Photonics Research Group Home
Ghent University Research Topics
About People Research Publications Education Services
 IMEC
intern

 

Silicon Arrayed Waveguide Gratings (AWG)

Research Area: Design and Modeling for Integrated Photonics, Silicon photonics for telecom, datacom and interconnect

Main Researcher: Shibnath Pathak

The operation principle of a conventional AWG is described as follows. A light beam exiting from a suitable waveguide aperture enters into a first free propagation region (FPR) and diverges. This diverging light beam is then coupled in an array of waveguides and propagates through these waveguides to a second FPR. The optical path length difference between two successive waveguides in the array is constant. Therefore, for this center wavelength, the field distribution at the entrance of the waveguide array will be reproduced at its exit aperture. In a perfect system a perfect image of the object plane can then be formed and the field distribution in the image plane will have the same amplitude and phase as the field distribution of the object plane. Obviously, the imaging is never perfect because one uses a finite number of arrayed waveguides and the FPR has a finite numerical aperture. The phase difference in the arrayed waveguides varies with wavelength because of their length difference and the wavelength-dependence of the propagation constant. This phase delay will induce a tilt in the phase fronts in the FPR and introduce a lateral shift of the image field profile. The spectral response of the AWG will therefore be determined by the overlap of this shifted field profile with the mode profile of the different output waveguide apertures located in the image plane. In most AWGs demonstrated in silicon, the geometry of the aperture at the input (object plane) and output (image plane) is identical: this results in a maximal overlap when the shifted image is perfectly aligned with one of the output apertures (i.e. at a given wavelength).


To simulate the AWG we developed a semi-analytical model integrated with our design software (IPKISS). IPKISS is a modular framework: the components are based on parametric cells, which can be reused, modified and portable between the technologies: the technology informations contains the default design rules and fabrication informations based on the foundry. Our model simulates the transmission matrices (T-matrix) of all parts of the AWG using the most suitable method. In our approach we divided the AWG in three parts: two star-couplers (FPR) and the waveguide array.


Other people involved:

Downloads

Fabrication and Characterization of High-Optical-Quality-Factor Hybrid Polymer Microring Resonators Operating at Very Near Infrared Wavelengths  Fabrication and Characterization of High-Optical-Quality-Factor Hybrid Polymer Microring Resonators Operating at Very Near Infrared Wavelengths

PhD thesises

Publications

    International Journals

  1. A. Vasiliev, M. Muneeb, J. Allaert, J. Van Campenhout, R. Baets, G. Roelkens, Integrated Silicon-on-Insulator Spectrometer with Single Pixel Readout for Mid-Infrared Spectroscopy, IEEE Journal on Selected Topics in Quantum Electronics, 24(6), p.8300207 (7 pages) doi:10.1109/jstqe.2018.2820169 (2018)  Download this Publication (838KB).
  2. M. Muneeb, A. Vasiliev, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. S. Penades, L. Cerutti, J.B. Rodriguez, G. Mashanovich, M. Smit, E. Tournie, G. Roelkens, III-V-on-silicon integrated micro-spectrometer for the 3 um wavelength range, Optics Express, 24(9), p.9465-9472 doi:10.1364/oe.24.009465 (2016).
  3. A. Malik, M. Muneeb, S. Radosavljevic, M. Nedeljkovic, J. Penades, G. Mashanovich, Y. Shimura, G. Lepage, P. Verheyen, W. Vanherle, T. Van Opstal, R Loo, J. Van Campenhout, G. Roelkens, Silicon-based photonic integrated circuits for the mid-infrared, Procedia Engineering (invited), 140, p.144-151 doi:10.1016/j.proeng.2015.10.154 (2016)  Download this Publication (1.1MB).
  4. A. Subramanian, E.M.P. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P.C. Wuytens, D. Martens, F. Leo, W. Xie, U.D. Dave, M. Muneeb, Pol Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Zeger Hens, G. Roelkens, R. Baets, Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip , Photonics Research (invited), 5(3), p.B47 doi:10.1364/PRJ.3.000B47 (2015)  Download this Publication (1.5MB).
  5. D. Martens, A. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, R. Baets, Compact Silicon Nitride Arrayed Waveguide Gratings for Very Near-infrared Wavelengths, Photonics Technology Letters, 27(2), p.137 - 140  doi:10.1109/LPT.2014.2363298 (2015)  Download this Publication (1.1MB).
  6. M. Muneeb, A. Ruocco, A. Malik, S. Pathak, E.M.P. Ryckeboer, D. Sanchez, L. Cerutti, J.B. Rodriguez, E. Tournie, W. Bogaerts, M. Smit, G. Roelkens, Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring, Optics Express, 22(22), p.27300-27308 doi:10.1364/oe.22.027300 (2014)  Download this Publication (4MB).
  7. S. Pathak, P. Dumon, D. Van Thourhout, W. Bogaerts, Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-On-Insulator, IEEE Photonics Journal, 6(5), p.4900109 doi:10.1109/JPHOT.2014.2361658 (2014)  Download this Publication (992KB).
  8. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, W. Bogaerts, Effect of mask discretization on performance of silicon arrayed waveguide gratings, Photonics Technology Letters, 26(7), p.718-721 doi:10.1109/lpt.2014.2303793 (2014)  Download this Publication (919KB).
  9. A. Malik, M. Muneeb, S. Pathak, Y.Shimura, J. Van Campenhout, R.Loo, G. Roelkens, Germanium-on-Silicon Mid-infrared Arrayed Waveguide Grating Multiplexers, IEEE Photonics Technology Letters, 25(18), p.1805-1808 doi:10.1109/LPT.2013.2276479 (2013)  Download this Publication (2MB).
  10. S. Pathak, D. Van Thourhout, W. Bogaerts, Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications, Optics Letters, 38(16), p.2961 - 2964 doi:10.1364/ol.38.002961 (2013)  Download this Publication (700KB).
  11. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E.M.P. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Mashanovich, G. Roelkens, Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8um, Optics Express, 21(10), p.11659-11669 doi:10.1364/OE.21.011659 (2013)  Download this Publication (2.1MB).
  12. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Optimized Silicon AWG with Flattened Spectral Response Using an MMI Aperture, Journal of Lightwave Technology, 31(1), p.87-93 doi:10.1109/jlt.2012.2231399 (2013)  Download this Publication (1.5MB).
  13. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact SOI-Based Polarization Diversity Wavelength De-multiplexer Circuit Using Two Symmetric AWGs, Optics Express, 20(26), p.B493-B500 doi:10.1364/oe.20.00b493 (2012)  Download this Publication (5.5MB).
  14. L. Wang, W. Bogaerts, P. Dumon, S. Selvaraja, T. Jie, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, Athermal AWGs in SOI by overlaying a polymer cladding on narrowed arrayed waveguides, Applied Optics, 51(9), p.1251-1256 doi:10.1364/ao.51.001251 (2012)  Download this Publication (755KB).
      International Conferences

    1. W. Bogaerts, SC454 Hands on: Silicon Photonics Design - Circuits, Optical Fiber Communication Conference (invited), SC454, United States, (2022)  Download this Publication (12.5MB).
    2. W. Bogaerts, Hands-on: Introduction to Silicon Photonics Circuit Design, Optical Fiber Communication Conference (invited), SC454, United States, (2021)  Download this Publication (19.3MB).
    3. U. Khan, M. Fiers, Y. Xing, W. Bogaerts, Experimental phase-error extraction and modelling in silicon photonic arrayed waveguide gratings , Photonics West (OPTO), 11285, United States, p.1128510 doi:10.1117/12.2544645 (2020)  Download this Publication (6.9MB).
    4. A. Vasiliev, F. Pavanello, M. Muneeb, J. Jurenczyk, A. Janaszek, M. Liebert, G. Roelkens, Novel approach for the integration of photonic circuits with Mid-IR detectors, Freiburg Infrared Colloquium, Germany, p.paper 8.4 (2019)  Download this Publication (350KB).
    5. R. Baets, P. Dumon, W. Bogaerts, Hands-on: Introduction to Silicon Photonics Circuit Design, Optical Fiber Communication Conference (invited), SC454, United States, (2019).
    6. A. Vasiliev, M. Muneeb, J. Allaert, R. Baets, G. Roelkens, Integrated Silicon-on-Insulator AWG Spectrometer with Single Pixel Readout for 2.3 um Spectroscopy Applications, European Conference on Integrated Optics (ECIO, Spain, p.We.2.B.4-HRP (2018)  Download this Publication (290KB).
    7. W. Bogaerts, Hands-on: Introduction to Silicon Photonics Circuit Design, Optical Fiber Communication Conference (invited), SC454, United States, (2018)  Download this Publication (14.3MB).
    8. A. Vasiliev, M. Muneeb, R. Baets, G. Roelkens, High Resolution Silicon-on-Insulator Mid-Infrared Spectrometers operating at 3.3 um, IEEE Photonics Society Summer Topicals 2017, Puerto Rico, p.177-178 doi:10.1109/phosst.2017.8012708 (2017).
    9. Z. Wang, M. Pantouvaki, G. Morthier, C. Merckling, J. Van Campenhout, D. Van Thourhout, G. Roelkens, Heterogeneous Integration of InP Devices on Silicon, the 28th International Conference on Indium Phosphide and Related Materials (IPRM) (invited), Japan, p.paper ThD1-1 (2016)  Download this Publication (379KB).
    10. A. Vasiliev, M. Muneeb, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. Soler-Penades, L. Cerutti, J. B. Rodriguez, G. Z. Mashanovich, M. K. Smit, E. TourniĆ©, G. Roelkens, 3.8 μm Heterogeneously Integrated III-V on Silicon Micro-Spectrometer, 18th European Conference in Integrated Optics 2016 (ECIO), Poland, p.paper ECIO/p-24 (2016)  Download this Publication (309KB).
    11. Z. Wang, A. Malik, B. Tian, M. Muneeb, Clement Merckling, M. Pantouvaki, Yosuke Shimura, Roger Loo, J Van Campenhout, D. Van Thourhout, G. Roelkens, Near/Mid-Infrared Heterogeneous Si Photonics, The 9th International Conference On Silicon Epitaxy And Heterostructures (invited), (2015)  Download this Publication (3.5MB).
    12. W. Bogaerts, S. Pathak, A. Ruocco, S. Dwivedi, P. De Heyn, P. Dumon, D. Van Thourhout, J. Van Campenhout, P. Absil, Silicon photonics non-resonant wavelength filters: comparison between AWGs, echelle gratings and cascaded Mach-Zehnder filters., Proc. SPIE 9365, Integrated Optics: Devices, Materials, and Technologies XIX (invited), United States, p.93650H doi:10.1117/12.2082785 (2015)  Download this Publication (4.6MB).
    13. S. Pathak, H. Yu, D. Van Thourhout, W. Bogaerts, A fast 4-channel silicon switch using an AWG with 12 carrier depletion modulators, 11th International Conference on Group IV Photonics (GFP), France, p.237-238 doi:10.1109/group4.2014.6961942 (2014)  Download this Publication (1.2MB).
    14. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Effect of mask grid on SOI arrayed waveguide grating performance, Group IV Photonics, South Korea, p.WC7 doi:10.1109/group4.2013.6644475 (2013)  Download this Publication (1.2MB).
    15. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact 16x16 channels Routers based on Silicon-On-Insulator AWGs., 16th Annual Symposium of the IEEE Photononics Benelux Chapter, Belgium, (2011)  Download this Publication (302KB).
    16. S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, W. Bogaerts, Compact SOI-Based AWG With Flattened Spectral Response Using a MMI, 8th International Conference in Group IV Photonics 2011, United Kingdom, p.45-47 (WC2) doi:10.1109/group4.2011.6053710 (2011)  Download this Publication (698KB).
    17. S. Pathak, W. Bogaerts, E. Lambert, P. Dumon, D. Van Thourhout, Integrated Design and Simulation Tools for Silicon Photonic Arrayed Waveguide Gratings., Annual Symposium of the IEEE Photononics Benelux Chapter, Netherlands, p. 41-44 (2010)  Download this Publication (696KB).
        National Conferences

      1. S. Pathak, W. Bogaerts, D. Van Thourhout, Simulation Tools for Silicon Photonic Arrayed Waveguide Gratings., 11st FirW PhD Symposium, Belgium, p.135 (2010)  Download this Publication (148KB).

      Back to overview