Photonics Research Group Home
Ghent University Projects
About People Research Publications Education Services
 IMEC
intern

 

back to project list 
H2020NEBULA

H2020: NEBULA

Full Name: Neuro-augmented 112Gbaud CMOS plasmonic transceiver platform for Intra- and Inter-DCI applications

Duration: 1/3/2020-1/3/2022

Partners:

  • Aristotelio Panepistimio Thessalonikis (AUTH), Greece
  • ETH Zurich (ETHZ), Switzerland
  • Centre National de la Recherche Scientifique (CNRS), France
  • Politecnico di Milano (POLIMI), Italy
  • Interuniversitair Micro-Elektronica Centrum (IMEC), Belgium
  • Institute of Communication and Computer Systems (ICCS), Greece
  • Ghent University (UGent), Belgium
  • IBM Research – Zurich, Switzerland
  • LIGENTEC, Switzerland
  • III-V Lab, France
  • Mellanox Technologies Limited (MLNX), Israel
  • ADVA Optical Networking SE (ADVA), Germany

Objective:

  • NEBULA (Neuro-augmented 112Gbaud CMOS plasmonic transceiver platform for Intra- and Inter-DCI applications) is a 3-year collaborative project on the development of a neuro-augmented 112Gbaud CMOS plasmonic transceiver platform for Intra- and Inter- DCI applications that brings together twelve leading academic and research institutes and companies. NEBULA aims to provide the foundations for a common future-proof transceiver technology platform with ultra-high bandwidth capabilities offered by a CMOS compatible toolkit and tailored towards meeting performance, cost and energy metrics in both inter-DCI coherent and intra-DCI ASIC co-packaged optics. NEBULA will be investing in the established bandwidth- and energy saving credentials of plasmonic modulator solutions together with the functional digital processing portfolio of neuromorphic optical reservoir computing engines towards painting the landscape of the next-coming disruption in transceiver evolution, tailoring them in System-in-Package prototype assemblies that can intersect with the challenging framework of both inter- and intra-DCI segments. The project was launched in Januray 2020 and it is funded by the European Commission through HORIZON 2020 framework targeting the topic ICT-05-2019: Application driven Photonics components.

INTEC's Role:

  • Design of photonic neuromorphic equalisers.

Project Web site: http://nebula-h2020.eu/

People involved

Publications in the framework of this project (13)

    International Journals

  1. S. Masaad, S. Sackesyn, Stylianos Sygletos, P. Bienstman, Experimental Demonstration of 4-Port Photonic Reservoir Computing for Equalization of 4 and 16 QAM Signals, Journal of Lightwave Technologies, 42(24), p.8555-8563 doi:10.1109/JLT.2024.3444480 (2024)  Download this Publication (2.9MB).
  2. S. Masaad, P. Bienstman, Opto-Electronic Machine Learning Network for Kramers-Kronig Receiver Linearization , Optics Express, 32(13), p.23561-23574 doi:10.1364/OE.522673 (2024)  Download this Publication (2.6MB).
  3. E.J.C. Gooskens, S. Sackesyn, J. Dambre, P. Bienstman, Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths, Scientific Reports, 13(21399), doi:doi.org/10.1038/s41598-023-48816-9 (2023)  Download this Publication (1.4MB).
  4. S. Masaad, E.J.C. Gooskens, S. Sackesyn, J. Dambre, P. Bienstman, Photonic reservoir computing for nonlinear equalization of 64-QAM signals with a Kramers-Kronig receiver, Nanophotonics, (2022)  Download this Publication (1.7MB).
  5. E.J.C. Gooskens, F. Laporte, C. Ma, S. Sackesyn, P. Bienstman, Wavelength Dimension in Waveguide-Based Photonic Reservoir Computing, Optics Express, 30(9), p.15634-15647 doi:10.1364/OE.455774 (2022).
  6. S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation, Optics Express, 29(20), p.30991-30997 doi:10.1364/OE.435013 (2021)  Download this Publication (2.8MB).
      International Conferences

    1. S. Masaad, S. Sackesyn, Stylianos Sygletos, P. Bienstman, Experimental Demonstration of 4-Port Photonic Reservoir Computing for Equalization of 4 and 16 QAM Signals, European Conference on Optical Communication, p.M3G.3 (2024)  Download this Publication (3.8MB).
    2. E.J.C. Gooskens, S. Sackesyn, S. Masaad, J. Dambre, P. Bienstman, Photonic Reservoir Computing for Wavelength Multiplexed Nonlinear Fiber Distortion Mitigation, IEEE SiPhotonics (formerly GFP conference), United States, p.1-2 doi:10.1109/SiPhotonics55903.2023.10141896 (2023)  Download this Publication (1MB).
    3. S. Masaad, E.J.C. Gooskens, S. Sackesyn, J. Dambre, P. Bienstman, Photonic Reservoir Computing for Nonlinear Equalization of 64-QAM Signals with a Kramers-Kronig Receiver, European Conference on Optical Communication, Tu4G.3 , Switzerland, (2022)  Download this Publication (352KB).
    4. S. Sackesyn, S. Masaad, C. Ma, P. Bienstman, Reservoir Computing with Optical Weights, European Conference on Optical Communication: Workshop on Photonic and Electronic Cointegration Solutions (WS13) (invited), Switzerland, (2022).
    5. E.J.C. Gooskens, F. Laporte, S. Sackesyn, C. Ma, P. Bienstman, Wavelength Multiplexing in Photonic Reservoir Computing, Annual Symposium of the IEEE Photonics Society Benelux Chapter, (2021)  Download this Publication (546KB).
    6. S. Sackesyn, C. Ma, J. Dambre, P. Bienstman, Experimental Demonstration of Nonlinear Fibre Distortion Compensation with Integrated Photonic Reservoir Computing, ECOC, France, p.SC3-tu4g.6 doi:10.1109/ECOC52684.2021.9606162 (2021)  Download this Publication (1.3MB).
    7. A. Lugnan, S. Sackesyn, C. Ma, E.J.C. Gooskens, M. Gouda, S. Masaad, Joni Dambre, P. Bienstman, Photonic reservoir computing for high-speed neuromorphic computing applications, 2021 IEEE Summer Topicals Meeting Series (invited), Mexico, (2021).