Authors: | K.T Vandoorne, M. Fiers, T. Van Vaerenbergh, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman | Title: | Advances in photonic reservoir computing on an integrated platform | Format: | International Conference Proceedings | Publication date: | 6/2011 | Journal/Conference/Book: | International Conference on Transparent Optical Networks (ICTON)
(invited)
| Volume(Issue): | p.Mo.B5.5 | Location: | Stockholm, Sweden | DOI: | 10.1109/icton.2011.5970791 | Citations: | 3 (Dimensions.ai - last update: 8/12/2024) Look up on Google Scholar
| Download: |
(363KB) |
Abstract
Reservoir computing is a recent approach from the fields of machine learning and artificial neural networks to solve a broad class of complex classification and recognition problems such as speech and image recognition. As is typical for methods from these fields, it involves systems that were trained based on examples, instead of using an algorithmic approach. It originated as a new training technique for recurrent neural networks where the network is split in a reservoir that does the ‘computation’ and a simple readout function. This technique has been among the state-of-the-art. So far implementations have been mainly software based, but a hardware implementation offers the promise of being low-power and fast. We previously demonstrated with simulations that a network of coupled semiconductor optical amplifiers could also be used for this purpose on a simple
classification task. This paper discusses two new developments. First of all, we identified the delay in between the nodes as the most important design parameter using an amplifier reservoir on an isolated digit recognition task and show that when optimized and combined with coherence it even yields better results than classical hyperbolic tangent reservoirs. Second we will discuss the recent advances in photonic reservoir computing with the use of resonator structures such as photonic crystal cavities and ring resonators. Using a network of resonators, feedback of the output to the network, and an appropriate learning rule, periodic signals can be generated in the optical domain. With the right parameters, these resonant structures can also exhibit spiking behaviour. Related Research Topics
Related Projects
|
|