of our algorithm in the inverse design
problem of a broadband thin-film mirror for thermophotovoltaic applications [12]. In that case,
the mirror is modeled using a dedicated electromagnetic solver for multilayer structures [13].

2. Shapley-guided stochastic optimization (SGSO) algorithm

The methodology employed in developing this algorithm can be summarized as follows. Different
local optima have different important features that contribute to their FOM. Accordingly, the
primary objective is to preserve these important features when moving in the optimization space.
The role of the Shapley values is to quantify this importance and the relative contribution of
the different features. It is important to realise that the significance of features is comparative.
For instance, the salient features that distinguish local optimum A when contrasted with local
optimum B may not be the same as when local optimum A is compared to an arbitrary point C
that is not a local optimum. Comparing A to a non-optimal point like C might put all features
of A in a favorable light due to the relative suboptimality of C. However, it is the comparison
with another high-quality point, such as B, that truly highlights the distinctive and superior
features of A. In summary, meaningful distinctions in features’ importance are highlighted only
when high-caliber points are evaluated against each other, rather than against lesser counterparts.
This is one of the main differences between our procedure and what was reported in [6]. A
similar concept was presented in [14], where surrogate backbones are identified among different
high-quality solutions for combinatorial optimization problems. These backbones are modified
to facilitate exploration of the optimization space. However, a key distinction in our approach is
that we use Shapley values to identify the values of variables that are common across different
local optima, and maintain these values during the optimization process.

The algorithm proceeds as follows. Initially, a starting point is chosen randomly. Although an
informed choice for initialisation might expedite convergence, a random selection is generally
sufficient or can be the most suitable option for complex optimization functions or when we have
less information on the problem at hand. From this initial point, a local optimization method
is employed to identify the nearest local optimum. Subsequently, a second random starting
point is generated and subjected to the same local optimization process to find a second local
optimum. Next, we apply the Shapley method with the best local optimum so far as the "point to
be explained" and the second local optimum as the "background". Then, a new starting point
is created by mixing these two optima. The degree to which these two points are combined is
determined by their respective FOM and the calculated Shapley values. To further clarify, a
new point is constructed by retaining the feature values from the best local optimum with the
highest Shapley values, while inheriting the features with the lowest Shapley values from the
background. This method ensures that the new starting point maintains the strengths of the best
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solution while integrating potentially beneficial features identified through the Shapley values
analysis from the background. This newly generated point is used as a new starting point for
the local optimizer to get the associated local optimum point which is appended to our list of
the generated local optima. This newly generated local optimum point is potentially superior
to the previous two, as it combines important features from different local optima. The steps
above represent one algorithm iteration, which is repeated a number of times, keeping track of
the best overall local optimum, and each time generating a separate new local optimum as the
background for the Shapley calculation.

The pseudocode of this algorithm is shown in Algorithm 1. It is worth highlighting that SGSO
can be cast in the framework of Basin Hopping, since they share a local optimization step. This
could be achieved by setting the temperature in Basin Hopping to zero and the generation of the
Shapley-guided suggestion in the inner loop of our algorithm as a custom step-taking routine
[15,16].

Algorithm 1. Shapley-Guided Stochastic OptimizationAlgorithm 1
structures.append(optimize_locally(create_random_structure()))
for 𝑖 = 1 to 𝑁𝑎𝑙𝑔 do

optimized_random_structure = optimize_locally(create_random_structure())
structures.append(optimized_random_structure)
best_structure = structure_with_highest_FOM(structures)
S_values = calculate_Shapley_values(structure_to_be_explained = best_structure,

background = optimized_random_structure)
# Create new structure starting from best one, replacing lowest contributors by optimized

random background structure.
Shapley_guided_suggestion = best_structure
𝑘 = calculate_𝑘(FOM(best_structure), FOM(optimized_random_structure))
indices_of_worst_S_values = argpartition(S_values, 𝑘)
Shapley_guided_suggestion[indices_of_worst_S_values]

= optimized_random_structure[indices_of_worst_S_values]
structures.append(optimize_locally(Shapley_guided_suggestion))

end for

Finally, we want to clarify that the number of inherited parameters from the background k
varies with each iteration of the algorithm and is given by:

k = max
(︃
kmin, min

(︃
kmax, kmax −

⌊︃FOMbest − FOMbackground

TSGSO

⌉︃)︃)︃
(3)

Here, kmin is the minimum number of parameters to be inherited which enforces a minimum
rate of exploration. kmax is the maximum number of parameters that can be inherited, which
limits the perturbation of the best obtained local optimum point. The parameter TSGSO is inspired
by other global optimization algorithms such as Simulated Annealing [2] or Basin Hopping [17].
It aims to restrict the inheritance process if the FOM of the best optimum point is much larger
than that of the background. This is based on the interpretation that when the difference between
the FOM values is large, there may be fewer important features in the background. Consequently,
it is preferable to limit the extent of inheritance in such cases. In summary, we have three main
hyberparameters that controls the SGSO’s flow, kmin, kmax, T .

In addition, by going through the different iterations in the procedure, we are allowing the
algorithm to learn about the different important features in the different local optima. Furthermore,
the comparison with the best obtained optimum point and the proper adjustments of the number



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 7282

of the inherited parameters ensure that the most important features across the different local
optima are given higher chance to remain in the newly generated points.

It should be noted that the correspondence between the optimization variables and the players
for the Shapley values calculations can be chosen arbitrary. For instance, the simplest method
involves treating each optimization variable as an individual player when forming all possible
coalitions for the Shapley value calculations. Throughout this paper, we will refer to this approach
as the exact method to calculate the Shapley values. However, in section 3.3, alternative choices
that simplify the computation of Shapley values will be explored.

Also, it is important to emphasize again that when interpreting the Shapley method, higher
values indicate a greater contribution of a variable in shifting the model output (i.e. the FOM)
from the background to the point being explained. In the case of negative Shapley values, it
implies that, on average, using the values of this variable from the background, rather than
from the point being explained, leads to better performance (higher FOM). Furthermore, these
interpretations are based on averages across all possible coalitions, not individual cases.

3. Results on Ackley and Eason benchmark functions

3.1. Benchmark definition

Our method underwent testing across a variety of optimization problems, each presenting a unique
optimization landscape. We use the Easom and the Ackley functions [18], for their scalability to
higher dimensions and the presence of numerous local optima within their optimization spaces.
We flipped the sign of both functions to convert the problem to a maximisation one, as well as
normalised them so that the global maximum value is 1. The maximization Easom function is
given by

E(x) =
n∏︂

i=1
cos

(︃
f
(︃
xi − πf

)︃)︃
· exp

(︄
−

n∑︂
i=1

(︃
xi − πf

)︃2
)︄

(4)

This function possesses a global optimum at x∗ =
(︂
π
f , π

f , . . . , π
f

)︂
. Manipulating the parameter

f in Eq. (4) alters the location of this global optimum within the search space. It also affects the
density of local optima, potentially increasing the problem difficulty. In addition, the Easom
function possesses the unique feature of a relatively sharp global optimum, which makes it a
rather difficult problem. Figure 1(a) illustrates a plot of this equation with the dimension of x set
to two.

The normalised maximisation Ackley function is given by

f (x, n) = 1
a + e

· ⎛⎜⎝a exp ⎛⎜⎝−b

⌜⎷
1
n

n∑︂
i=1

x2
i
⎞⎟⎠ + c exp

(︄
1
n

n∑︂
i=1

cos(dxi)
)︄⎞⎟⎠ (5)

A plot of this equation is shown in Fig. 1(b) where the dimension of x is limited to two. It can
be seen that this function features multiple local optima superimposed on a gradually ascending
hill towards the maximum value.

These characteristics make them robust tests for our algorithm’s performance. For the testing of
our various algorithms, we expanded the number of variables in the Easom and Ackley functions
to ten, corresponding to a 10-dimensional optimization problem. It is also important to note that
the difficulty of these problems is influenced by the limits of the search domain. In our results,
we used a range of −10 to 10 for the Ackley function and −20 to 20 for the Easom function.

3.2. Performance and computational cost

The first aspect to be evaluated is whether the inclusion of Shapley values facilitates the algorithm’s
progression to more favorable positions within the optimization landscape. Later, we will consider
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(a) 3D plot of the modified Easom function (b) 3D plot of the modified Ackley function

Fig. 1. 3D plot of the two benchmark functions, if necessary shifted such that the global
optimum occurs at the origin. These two problems illustrate distinctly different landscapes.
The Ackley function features multiple local optima superimposed on a gradually ascending
hill towards the maximum value. In contrast, the Easom function has values close to zero
almost everywhere, except for a sharp peak at the global optimum. Many local optima are
present in the Easom function, but they are not visible in this zoomed-out plot due to their
relatively low values.

the computational demands of calculating the Shapley values. In Fig. 2(a) and Fig. 2(b), we
present a comparative analysis for the 10-dimensional Easom and the 10-dimensional Ackley
functions, under two scenarios. The first one is the SGSO with guidance based on the Shapley
values. The second scenario is the case where the Shapley values are replaced with random
values, which serves as a baseline to compare with the performance obtained with the Shapley
values. To generate these figures, we defined a permissible range for each optimization variable
and generated a random starting point within this range, uniformly distributed. We then applied
the optimization algorithm (with a certain number of algorithm iterations) and recorded the
resulting FOM. This process was repeated 100 times, each time with a new starting point. The
average FOM from these trials were displayed as convergence curves on a graph, with the upper
and lower bounds of the obtained FOM illustrated as a shaded area around the curves. The
x-axis in these two plots is used as the number of algorithm iterations (i.e. the jumps made in
the optimization space). The upper and lower limits of the shaded areas around the average
convergence lines in our plots effectively capture the variability of the results across multiple
runs. Smaller differences between these upper and lower bounds indicate reduced variability,
which corresponds to a plateau in the consistency curves described in [19], which suggests higher
confidence in the performance of the respective algorithm.

The obtained results in Fig. 2(a) and Fig. 2(b) clearly demonstrate the benefits of incorporating
Shapley values, as evidenced by the improvement in convergence of the average FOM towards
the global optimum of 1. For the Easom function, the curve does not saturate. So, the more
function evaluations are allowed, the higher the probability to reach the global optimum point
guided by the calculated Shapley values.

In the case of the Ackley function, while both our algorithm and the SSGO random baseline
exhibit rapid convergence (note the difference in horizontal scale compared to Easom), the
utilization of Shapley values still distinctly enhances performance.

The results discussed here are generated using the COBYLA method [20] as a local optimizer.
Additional results, which are detailed in Supplement 1 Section 6, utilize L-BFGS-B [21] as the
local optimizer and show similar results. Additionally, the hyperparameters for these results and
the subsequent results for the different examples are summarized in Supplement 1 Section 7.

https://doi.org/10.6084/m9.figshare.28220351
https://doi.org/10.6084/m9.figshare.28220351
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(a) Average FOM vs. number of algorithm itera-
tions for the Easom function.

(b) Average FOM vs. number of algorithm itera-
tions for the Ackley function.

(c) Average FOM vs. number of objective function
evaluations for the Easom function.

(d) Average FOM vs. number of objective function
evaluations for the Ackley function.

Fig. 2. Comparative analysis of the average FOM when the new point is based on Shapley
values (SGSO - Exact Shapley values), and without it (SGSO - Random), in addition to a
baseline method using multi-start random initialization followed by local optimization. For
each x-value, these averages were calculated by applying the different algorithms to 100
randomly generated initial points for the 10-dimensional Easom and 10-dimensional Ackley
test functions. (a) and (b) are plotted as a function of the number of algorithm iterations.
This highlights the contribution of the Shapley values to the algorithm performance. (c) and
(d) use the number of the objective function evaluations on the x-axis, which emphasises
the effect of the computational cost associated with calculating the Shapley values on the
algorithm convergence. The shaded regions represent the range of outcomes, outlining the
maximum and minimum values obtained across the 100 random initial conditions.

It is important to note that although the ten variables are interchangeable in these two benchmark
functions, their contributions to the objective function at a specific point are not necessarily equal.
To illustrate this with a simple example, consider a function f (x, y) = x + y. While x and y are
interchangeable by definition, their contributions to the function value at a specific point, such as
(5, 1), are unequal: f (5, 1) = 6, but x contributes five units, whereas y contributes one unit. This
reasoning can be extended, albeit more crudely, to complex functions.

In the context of Shapley values, they are designed to capture the local importance or
contribution of each variable at a specific point with respect to a given background point. This
aligns with their role as a local explanation method in explainable AI (XAI), as opposed to
global explanation methods. In XAI, the focus is on explaining why a model provides a specific
prediction for a particular set of input values, rather than how the model behaves in general.

From an optimization perspective, we interpret Shapley values as providing a means to sense
the surrounding landscape of the objective function locally. They capture the relationship between
the point being evaluated and the background point, thereby guiding the optimization process in
a favorable direction.

From the previous discussion, we can see that Shapley values help our algorithm reach better
solutions. However, we need to consider whether the extra calculations for Shapley values are
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cost-effective. Could the effort be better spent elsewhere, such as allowing the algorithm more
random search attempts? To tackle this question, we again turned to our two test functions, this
time plotting the average FOM against the total number of objective function calls as shown
in Fig. 2(c) and Fig. 2(d). These calls include all evaluations, whether for calculating Shapley
values or for the optimization process itself, thus reflecting the overall computational expense. In
addition, we added another baseline represented by a simple approach where we locally optimise
a new random initial point each iteration and keep track of the best obtained FOM. We refer to this
as multi-start random local optimization. This procedure favors optimization space exploration
compared to the SGSO.

With the Easom function, the investment in computing Shapley values pays off, enhancing
performance without increasing the overall computational cost. On the other hand, when applying
our algorithm to the Ackley function, we observe a less efficient trend, with slower progress
compared to the random version of the SGSO. This suggests that for the Ackley function, it seems
better to skip the Shapley calculations in favor of increased random sampling. This effectiveness
likely varies with the specific landscape of the objective function being optimized for the different
problems. Furthermore, in both cases, the SGSO with its different versions outperforms the
multi-start random local optimization. This highlights the value of mixing the local optima to
generate new starting points.

Still, it should be noted that although calculating Shapley values increases the total count of
function evaluations, these calculations are inherently parallelizable. This parallel processing is
particularly advantageous when using analytical functions or surrogate models built on neural
networks. In contrast, executing more random jumps in the algorithm is an inherently sequential
process. Indeed, each jump relies on the position and information of the previous one, alongside
the local optimization steps, making it a more time-intensive approach. However, we chose to
adopt a worst-case scenario and keep the x-axis as total number of objective function evaluations,
i.e. assuming that all the calculations, including those for the Shapley values, are done sequentially.
The multi-start gradient methods can also be parallelized, which could reduce their computational
time. However, as demonstrated in the results for the Easom and Ackley functions, the SGSO
algorithm outperformed the multi-start gradient method in both cases. This suggests that even with
equal parallel processing capabilities, the SGSO algorithm demonstrates superior performance
compared to the multi-start approach under the same computational constraints.

Additionally, we will now discuss a technique to reduce the computational effort, by performing
an approximation for the Shapley values.

3.3. Approximating the Shapley values

The formula given by Eq. (1) is a generic form to calculate Shapley values for a given game
with a certain number of predefined players. However, with an increasing number of players,
this can become computationally expensive. There exist different approximations for calculating
Shapley values specifically designed for the AI models, like SHAP [8] and DeepLIFT [22], with
reduced computation intensity. In this section, we introduce an alternative method: we use the
same Eq. (1), but we modify the game and redefine the players for whom we are determining the
importance in order to reduce the computational cost.

Within the context of optimization, we have some freedom in the definition of the players. For
instance, nothing prevent us from grouping a certain number of optimization variables and assume
that they will act as a single player for the Shapley value calculation. In that case, the Shapley
values will correspond to the average contribution of this group as a whole. As an example, let
us consider the Ackley function optimization problem as explained earlier. Suppose we assign a
separate player to each of the 10 optimization variables. The number of different coalitions in that
case is 210, which also corresponds to the number of function evaluations for the Shapley values
calculations. Alternatively, to compute the Shapley value for a specific optimization variable,
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we can treat that variable as a single player in the game while grouping all other optimization
variables together as a second player. This approach reduces the problem to a 2-player game,
resulting in 22 possible coalitions. To determine the Shapley values for all the optimization
variables, a separate 2-player game is constructed for each variable, where the selected variable
acts as an individual player, and the remaining variables are grouped together. Each of these
2-player games generates 22 coalitions. However, since the background point and the point to be
explained are shared across these games, the total number of unique coalitions is 2N + 2, where
N is the number of optimization variables. The additional 2 evaluations come from the FOM
calculations at the background point and the point being explained. While these calculations
might be considered redundant, as they were already performed during the local optimization
step, we prefer to include them explicitly to highlight the computational cost associated with
Shapley value calculations separately. Accordingly, the total number of evaluations, and thus the
computational cost, is significantly reduced.

It is important to recognize that how we group certain players together as a single entity can
significantly influence the resulting Shapley values. It might be reasonable to suggest that players
who exhibit higher correlations should be grouped together. Although this effect might not be
very pronounced in the Ackley and Easom functions, it could become more relevant in real-world
scenarios, such as the inverse design photonics problem discussed later in this paper. However,
such grouping depends heavily on the designer’s understanding of the problem and their intuition
about the interactions between the players.

Therefore, in this paper, we opted for the simpler choice where we grouped players based
purely on their sequential order, assuming minimal prior knowledge or intuition about the
interactions involved. This approach might seem less sophisticated, but it allows us to explore
the baseline behavior without additional assumptions and it could also be considered as a first
step to evaluate whether more sophisticated approaches are needed or not. As an example of how
we performed player grouping, consider e.g. an optimization problem involving 10 variables
{x1, x2, . . . , x10} and 4 players {p1, p2, p3, p4}. If we want to determine the Shapley values for x4,
we treat the optimization variable x4 as player p1. The remaining variables are then sequentially
distributed among the other players in roughly equal groups. Thus, we assign p2 = {x1, x2, x3},
p3 = {x5, x6, x7}, and p4 = {x8, x9, x10}.

Let us first evaluate the Easom benchmark with a varying numbers of players. Figure 3(a)
and Fig. 3(c) show that the results obtained with exact calculations of the Shapley values still
outperform the algorithm with reduced number of players. This is true both as a function of the
number of iterations and the number of function evaluations. It seems that the approximated
Shapley values with fewer players provided a much cruder approximation, which significantly
degraded the performance. Therefore, it appears that reducing the number of players in the
algorithm slowed down its convergence, counteracting the benefits of lowered computational
demands.

The situation is very different for the Ackley benchmark. Remember that using the exact
Shapley values, there was no benefit in terms of number of function evaluations compared to
random SGSO. Now however, Fig. 3(d) shows that reducing the player count even down to two
decreases the computational cost significantly without sacrificing too much accuracy, resulting in
enhanced performance relative to the random variant. However, if the plot were extended over a
longer computational effort, the performance for the exact Shapley values would likely catch up
and surpass the approximated version, albeit at a much higher computational cost.

These contrasting outcomes illustrate that, while the proposed approximations may be effective
for certain problems, they might not yield the best results for others. In summary, adjusting the
number of players offers a practical approach to approximate Shapley values when computing
the exact values is computationally expensive. Ideally, if the computational resources allow, we
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(a) Average FOM vs. number of algorithm itera-
tions for the Easom function.

(b) Average FOM vs. number of algorithm itera-
tions for the Ackley function.

(c) Average FOM vs. number of the objective
function evaluations for the Easom function.

(d) Average FOM vs. number of the objective
function evaluations for the Ackley function.

Fig. 3. Convergence for varying player counts for Shapley value calculation (Approximated
Shapley (xx players)) in addition to the random version of the SGSO (Random). (a) and (b)
depict convergence comparisons with the x-axis denoting algorithm iterations for Easom and
Ackley functions respectively. (c) and (d) plot the average FOM against the total number of
function evaluations. The results indicate that for the Easom function, the approximation
inaccuracies result in a degraded performance. However, for the Ackley function, we observe
a significant reduction in computational cost without compromising convergence efficiency.

recommend using the exact Shapley values (i.e., the maximum number of players) to ensure the
most accurate results.

3.4. Comparison with Basin Hopping

For a thorough assessment of our algorithm, it was also benchmarked against Basin Hopping,
a commonly used optimization technique. Detailed information regarding the selection and
configuration of parameters for Basin Hopping, including the setup of its local optimizer, can
be found in Supplement 1 Section 3. We experimented with various temperatures and step
sizes within the Basin Hopping algorithm, which are pivotal in balancing the trade-off between
exploring new areas and refining existing local optima. Here in the main text, we will only
present the results when the COBYLA was used as a local optimizer. Results with the L-BFGS-B
method as a local optimizer are similar and are presented in Supplement 1 Section 6. Using these
specific hyperparameters and the COBYLA optimizer, the comparative performance for our two
benchmark functions is presented in Fig. 4.

It is important to acknowledge that the hyperparameters selected for Basin Hopping in this
study may not be optimal, and the results presented here, as well as in subsequent sections,
reflect these specific conditions. The same applies to SGSO and its hyperparameters, as further
optimization could be pursued. Generalizing the conclusions across all possible hyperparameter
configurations is however nearly impossible. While we followed a methodology to select the
hyperparameters for Basin Hopping, any further refinement would essentially introduce a new

https://doi.org/10.6084/m9.figshare.28220351
https://doi.org/10.6084/m9.figshare.28220351
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(a) (b)

Fig. 4. Performance comparison of SGSO against Basin Hopping. (a) Easom function (The
results for the approximated Shapley values were omitted here since they did not provide any
enhancement) (b) Ackley function.

optimization problem layered on top of the original one. This challenge is inherent to heuristic
optimization algorithms, making it difficult to fairly compare different methods under varying
conditions.

For the Easom function, the average FOM for Basin Hopping was only 0.2. In contrast, the
SGSO algorithm reached 0.8. The limited success for Basin Hopping might be explained as
follows: if the initial point falls closer to the global optimum, Basin Hopping manages to reach
this global optimum after a few jumps. However, if it starts from a point far away, then there
is a smaller probability that it will be able to reach this global optimum with random jumps.
Therefore, we would expect higher probability of convergence if the search domain were to be
reduced. Indeed, more results for Basin Hopping with a smaller search domain are presented in
Supplement 1 Section 5, which show better performance with a smaller search range.

The results for the Ackley function, depicted in Fig. 4(b), highlight that the SGSO using
approximate Shapley values with two players achieved the fastest convergence and highest FOM
compared to Basin Hopping and the SGSO with the exact Shapley method. However, none of the
algorithms reached the global optimum of 1, as indicated by the upper bounds of their shaded
areas. Still, the shaded area for the SGSO with approximate Shapley values exceeds a FOM of
0.98, suggesting a convergence to local optima very close to the global. This suggests that with
additional time, it might converge to the global optimum.

Finally, in Fig. 5 we plot the FOM histogram after approximately 5000 evaluations of the
Ackley function. This histogram can be considered as representing the probability distribution
function of reaching the global optimum point for the different algorithms. We can see that the

Fig. 5. Histogram for the obtained FOM for Ackley function after approximately 5000
function evaluations. The plot shows a comparison for the SGSO with exact and approximated
Shapley in addition to Basin Hopping.

https://doi.org/10.6084/m9.figshare.28220351


Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 7289

SGSO with the approximate Shapley values falls almost completely above 0.9, while the results
for the other two are scattered across the FOM range. (As a side note for the Easom function, the
histogram was not shown since it does not contain any interesting distribution: the FOM either
takes 1 or values very close to 0 in the histogram.) The figure also shows that also the SGSO
with exact Shapley values is more likely to converge to higher quality local optima than Basin
Hopping.

4. Application to integrated photonic inverse design

We extended our testing to practical scenarios within the domain of integrated photonic inverse
design. We chose three inverse design challenges: a grating coupler, an integrated 3dB splitter
and broadband mirrors for thermophotovoltaics applications. The broadband mirror is simulated
with the transfer matrix method [13]. Evaluating the performance of the first two structures, the
grating coupler and the 3dB splitter, can be performed using finite-difference (FD) simulations
implemented using commercial software like Lumerical [23] or an open-source tool like EMopt
[24]. However, the need for multiple FOM evaluations to compute Shapley values means that
FD simulations can become too time-intensive, particularly when testing various algorithm
configurations. To avoid this, we developed surrogate models employing neural networks
to simulate these two photonic problems. These surrogate models dramatically reduced the
algorithm’s runtime from several hours to few seconds, greatly enhancing the practicality and
efficiency of our approach. However, this improvement comes at the expense of reduced accuracy
in simulating the actual performance of the device since we employed relatively simple neural
network architectures. More advanced approaches like physics-informed neural networks [25]
could further enhance the accuracy, but are outside the scope of this paper.

4.1. Inverse design applied to a grating coupler’s surrogate model

The grating coupler is commonly used to facilitate light transfer between a photonic chip and
an optical fiber, featuring a periodic structure. However, challenges such as mode mismatch,
substrate coupling, and wavevector matching into the reflected mode can significantly reduce its
efficiency [26]. As a result, optimization techniques are frequently used to enhance the grating
coupler’s performance, aiming to balance these various factors for optimal coupling.

The schematic representation of the considered grating coupler is shown in Fig. 6, where the
widths of the Si teeth and the gaps of the SiO2 correspond to various optimization variables.
In this case, there are 25 pairs of Si and SiO2, resulting in a total of 50 optimization variables,
corresponding to a 50-dimensional optimization space. Exactly calculating the Shapley values
for the grating coupler’s 50 design variables would require an infeasible 250 function evaluations,
so we resorted to the two-player approximation described above. The FOM is determined by the
efficiency of the coupling from the input waveguide to the optical fiber, and is calculated using a
surrogate model based on a machine learning model. This model is based on a simple machine
learning architecture that could capture the general trends in the optimization landscape of the
original problem, but which isnot as accurate as the conventional FD simulations methods. More
details on this model are given in Supplement 1 Section 2.

The results for the different algorithms are shown in Fig. 6(b). The two-player SSGO showed
superior performance compared to both the random version of the SGSO and the Basin Hopping
algorithm. For instance, SGSO achieved an average FOM of >0.55, compared to 0.5 for its
random version and 0.4 for basin hopping. Such differences can be particularly significant in the
context of complex photonic integrated circuits.

4.2. Inverse design applied to 3dB splitter’s surrogate model

A 3dB splitter divides an incoming light wave into two equal parts. Its operational principle often
relies on multimode interference, which adds complexity to the design process. We parameterized

https://doi.org/10.6084/m9.figshare.28220351


Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 7290

(a) Integrated grating coupler (b)

Fig. 6. (a) Schematic for the grating coupler showing its optimization parameters and
the FOM. The incident wave coming from the fiber is transformed by the silicon teeth
(whose widths are the optimization parameters) into a propagating waveguide mode. The
efficiency of the coupling process represents the FOM. Twenty-five grating periods were
used, corresponding to a 50-dimensional optimization space. (b) Performance comparison
of SGSO with its random version and Basin Hopping applied to the grating coupler’s
surrogate model. The exact evaluation the Shapley values is omitted due to the infeasibility
of calculating it with a large number of variables.

the 3dB splitter structure with 10 optimization variables as shown in Fig. 7(a). The FOM is
defined as the coupling from the input waveguide to the output waveguides. A surrogate model
based on neural networks was developed for the 3dB splitter to predict the FOM given the values
of the different widths. Detailed information about this model is available in Supplement 1
Section 1. In this case, the calculation of the exact Shapley values is feasible with 210 = 1024
function evaluations.

(a) Integrated 3dB Splitter (b)

Fig. 7. (a) Integrated 3dB splitter with its associated parameters and FOM. The drawing
shows an incident light wave from the input waveguide on a silicon slab with varying
geometry. This wave should be split into two waves that are coupled into the two output
waveguides with minimal reflections and radiation losses. The geometry was parameterized
using 10 different widths, using linear interpolation and smoothing. (b) Performance
comparison of SGSO with its random version and Basin Hopping for 3dB splitter’s surrogate
model.

The outcomes for the photonic design problems are displayed in Fig. 7(b). Incorporating
Shapley values did not yield any performance gains, with results matching those of the random
approach, even when the approximate Shapley values were utilized. This indicates that the

https://doi.org/10.6084/m9.figshare.28220351
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Shapley values may not effectively identify the important features for the 3dB splitter problem, or
the simplifications made to the Shapley value calculations compromised their accuracy. Therefore,
precise calculations might be necessary to maintain accuracy, but this approach adds a high
computational cost that outweighs simply exploring the optimization space. The results for the
3dB splitter are not surprising, as we do not anticipate our algorithm to outperform every other
algorithm for every problem, in line with the so-called ’No Free Lunch’ theorem [27]. Still, we
can observe that the SGSO either with random Shapley values or the approximated version is
doing better than Basin Hopping with its hyberparameters as described in the supplementary
material. This difference (>0.15) between the SGSO and Basin Hopping represents a significant
performance improvement, particularly in scenarios involving multiple 3dB splitters within a
complex photonic integrated circuit.

4.3. Inverse Design applied to transfer matrix model of broadband mirrors for ther-
mophotovoltaics applications

Our next step involved employing our algorithm to design a broadband mirror for thermopho-
tovoltaic applications. These mirrors must provide high reflectivity across a broad wavelength
spectrum and consist of a stack of layers made from different materials with alternating refractive
indices as shown in Fig. 8. The thickness of each layer serves as an optimization variable to
achieve the required high reflectivity over an extensive wavelength range. A greater number of
layers introduces more degrees of freedom, potentially increasing the achievable reflectivity. We
adhered to the problem description/settings from [12], but we omitted the use of a gold substrate
to have a larger range of variation in the obtained FOM, to help us in the comparison between the
different algorithms. We tested the SGSO algorithm in two scenarios: one with six Si and SiO2
layers, and another with ten layers. For these experiments, we utilized an electromagnetic solver
based on the semi-analytical transfer matrix method, as described in [13]. The local optimizer
within the SGSO and Basin Hopping was based on the gradient calculation method from the same
paper, and facilitated faster local optimizations relative to finite difference gradients evaluations.
Further details on parameter adjustments for Basin Hopping are discussed in Supplement 1
Section 3.

Fig. 8. Schematic representation of a broadband multilayer mirror composed of alternating
Si/SiO2 layers, with air as both the substrate and the incident medium. The thickness of
each layer is an optimization parameter designed to enhance the mirror’s reflectivity across
its operational bandwidth. Incident rays from the air are both refracted and reflected at
the initial layer interface. Subsequent layers induce multiple reflections and refractions
at various interfaces. The phase differences between the reflected rays, governed by layer
thickness, result in either constructive or destructive interference at different wavelengths.
By precisely adjusting these thicknesses, high reflectivity can be achieved across a broad
wavelength range and for various angles of incidence.

https://doi.org/10.6084/m9.figshare.28220351
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The results for the two scenarios with different numbers of layers are depicted in Fig. 9.
We chose to employ only the SGSO algorithm with approximate Shapley values to keep the
optimization time within reasonable bounds. The SGSO clearly outperforms both its random
counterpart and the Basin Hopping algorithm. In the 6-layer scenario, after 2400 function
evaluations, the SGSO achieves approximately 1.5% higher reflectivity than its random version
and about 3.7% higher than Basin Hopping. For the 10-layer case, the improvements are around
1% and 2.7% over the random version and Basin Hopping, respectively.

(a) (b)

Fig. 9. Comparison of the performance of SGSO (using approximate Shapley values) against
its random counterpart and Basin Hopping for optimizing a multilayer broadband mirror.
(a) presents results for configurations with 6 layers (6-dimensional optimization problem),
and (b) for 10 layers (10-dimensional optimization problem). The SGSO consistently
outperforms the other two algorithms. In the case of 10 layers, the FOM is higher because
the larger number of degrees of freedom.

While the performance differences between the algorithms are less pronounced, the SGSO
algorithm still demonstrated faster convergence. The practical significance of these differences
is highly application-dependent. In some scenarios, even fractional improvements in the FOM
can be crucial. For example, in a ring laser gyroscope, achieving mirrors with extremely high
reflectivity (>0.999) is essential to mitigate the lock-in phenomenon [28,29], which restricts the
measurement of minimal angular rotations. In such cases, optimizations that deliver even slight
performance enhancements can have a substantial impact on overall system functionality and
precision.

5. Conclusions

In this study, we introduced a novel optimization algorithm named SGSO, which incorporates
the concept of Shapley values from game theory. Shapley values can be particularly useful for
pinpointing important features at local optima which can be exploited throughout optimization
framework. The SGSO is related to evolutionary algorithms, but equipped with Shapley values to
decide which features to retain in subsequent generations, in addition to employing local search
from Basin Hopping to reach local optima with relatively high-quality features. We assessed
our algorithm’s performance by comparing it with Basin Hopping, a conventional method for
global optimization. Our evaluations were conducted using two well-known benchmark functions
and three problems in integrated photonics inverse design. Two of the inverse design problems,
the grating coupler and the 3dB splitter, were addressed through neural networks as surrogate
models. The third example, the broadband mirror, was modeled using an electromagnetic solver
based on the transfer matrix method. The SGSO ultimately demonstrated superior performance,
exhibiting faster convergence and a higher likelihood of reaching better solutions in four out of
these five cases—the Easom function, the Ackley function, the grating coupler and the broadband
mirror (in both cases, 6 and 10 layers). The SGSO also outperformed Basin Hopping on the fifth
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problem, the 3dB splitter. However, this could be due to the algorithm’s procedure itself rather
than the insights provided by the Shapley values, since it did not surpass its random version. This
variance is anticipated, as no single optimization algorithm is expected to be universally effective
across all problems. Additionally, we proposed and tested a simplification of the Shapley value
calculations. This modification proved crucial for certain problems, such as the Ackley function,
the grating coupler and the broadband mirror. However, it did compromise the accuracy of the
Shapley values in the case of the Easom function.

The three integrated photonics inverse design problems showed relatively promising per-
formance for the SGSO, highlighting its potential applicability in real-world inverse design
challenges. However, the optimization was conducted using surrogate models based on neural
networks in the cases of the grating coupler and the 3dB splitter. Consequently, the accuracy
of these models may be questionable, which can limit the direct use of the generated optimal
designs without further tweaking. Nevertheless, the landscape of the optimization space of
the developed surrogate models is likely to retain some characteristics of the original space of
the actual optimization problem. From a purely optimization perspective, the SGSO managed
to achieve better outcomes across these varied landscapes. Additionally, the inverse design
problem of the broadband mirror presents another demonstration where the surrogate model,
based on an EM solver, yields more precise results. This serves as a more tangible example of
the effectiveness of our method in the context of integrated photonics inverse design.
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