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Analysis of Coupled Active  Waveguides:  Comparison 
of Different Modeling Techniques 

JEAN-PIERRE VAN DE CAPELLE, NIELS FACHE, PATRICK VANKWIKELBERGE, ROEL BAETS, 
AND P. E. 

Abstract-A self consistent model for the  analysis of phase locked 
array lasers is proposed and a comparison is made with the more fre- 
quently used coupled mode theory. It is  shown that in most cases the 
coupled mode solutions are in good agreement with the self-consistent 
solution, but  in some cases  care should be taken in applying the cou- 
pled mode theory and an improvement of that theory may be useful. 

1. INTRODUCTION 

D URING the  last years the research on multiple stripe 
(MS) lasers (or phase locked  array laser) for high 

power,  scanning [ 11-[5] and  single  mode applications has 
increased significantly. MS lasers consist of a  series of 
single  stripe  lasers, spaced closely enough so that  the op- 
tical beams of the different lasers can interact. In this way 
these different beams show a  certain  phase  relationship, 
which is characteristic  for  the  supermode in which the MS 
laser operates. Depending on the exact structure,  one of 
these supermodes may be favored with respect to the  oth- 
ers and will be  the first to reach threshold.  These  super- 
modes may  be determined  as  the combination of the  dif- 
ferent modes of the individual lasers  (the coupled mode 
theory, [6], [7]), or they may be obtained from the  eigen- 
mode analysis of the  complete waveguide [8], [lo]. In  the 
next section a comparison will be  made between both 
methods. It will be shown that in most cases  the  agree- 
ment between both methods is  good.  In special cases, 
however,  the coupled mode theory needs to be used with 
some care. 

The complex refractive  index of the MS-laser wave- 
guide is strongly dependent on the  carrier density in the 
active  layer.  The  carrier density itself is determined by 
the current injection into the active  layer from the differ- 
ent contacts and by the diffusion of the carriers in the ac- 
tive  layer  itself.  Hence  an  accurate  analysis of this current 
spreading and of the drift and diffusion may be important 
in order to obtain a good representation of the effective 
refractive index [ 111-[ 151. Previously we  have reported a 
self-consistent analysis in which the current distributions 
of the individual contacts were simply added [lo], but this 
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is only valid if the  contacts  are sufficiently separated.  Re- 
cently we  have discussed the influence of this current 
spreading and  carrier diffusion more accurately for single 
stripe  lasers [ 151. In this paper we report the extension of 
that method to multiple stripe lasers and a comparison with 
the coupled mode theory is made. Next the coupled mode 
theory is improved to some extent and the influence of 
this improvement is discussed. In the following section 
the  self-consistent model is briefly reviewed and the cou- 
pled mode analysis is discussed.  In  the  last  section,  the 
examples  are discussed and conclusians  are  made. 

11. THEORY 

The theory of the self-consistent model has been dis- 
cussed in detail in [15]. The  optical field for  the  ith mode 
is determined from the  eigenmode  equation: 

d 2 x  
- + ( k i n 2 ( y )  - &i)Yi = 0 
dY 

in which n ( y ) is determined from the effective refractive 
index method.  The complex refractive index is linearly 
perturbed by the  electron  concentration, which itself is 
determined from a nonlinear diffusion equation taking into 
account the  stimulated  and spontaneous (bimolecular or 
monomolecular) recombination, as well as the degeneracy 
of the conduction and the valence band [15] and the cur- 
rent injection into  the  active  layer.  This  current is deter- 
mined from the solution of a two-dimensional potential 
problem in the  top cladding layer [ 151. The solution of 
(1) can either be found by means of a Beam Propagation 
Method (BPM) [9], [lo], [IS] or by means of an eigen- 
value  determination technique [SI. In  the  case of multi- 
lateral  mode  behavior (i.e., more than one mode is above 
threshold) it was found convenient to use a combination 
of both methods, although other techniques can be used 

The coupled mode theory is based on the following as- 
sumptions: 1 )  there is only nearest mode coupling, 2) the 
modes of the individual waveguides are  orthogonal, 3) 
modes vanish in neighboring waveguides. 'In this paper 
we have dropped these assumptions and especially the in- 
fluence of the last  two  assumptions will be discussed in 
the next section.  The modes of the individual wave- 
guides, denoted as Gk, are orthonormalized with a Gram- 
Schmidt orthogonalization  procedure, from which a set of 
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K new function GL, ( K  is the  number of stripes) is de- 
rived: 

r 

G[ 
GL = 

I r '  

The functions GL are  orthogonal with respect to the prod- 
uct ( u,  u ), defined as 

+m 

( u ,  u )  = s .(Y> U ( Y >  dY. (3) 
-m 

This orthogonality relation is also satisfied for  the modes 
found from  the  eigenmode  equation (1) of the MS wave- 
guide.  Note  that  other  scalar products may be used in (2), 
such as 

0 f m  

( u ,  u )  = 1 U ( Y )  U*(Y)  dY. (4) 
--m 

It will be shown later  that  the orthonormalization proce- 
dure based on  this  scalar product yields poorer results. If 
we assume  only nearest neighbor  coupling, we can just 
keep the  last term in the summation of (2) ( j = k - 1 ). 
Assuming that r;: can be written as 

K 
yi = aLGi 

k =  1 

we can substitute ( 5 )  into (1).  After multiplication with 
G; and integration, we obtain  a  set of homogeneous equa- 
tions in a;, which only has a solution for specific values 
of p",,,. These values are considered to be good aproxi- 
mations for  the  eigenvalues of (l), they are determined by 

where 

( M ) ,  = k i  1 G;GLn2(y) dy + G; 7 dy. s $YGL 
Assuming only nearest mode  coupling  the only values 

of ( M ) i k  which do not vanish  are  those  for k = i - 1, i, 
i + 1. The second order  derivatives  appearing in (6) need 
not to be calculated  numerically,  since ,G; is a  linear  com- 
bination of the  functions Gk, which satisfy a  similar  equa- 
tion to (1). Furthermore  we  have E, = 6,, with 6, the 
Kronecker symbol. It should be noted that (6) actually has 
the same form as  the  classical  eigenvalue  equation  ob- 
tained from the  coupled  mode  equations, but it does not 
assume  that  the modes Gk, are  orthogonal,  neither  does it 
neglect the self-caupling,  arising from the  fact  that  the 
mode Gk has not completely vanished at the waveguides 

of the  lasers 1 # k. Adopting these  assumptions, (6) re- 
duces to the  classical  coupled  wave  equations.  Further- 
more, it can easily be shown  that  the different supermodes 
found  from ( 5 )  and (6) satisfy the  orthogonality relation 
(3), since  the matrix M is symmetric  and  the  functions 
GL are  orthogonal. If the  classical coupled mode theory is 
used,  one  again needs to  assume  that  the  individual modes 
Gk are  orthogonal in order to obtain  the  orthogonality (3) 
for  the  supermodes. 

It should also  be noted that  one could use a  variational 
principle to determine  the  eigenvalues of (1) (161. Indeed, 
substituting ( 5 )  into  the  functional of [ 161: 

and subsequently putting the  derivatives of J, with respect 
to ai,  zero,  we  obtain (6) (Galerkins  method).  It should 
be remembered that the minimal value of J coincides with 
pisi .  Hence the value of Bmsi obtained  from (6) is  the best 
estimation of the  eigenvalue of (1) (according  to  the vari- 
ational principle) which can  be  obtained with the repesen- 
tation of 6 given by ( 5 ) .  As a  consequence,  the results 
obtained with the  orthonormalization using Gi* in (2), 
may be expected to be worse. 

111. EXAMPLES 
Two  examples will be  discussed in some  detail.  First 

an example is discussed for which the  coupled  mode the- 
ory yields good results and  the influence of the  improve- 
ment given in the previous section is discussed.  The 
method described in [ 101 is used to calculate  the threshold 
field self-consistently and  this  serves  as  a  reference solu- 
tion for the coupled mode solutions. Next an  example will 
be discussed for which the  coupled  mode theory (both the 
classical and the improved) fails to predict  the  laser array 
modes. For this  example  the  self-consistent model de- 
scribed in the previous section  is used to  calculate  the  laser 
characteristics  up to and beyond the  onset of the second 
order  lateral  mode. 

In the first example  we  consider  the  case of two  index 
guided lasers, which slightly differ from one  another  (for 
example  due  to  fabrication  tolerances).  The  refractive  in- 
dex perturbation profiles of both lasers  were chosen to  be 
Gaussian, of 3-pm width (in 1 / e  points) and maximum 
values of 0.0029 and  0.003,  respectively.  The  stripe 
widths were  assumed  to  be  3  pm  and  the  separation be- 
tween the stripes was chosen to be 4 pm.  For this  laser 
we calculated the threshold field by means of the method 
of [ 101. Next,  we  applied  the coupled mode theory and 
the improved coupled mode theory, using the threshold 
fields and refractive indices of the individual lasers.  The 
results for  the even modes are  shown  in  Fig.  1. The mode 
calculated with the  self-consistent method is denoted  as a 
and the  mode  calculated with the  classical and improved 
coupled mode formalism  are  denoted as c and b,  respec- 
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Fig. 1. Normalized field distributions  (amplitude) for the multiple  stripe 
laser,  obtained with a the self-consistent  analysis, b the improved cou- 
pled mode theory, and c the classical  coupled  mode  theory. The inset 
shows  the  real  (full  line)  and  imaginary  (dashed  line)  part of the refrac- 
tive  index. 

tively . The improvement introduced by the coupled mode 
formalism  can  be seen from Fig. 1. The  refractive  index 
distribution for  the  laser  array  has been shown in the inset 
(real and imaginary part, varying from 3.475 to 3.478 and 
from -4 X to 1 X lop3, respectively). Note that 
the antiguiding has been neglected: It was verified that  the 
second orthonormalization  procedure, discussed in  the 
previous section yields poorer  results.  It should also be 
noted that the newly presented coupled mode formalism 
does not introduce any improvement for  a perfectly sym- 
metric twin stripe  laser. 

The  second  structure consists of two closely spaced, 
gain guided lasers (with a  5-pm  contact each and sepa- 
rated by 2 pm). A single  contact  layer at constant poten- 
tial was assumed.  The sheet resistance of the  top cladding 
layer was chosen to be 1000 Q/ 0. The self-consistent 
method described in [15] was used to obtain the  modes, 
the  power  current, and the  current  voltage  characteristics. 
The  inset in Fig, 2 shows again the  refractive index (real 
and imaginary part). In a narrow region in between the 
contacts the  local  gain becomes slightly smaller than the 
required threshold gain. The refractive index however is 
slightly higher in between the  contacts,  due to antiguid- 
ing. As shown in Fig. 2, the first mode to reach threshold 
is a  single  lobed field occurring  in between the  contacts. 
Although the  local gain is slightly too small there,  the 
average gain (along the  lateral  direction)  equals  the re- 
quired threshold gain. Such a solution cannot  be found 
with the coupled mode formalism. The appearance of such 
a  mode  is  always  a  consequence of the  competition be- 
tween the  gain  and  index  antiguiding.  The antiguiding re- 
sults in spatial regions with higher refractive index in be- 
tween the  contacts, focusing the  light  into  it. If the  loss 
in that region is not too high this mode may have  a  lower 
threshold current than the  other modes. Similar results 
have been obtained in [lo] for  a  three  contact  laser.  Fig. 
3 shows the  power  versus  current  characteristic  for  this 
device. A kink occurs at the  onset of the first order lateral 
mode,  as has already been reported in [8], [ 101 and as has 
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Fig. 2. Normalized  intensity profiles of the  fundamental (even) and the 
first order (odd)  mode for the twin stripe laser of the second  example. 
The inset  shows the real  and  imaginary  part of refractive  index distri- 
bution along  the  lateral  direction (varying from 3.489 up to 3.494 and 
from -1.8 X 10-3up to0 .4  X 

total output power 

1 St order rode 
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Fig.  3. Power-current  characteristics for the  fundamental and the first-or- 
der mode  (see Fig. 2). The  inset  shows the current-voltage  relationship 
for this device. Both in I-Vand  the P-I characteristic, a kink  appears at 
the  onset of the first order lateral  mode. 

also been observed experimentally.  The  inset shows the 
piecewise linear I-V curve, in which a kink appears at the 
onset of the first order  lateral  mode. 

IV. CONCLUSION 
We have compared an improved coupled mode formal- 

ism with a self-consistent analysis of phase-locked array 
lasers.  The  self-consistent  method, which takes  into  ac- 
count the interaction between the potential problem in the 
cladding layers  and  the diffusion (and stimulated emis- 
sion) in the  active  layer,  allows  for  the determination of 
both the P-I and I-V characteristics. Kinks in either  the 
P-I or I-V curve  indicate  the  onset of the  second-order 
lateral mode. From the comparison between the  self-con- 
sistent model and the coupled mode  theory, it was shown 
that for most cases  the coupled mode solutions are in good 
agreement with the  self-consistent  solution.  For  some 
cases  however, especially those  were  the antiguiding be- 
comes important,  the coupled mode  formalism was found 
to be inadequate.  Furthermore, we presented an improved 
coupled mode formalism, which is slightly more accurate. 
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